dc.description.abstract |
There is comparatively limited information in the humid tropics on the surface and sub-surface permeability
of: (i) forests which have been impacted by multi-decades of human occupancy and (ii) forestation
of land in various states of degradation. Even less is known about the dominant stormflow pathways for
these respective scenarios. We sampled field saturated hydraulic conductivity, K* at 23 sites at four
depths (0 m, n = 166), (0.10 m, n = 139), 0.45–0.60 m, n = 117, (1.35–1.50 m, n = 117) under less disturbed
forest (Forest), disturbed production forest of various local species (Degraded Forest) and tree-plantations
(Acacia auriculiformes, 7–10 years old, Tectona grandis, 25–30 years old, Casuarina equisetifolia, 12 years
old) in the Uttar Kannada district, Karnataka, India, in the Western Ghats. The sampling strategy was also
undertaken across three physiographic blocks and under three main soil types. Subsequently the determined
K* were then linked with rainfall intensity–duration–frequency (IDF) characteristics to infer the
dominant stormflow pathways.
The Degraded Forest shows an order of magnitude decline in K* at the surface as result of human impacts
at decadal to century time scales. The lowest surface permeability is associated with the Degraded Forests
over the Laterite (Eutric Nitosols and Acrisols) and Red soils (Eutric Nitosols) and infiltration-excess overland
flow, IOF probably occurs. Further there is a progressive decline in K* with depth in these soils supporting
Degraded Forests. The A. auriculiformes plantations over the Red and Lateritic soils are
progressively restoring the near-surface K*, but their K* still remain quite low when compared to the less
disturbed forest permeability. Consequently these plantations still retain the ‘memory’ from the previous
degraded state. In contrast the permeability of the Black soils (Vertisols) are relatively insensitive to T.
grandis plantations and this soil group has a very low K*, irrespective of land cover, so that IOF likely prevails.
Overall, the Laterites are the most variable in K* when compared to the other soil groups. Thus when
compared to other studies, IOF is probably more prevalent in this region. More especially so, when taking
into account the marked reduction in surface K* during the wet season when compared to dry season
measurements. In addition, we have demonstrated the potential for the ‘infiltration – trade-off’ hypothesis
to be realized in this landscape under certain conditions of land degradation and restoration. It is
most relevant to the combination of degraded sites and A. auriculiformes plantations on Red or Laterite
soils using the less disturbed forests as the baseline. The intensity of forest use and effects of monoculture
plantations on soil ecology (relative to native, mixed forests) is likely to be the critical factor in affecting
surface K* over time. Predicted changes in the intensity of rain events in the future is likely to enhance
overland flow on degraded sites on all soils and especially on Black soils, and restoration efforts by all
stake-holders, preferably using native or non-invasive species, are needed to address this concern. |
en_US |