DSpace Repository

Assessment of the ability of the standardized precipitation evapotranspiration index (SPEI) to model historical streamflow in watersheds of Western Canada

Show simple item record

dc.contributor.author Gurrapu, Sunil
dc.contributor.author Hodder, Kyle R.
dc.contributor.author Sauchyn, David J.
dc.contributor.author St. Jacques, Jeannine Marie
dc.date.accessioned 2023-09-13T19:13:43Z
dc.date.available 2023-09-13T19:13:43Z
dc.date.issued 2021
dc.identifier.citation Canadian Water Resources Journal / Revue canadienne des ressources hydriques en_US
dc.identifier.uri http://117.252.14.250:8080/jspui/handle/123456789/7324
dc.description.abstract Knowledge of present-day spatial and temporal distribution of water resources is vital for successful water management and policies for planned adaptation to climate change. Measured quantities of hydroclimatic variables, including precipitation, evapotranspiration, streamflow, etc., are the primary indicators of water availability, and indices derived using several such primary variables provide a means to express water availability across a range of spatio-temporal scales. In this study, the ability of one such multi-scalar index, the Standardized Precipitation Evapotranspiration Index (SPEI), computed at a range of time scales, was examined to see how well it could model historically observed warm season monthly and annual streamflow in 24 natural-flowing watersheds of western Canada. The empirical relationships between the SPEI, computed at 1-, 3-, 6-, 9-, 12- and 24-month time scales, and monthly and annual streamflow were analyzed, showing significant correlations for all watersheds. The time scale of the SPEI with the strongest correlations varied seasonally. Based on these results, SPEI-based principal component regression (PCR) equations were calculated to model warm season monthly and annual historical streamflow. These PCR equations are able to adequately capture historical streamflow in these watersheds. Annual streamflow variability was better captured (mean R2 adj ¼ 0.46) than monthly variability (mean R2 adj ¼ 0.30 over March–October). Summer and fall streamflow variability was better captured (mean R2 adj ¼ 0.42 over June–September) than spring variability (mean R2 adj ¼ 0.15 over March–April.) en_US
dc.language.iso en en_US
dc.publisher Taylor & Francis en_US
dc.subject Standardized Precipitation Evapotranspiration Index en_US
dc.subject SPEI en_US
dc.subject Western Canada en_US
dc.subject Historical Streamflow in Western Canada en_US
dc.title Assessment of the ability of the standardized precipitation evapotranspiration index (SPEI) to model historical streamflow in watersheds of Western Canada en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account