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PREFACE 

The theory for transient isothermal flow -of water into 
nonswelling unsaturated soil is well understood and has been 
developed to a large extent in terms of solutions of the nonlinear 
Richards' equation. In the field the description of infiltration 
is highly complicated since the initial and boundary conditions 
are usually not constant while the soil characteristics may vary 
with time and space. In view of this, most efforts in recent 
past, have been concentrated on seeking numerical solutions. 
There exist quite a variety of finite difference solutions 
employing different forms of the nonlinear Richards' equation and 
different ways of discretization. 

This report entitled 'Development of a Soil Moisture 
Prediction Model' is a part of the research activities of 'Ground 
Water Assessment' division of the Institute. The purpose of this 
study is to develop a soil moisture prediction model using 
various discretization schemes. The study has been carried out by 
Mr. Chandra Prakash Kumar, Scientist 'C' and Dr. G. C. Mishra, 
Scientist 'F' 

SoiCAJL..04-..4.-•-•—•La-
( SAT ISE CHANDRA) 

Dated: December 4, 1992 Director 
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ABSTRACT 

Flow of water through unsaturated porous media is common 

in nature. The basic equation of flow in the unsaturated zone of 
a porous medium is Richards' equation. The exact solution to the 
Richards' equation is not yet known. Therefore finite difference 
methods are widely used for solving the partial differential 

equation describing one-dimensional water transfer in unsaturated 
soil. The purpose of this study was to develop a numerical model 
of transient, one-dimensional water flow through the unsaturated 

porous medium. Seven models, employing different ways of 

discretization of the nonlinear infiltration equation, were 
compared with Philip's quasi-analytical solution. All models 

yielded good agreement with water content profiles at various 

times in a sand column. 



1.0 INTRODUCTION 

Subsurface formations containing water may be divided 
vertically into several horizontal zones according to how large a 
portion of the pore space is occupied by water. Essentially, we 
have a zone of saturation in which all the pores are completely 
filled with water, and an overlaying zone of aeration in which the 
pores contain both gases ( mainly air and water vapour) and 

water.The latter zone is called the unsaturated zone. Sometimes 

the term soil water is used for the water in this zone. 

The water movements in the unsaturated zone are, 

together with the water holding capacity of this zone, very 
important for the water demand of the vegetation, as well as for 
the recharge of the ground water storage. A fair description of 
the flow in the unsaturated zone is crucial for predictions of the 

movement of pollutants into ground water aquifers. 

The vertical movement of soil moisture in the liquid 
phase between the surface and the water table can be subdivided 
into the following three categories according to predominant 

forces involved. 

i. Infiltration and exfiltration 

Alternate wetting and drying of soil surface during 
consecutive storm and interstorm periods will cause a penetration 
of the medium by an unsteady wave like diffusion of liquid soil 

moisture into the soil during wet surface (storm) periods under 
the complementary effects of capillarity and gravity and out of 
the soil during dry surface (interstorm) periods when capillarity 
opposes gravity. With increasing depth of penetration, diffusion 
reduces the soil moisture gradients and thus reduces the effect of 

capillarity until moisture movement becomes dominated by gravity. 
The depth at which surface induced capillary forces become 
negligible determines the penetration depth of the surface process 
and is used to define the thickness of the zone of soil moisture. 
The presence of transpiring vegetation adds another mechanism for 
moisture extraction distributed over a depth which is related to 

root structure. 
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Percolation 

Liquid soil moisture moves out of the bottom of the 
zone of soil moisture and percolates downward under the 
domination of gravity forces until it encounters the increasing 
soil moisture gradients lying above the water table. At some 

depth upward capillary forces will be prominent defining the 
bottom of this intermediate zone. 

111. Capillary rise 

Between the water table and the intermediate zone there 
is a capillary fringe in which gravity and capillarity again 
jointly govern the liquid soil moisture movement. 

For analytical studies on soil moisture regime, critical 
review and accurate assessment of the different controlling 
factors is necessary . The controlling factors of soil moisture 

may be classified under two main groups viz, climatic factors and 
soil factors. Climatic factors include precipitation data 
containing rainfall intensity, storm duration, interstorm period, 
temperature of soil surface, relative humidity, radiation, 
evaporation, and evapotranspiration. The soil factors include soil 
matric potential and water content relationship, hydraulic 
conductivity and water content relationship of the soil, saturated 
hydraulic conductivity, and effective medium porosity. Besides 
these factors, the information about depth to water table is also 
required. 

In the present study, a model has been developed to 
simulate the soil moisture profile in an initially unsaturated 

soil during infiltration. A number of discretization schemes are 
used for the one-dimensional Richards' equation and the results 
are compared with the quasi-analytical solution of Philip (1957). 
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2.0 REVIEW 

Water in soil moves from points where it has a high 
energy status to points where it has a lower one. If we consider 
the origin of Z at the soil surface and positive in downward 

direction, then the hydraulic head, H may be defined as 

H = h-Z ...(1) 

where, h is the soil water pressure head ( relative to 
the atmosphere) expressed in cm of water and Z is the 
gravitational head ( cm). In unsaturated soil, h is negative 
because work is needed to withdraw water against the soil matric 

forces. 

For one- dimensional vertical flow in the unsaturated 

soil, Darcy's law is given by 

OH 
-K(e) ...(2) V

w
= 

OZ 

where, K(e) is the hydraulic conductivity ( cm/h) which 

depends on the soil moisture content, a. Substitution of equation 
(1) into equation (2) yields 

a 
v
w 

= -K(e) 52- (h-Z) 

or v
w 
=- K(9) (9

,
4 - 1) 

Applying the continuity principle (law of conservation 

of matter) for a soil mass of unit area and height 6Z, 
Ov

w 
e
t  
6z + v

w
ot = e

t+6t 
6z + (V+ 6z)6t 

w Oz 

dv
w  Be 

or =0 
Ot OZ 

Substitution of equation (3) into equation (4) yields 
the partial differential equation to describe the flow of water in 

soil systems. 

oe a Oh 
-5i- [-K(e) ( 52- 

-1)] = o 
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where, 
C(e) = 

dh 
de 

aea Oh 
or 

-5i = az 
[Km (-52  -1)] 

Equation (5) is a second order, parabolic, nonlinear, 

partial differential equation, known as Richards' equation. 

With the soil water diffusivity defined as 

D(e) = 
K(e) 

 
C(e) 

is the specific water capacity, equation (5) can also be written 

as 

lie a ae 
e 

OK(e) 
{ D() } 

at - OZ OZ az 

Equation (8) is only valid if one assumes the h(e) 

relationship to be unique. 

For a unique solution of e with respect to time and 
space, initial and boundary conditions must be applied. As 
initial condition either h as a function of Z must be given 

h (Z,t = 0) = h
o 

 (Z) 

or e as a function of Z 

(Z,t = 0) = e
o
(Z) 

must be applied. 

Boundary conditions at the top and the bottom of the 
unsaturated zone can be specified in three different ways: 

(i) Dirichlet condition: the pressure head is specified as 
a function of time. 

h (Z = Z t) = h
B 
(t) 

B' 
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(ii) Neumann condition: the flux is specified as function of 
time. 

(Z = Z
B 

, t) = q
B 
(t) 

(iii) Cauchy condition: the flux is a function of •the 
dependent variable h at Z = L

B 
. 

(Z = Z t) = f ( h
B 
,t) 

In general at the top and at the bottom of the 
unsaturated zone, different types of boundary conditions can be 

used at the same time. For the unsaturated zone, the boundaries 
are constituted by the soil surface and the phreatic surface. 

Through these boundaries, relations can be established with the 

atmosphere and the saturated zone. 

Due to the strong nonlinearity of equation (5) and (8), 
there exists no general analytical solution However, a specific 
solution of equation (8) was first obtained by Philip (1957) in 
the case of infiltration in an homogeneous semi-infinite column 
satisfying the boundary conditions: 

< 0 Z ;:f 0 e=e 

0 Z = 0 e= e ...(14a) 

In a later paper (Philip, 1958), equation (5) was solved 
for the conditions: 

< 0 Z 0 h = h
n 

0 Z = 0 h = h
u 

F ...(14b) 

where h
u 
 could take positive values corresponding to an 

infiltration experiment with submersion. PhWp's method led to a 
solution in the form of a power series in t . Since the series 

converges only for finite t, the solution becomes unreliable as t 

-$ infinity; the t-range of convergence is depending upon the 
characteristics of soil and the initial and boundary conditions. 
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A serious limitation of the use of quasi-analytical 

solutions for practical cases is imposed by the representativity 
of the initial and boundary conditions ( 14a) and (14b). The soil 
column is considered to be semi-infinite and with an initial 
uniform water content, the boundary conditions are constant in 
time, and heterogeneity can not be taken into account. Most of 
these conditions are scarcely met in practice. Consequently, 

numerical solutions without such restrictions were developed; 
they mostly differ in the way of discretization or in the method 
of linearization used to solve equation (5) or (8). 

If both saturated and non-saturated regions in the soil 

profile are of interest, it is better to consider h instead of e 
as the independent variable ( Philip, 1958). Using the specific 
water capacity, equation (5) is then transformed into 

Oh 0 Oh 
C(h) = [ K(h) (--- - 1)] 

at OZ 0Z 

In the saturated zone, equation (15) becomes Laplace's 
equation, provided the soil is homogeneous and isotropic. With 

both saturated and non-saturated regions, h varies from positive 
values in the saturated zone to negative values in the unsaturated 

zone. 
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3.0 PROBLEM DEFINITION 

There exist quite a variety of finite difference 
solutions employing different forms of the nonlinear Richards' 

equation and different ways of discretization. It is the purpose 
of this study to develop a soil moisture prediction model and 

using seven finite difference schemes. For each of the finite 
difference scheme, a comparison is made between calculated water 
content profiles at various times in a sandy soil and as 
calculated with the quasi-analytical solution of Philip, which was 
obtained by solving the equation (8) subject to condition of a 
constant pressure at the soil surface ( equation 14b). 
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4.0 METHODOLOGY 

Seven models,employing different ways of discretization 
of the nonlinear Richards' equation were compared with the 
Philip's quasi-analytical solution. Haverkamp et al. (1977) has 
presented the water content profiles at various times obtained 
quasi-analytically with the solution of Philip for infiltration in 
the sand. The following functional relations were used for 
characterizing the hydraulic properties of the soil (figure 1): 

A  
K= K

s 
• 

10 ' 
A + ihi 1 

K = 34 cm/h, 

A = 1.175 x 10
6 
, 

= 4.74. 

and 9 - 

O( (e
s 
-

r
) 

+
r 

a +1h1(12 

s 
= 0.287, 

r 
= 0.075, 

6 
a = 1.611 x 10 , 

02  = 3.96. 

where, subscript s refers to saturation, i.e. the value 
of 9 for which h = 0 , and the subscript r to residual water 
content. The initial and boundary conditions for infiltration of 

water in the sand were taken as 

t<0 Z o e
n 
= 0.10 cm

3
/cm

3 

t?0 Z = 0 e
u 
= 0.267 cm

3
/cm

3 

(0.268 in some cases) 
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K = K 
(3 1 /132 (91 /(32 P 1/02 

A (e-e ) +c (0-0) 

A (9-e
r
) 

...(20) 

From the analytical expressions for K and e (equation 16 
and 17), which were obtained by a least square fit through all 
data points of a series of infiltration experiments in the 

laboratory ( Haverkamp et al., 1977), the expression for soil 

water diffusivity, D (S) may be derived as follows: 

From equation (17), 

r a (0
s 
-5) 111°2 'hi = [ 

(e -
r 
) 

..(18) 

or 
dh 
de 

1  

02 

, 1/0 
(a) 2 (0 

e )(e_e 1-1/02-1 

s r r' 
(e  _e)1/02-1 

s 

From equation (16) and (18), 

Now, D(e) can be found out from equation (19) and (20) as 

D(e) z K 
de 

A total of seven models are compared in this study. 
Different discretization schemes are used for the variousmodels, 
using explicit or implicit methods. In the explicit method, a 
series of linearized independent equations is solved directly, 
while in the implicit method, a system of simultaneous linear 
algebraic equations (involving tridiagonal coefficient matrix with 
zero elements outside the diagonals) has to be solved. For a given 
grid point at a given time, the values of the coefficients K(h) or 

K(e) and C(h) or D(9) can be expressed either from their values 
at the preceding time step (explicit linearization) or from a 

prediction at time ( t + 1/2 At) using a method described by 
Douglas and Jones, 1963 (implicit linearization). 

10 
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j 
1 i-1 

- K
i-1/2 

( 
Az 

The following discretization schemes were used for the 

various models: 

Model 1: Equation (15) - Explicit scheme solved directly 

j+1 h
i 
1+1 

- h3 . 

h. = h.
j + 

At 1  

1 1 i { i  C. Z AZ 
1 

1) 

...(22) 

where, j refers to time , and i refers to depth and 

 

K'? +1K'?  + K. 
1 

 

 

2 

 

 

K. +1K'? 
1 1-1 

 

 

2 

 

Defining D
max 

 as the maximum value of the soil water 

diffusivity in the soil profile at time t, the scheme is 

stable when ( Haverkamp et al., 1977) 

r ( AZ)
2 

At < ...(23) 

D
max 

where, AZ is the layer thickness and r an arbitrary 
chosen coefficient equal to 0.5 for the sand of figure 1. 

The method is limited by extensive use of computer time 

when the water content approaches saturation and At becomes very 

small ( D
max 

becomes large). 



Model 2 : Equation (15) - Implicit scheme with explicit 

linearization ( in terms of h) 

h
j
. - h. 
+1 j 

1 h
j+1 

- 
 

C 
1 i+1  

At - AZ [ 
K
i+1/2

( 
Az 

h
j.+1 

- h
j+1 

1 i-1  
K
i-1/2

( 
AZ 

1) 

j+1 j  . h - h. 1 K
1+1 

+ K. h. - h. 
or C 

1 1 1+1 1  
) 1 At Az [ ( 

2 Az 

K.3 + Kj h.
j

- 

1 

h 
i-1)( 1 1-1 

(  
2 Az 

1 

Rearranging the terms , we get 

At 

2 
(AZ)

2 
h
j.+1 

1-1 
+ 

At  I  j+1 + ( F
1 
+ F

2 
) h. 
(AZ)

2 1 

  

  

-1 F 
At 

 

II h1+1 
j J At 

= c. +(F- F
1  ) 

...(24) 1+1 2 AZ 
(AZ) 2  

where, 

K
j 

+K'? 
i+1  

F
1 

= K
i+1/2 2 

Ii 

K +K.
1-1 

F
2 
= K

i-1/2 
=  

12 
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Model 3 : Equation (15) - Implicit scheme with implicit . 

linearization ( Prediction -correction) 

From equation (15), we have 

Oh Oh 
C = -- [ K ( - - 1)] at 

aK Oh
2
h 

oz2 
or c ah ( - 1) + K --- 

at az az 

or C_ Oh _ 0
2
h 1 al( 

K at - R -5z ( 
OZ
2 

ah 
- 1) ..(25) 

OZ 

Prediction ( estimation of C
j 

and K
j 

): 

L 
From equation (25), by taking time step as 

t.
we 

have 

3+1/2 j 3+1/2 3+1/2 j+1/2 20. h. 
1 

- h. 
1 

h
i+1 

- 2h. +h 
i-1 

K. 
1 

At (AZ)
2 

1 Kj - Kj h. - h. 
i+1 1+1 1-1  

2 A 

r

Z 2 AZ 
1] 

Rearranging the terms, we get 

i 
2C. At j+1/2 j+1/2 At 2 

2 
h
i-1 

+ 
I hi - (AZ) [ Ki.1  4- 

2At  

(-Z)
2 
 j 

(Az)2 
h
i+1 

1 
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h. - h. 
1+1 1-1 

2AZ 

1] 

1 

2C,j K? - K'?

: h

- 
1 i+1 J + 

1 1-1 At 
--7- 

J K 
i 2 j AZ 

K. . 
1 1 

...(26) 

Correction ( estimation of h. ) 
1 

From equation (25) , by taking time step as Lit, we have 

cj+1/2 
hj. 

+1 
Ih.
j j+1 

-2h 
j+1

+h 
j+1 

h. -2hj.+hi  
1 1 1 1 1 

h
i+1 i 1-1 +1 1 i-1  

j+1/2 2 [ 
K. At (AZ)

2 
(AZ)

2 1 

1 

j+1/2 j+1/2 
- K

1+1 
K. 
1-1  

j+1/2 
h
1+1 

- h
j+1/2 

i-1 

2AZ 

1] 

Rearranging the terms, we get 

At 
1 

h
j+1 

(AZ) 
i-1 

 

C, 
j+1/2 

1 
At, 

 

h
j+1 1 At 

 h
j+1 

1 2 2 
(AZ) 1+1  

  

  

K
j+1/2 

 

(Az)2  

 

  

1 

j+1/2 
C. 
1 

h
j 4.  1 A i hj j j _ . 

3+1/2 1 
(AZ)

2 i  1+1 
- 2h

i 
+ h

i-1 
K. 
1 

11 

j+1/2 - K j+1/2 j+1/2 
i
+1 

K 
1 1-1 At 

hji
:1

/2 - h
i-1  

2 j+1/2 AZ [ 
K. 2 AZ 
1 

1 I ...(27) 
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Model 4 : Equation (16) - Crank-Nicolson scheme ( in terms of h) 

j+1  - h. i h - h 
j+1/2 j+1/2 

h. . . 
1 1 = j+1/2 1+1 1  

C
j+1/2   
1 

[ K
i+1/2 ( AZ 

At 

j+1/2 j+1/2 
h. - h. 

j+1/2 1 1-1 
- K.1/2

AZ 
1 

1- 

where, 

h
j+1/2 

1 

h. 
j+1 

1 

 

2 

 

KJ. K4 K. 
j+1  K j+1 

j+1/2 i 1-1 1 1-1  

j 
) ( K

i-1/2 1 
= ( 

j+1 
K. + K.

j 
+ 

K. + K . 
= F 

1 1-1 1 1-1 

K4 K4 K'?" 
j+1 

j+1/2 1 1+1 i 
K
i+1  

K
i+1/2 

= F
2 
= ( 

K + IC 
j 

) +( 
j 

K4+1 + 1(
3+1 

. 
1 1+1 1 1+1 

): 

); and 

j 
+ C

+1
. 

C
j+1/2 

= F
3 

= 
1 1 

2 

Rearranging the terms, we get 

At j+1 At  

2 
F
1 

h. + [ F + (F + F ) 

(AZ)
2 1-1 3 2 1 2 

(AZ)
2] 1 

15 

1) 



+ 1 
At At ...(28 ) 

(AZ) 
2 F2 2 1+1 

+ [ (F
1
- F

2 
) 

] AZ 

Model 5 : Equation (8) - Implicit scheme with explicit 

linearization (in terms of e) 

j+1 
- A

j j+1 
- e 

[ D 

j+1 
A 

1 j+112 ei+1  

At AZ i+1/2 AZ 

j+1 j+1 j+1/2 j+1/2 
- e - K

i-1/2 i-1 
K 

j+1/2 i  
-D

i-1/2 
( 

1+1/2 
( 

AZ AZ 

where, 

j j D j+1 3+1 
. D 

j+1/2 
= F = ( 

D
1 

D
1+1 

D. 
1  

) + ( ) , D
1+1/2 1 

DJ, + D'? 
j+1 j+1 
D. +D. A 

1 1+1 1 1+1 

D. j D.  j D . 
j+1 j+1 

D. 
j+1/2 1 1-1 1 1-1  
D
1-1/2 

= F
2 

= ( , ) + ( 
j+1 j+1 DJ

. + D
j 

D. + 0 
1 1-1 1 1-1 

J j +1 j+1 
Kj. K

1+1 j+1/2 
= F

3 
= 

K
1 

K
1+1 1  

K
1+1/2 

) + ( 
j+1 j+1 KJ , + Kj 

1+1 
K. + K

1+1 

) ; and 
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Kj. Kj. 
j 
K. 

+1 
 K' j+1/2 1 1-1 1 i-1  K

i-1/2 
= F

4 
- ( 

K +  
) + ( 

J 
K 1 + 

j+1 
. Ki  .K 1 1-1 1 i-1 

Rearranging the terms, we get 

- F 
£t,j+1 j+1 At j+1 F

2 
+ 1 + ( F

1 
+ F

2
) At 

] 
G - F

1
---- G. 

(AZ)
2 1-1 

(AZ)
2 i 

(AZ)
2 1+1 

Lt 
- ( F - F

4
) -

A 3 Z ... (29) 

Model 6 : Equation (8) - Crank-Nicolson scheme (in terms-  of G) 

j+1 j  
e - 9. j+1/2  

1 1 
[ D

j+1/2

( 
ei+1  

At Az i+1/2 AZ 

4.,j+1/2_ _j+1/2 K
++11/ 

- K
j+1/2 

j+1/2 
9
1-1 1-1/2 - D 1 

i-1/2 
( • ( 

/  

Lz Az 

where, 

i j+1 e + e. 
j+1/2 i 1 e. = 
1 

2 

D D 
j+1 j+i 

D D
i+1  = F 

j+1/2 
( 

1+1  D
1+1/2 ( 1 

= ) + 
J j j+1 j+1 D. 

1 
+ D. D + D

1+i +1 

17 



D3 j 
j+1/2 

= F = ( 
D
i 

D
i-1  D

1-1/2 2 J j D. + D. 
1 1-1 

) + ( 

+1 +1 
D.
j 

Dj  
1 i-1 
j+1 j+1 D. + D. 
1 1-1 

K'? j j+
K
i+1

1 j+1 
j+1/2 K

i 
K
1+1 K

i  K
1+1/2 

= F
3 
= ( ) + ( ) , and 

Kj. + Kj. K
j+1

+ K
j+1 

1 1+1 i 1+1 

Kj K  j K j+1 j+1 . . 

) + ( 

. K j+1/2 1 1-1 1 1-1  K
i-1/2 

= F
4 

= (   
K. J + - lcj K . j+1+ K'?' 1 1-1 1 i-1 

Rearranging the terms, we get 

1 At  
2 

F
2 -i-1 (Az)

2 
+ 

[1 

1 At j+1 1F  At ej+1 + (F + F
2
) 2 1 
(AZ)

2.1 ei 2 1 
(AZ)

2 i+1 

1 At 1 At j 1 = 
2 

F
2 
(AZ)

2 1-1 + [1 
2 
(F

1 
+ F

2
) 

2] ni 4-  2 F1 At-- ei  (AZ) (z)  2 1+1 

At 
- (F3- F4) -- 

AZ ...(30) 

Model 7 : Equation (8) Implicit scheme with explicit 
linearization (in terms of e) and 
Miller and Bresler relation for soil 
water diffusivity 

The following relation for soil water diffusivity was 
reported by Miller and Bresler (1977)7 

D = m C°  r 
2 'S 

in which a' and 8' appear to be 'universal constants' both 
dimensionless; S

r is the dimensionless water content given by 



e -
r 

S
r e

s 
-e  

r 
... (32) 

where, 

A is the actual water content , 
er is the residual water content, and 

s is the water content at saturation. 

The parameter, m in equation (31) is a unique constant 
for each soil. Its value can be estimated from observations of the 
visual wetting front by infiltration in an air dry soil : 

X
f  

...(33) 
4t 

where X
f is the distance of the wetting front at the time t. 

According to Green and Ampt (1911), the position of 
wetting front at time t is given by 

      

 

X
f 

4t 

 

2 (H + H
f
) K

s 
...(34) 

    

    

     

where, 

     

H = ponded depth of water ; 
H = the capillary drive head ; 

K = saturated hydraulic conductivity ; and 
0. = initial water content. i 

The capillary drive head can be found from the available 
soil moisture and capillary pressure relationship in the 
following manner : 

h. 
1 dh ...(35) 'f rw 
0 
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where, 

rw 
K
s 

= relative hydraulic conductivity 

h = capillary pressure head; and 

h. = capillary pressure head corresponding to the 
i 

initialwatercontente.,prevalling before the onset of 
i 

infiltration. 

By using equation (16) and numerical integration of 

equation (35), the value of H
f 

was found to be 20.489 . And by 

taking H = 0 in equation (34), the value of m (= xi  lit) was 

obtained as 81.06680 . 

The soil water diffusivity was calculated from equation 

(21) and substituted in equation (31) for different values of e. 
The best fitted values of the constants a' and p' were arrived at 
0.0054 and 4.7 respectively. 

For this model, the same discretization scheme, as in 

model 5, was used ( equation 29) and the values of diffusivity 
were computed from equation (31) as described above. 

Remarks 

The implicit methods (model 2, 3, 5 and 7) and 

Crank-Nicolson approximation (model 4 and 6) generally use much 

larger time steps than the explicit methods (model1), but their 
stability conditions have to be determined by trial and error, as 
they depend upon the nonlinearity of the equations. Also, the 
programming is more involved than for the explicit method. A 
tridiagonal system of equations results, which can be solved by 
direct elimination using Thomas' algorithm ( Remson et al., 1971). 

Implicit evaluation of the coefficients at time ( t+1/2 tit) 

(model 3, a method described by Douglas and Jones, 1963) requires 

that the tridiagonal system of equations be solved twice for each 

time step : first at time ( t + 1/2 at) to obtain values for K and 
C, then at time ( t+At) to evaluate the pressure distribution ; on 
the other hand, the implicit models with explicit evaluation of 

the coefficient ( model 2, 5 and 7 ) and Crank-Nicolson 

approximation ( model 4 and 6 ) use only about half the computer 
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time. The main advantages of using implicit methods and 
Crank-Nicolson approximation are their stability, even for fairly 

large time steps ( 5 seconds - model 2, 4, 5, 6 and 7 ; 2.5 
seconds - model 3 instead of 0.4 second - model 1 in our case for 
the explicit model), and their flexibility for solving flow 

problems when saturated and unsaturated zones have to be 
considered simultaneously, since for C = 0 one simply has to solve 

the Laplace's equation. 

The computer code, for discretization schemes used for 
the various models, has been written in FORTRAN IV and presented 

in appendix. 
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5.0 RESULTS 

The seven different models were tested by comparing 
water content profiles calculated at given times by each of the 
models with results obtained from quasi-analytical solution of 
Philip. Using the functional relations given in equation (16) and 
(17) for characterizing the hydraulic properties of the soil, the 
water content profiles subject to the conditions 

t<0 Z?.0
n 
= 0.10 cm

3
/cm

3 

tat Z=0 e = 0.267 cm
3
/cm

3 
( model 1,2,3 and 7) or 

0.268 cm
3
/cm

3 
( model 4,5 and 6) 

were determined with the seven models. The numerical computations 

were made with a depth interval AZ =1 cm, and a time step varying 
from 0.4 second to 5 seconds, the total simulation period being 
0.8 hour. Table 1 presents the details for the various models. 

Haverkamp et al. (1977) has reported the infiltration 
profiles at various times for infiltration in the sand (under 
consideration) obtained by quasi-analytical solution of Philip. In 
order to compare each method, numerical data of Philip's solution 
are given in table 2. For 'limited times' Philip's method gives at 
each time, t the depth, Z(t) which reaches a given water content, 

e.according to; 

3/2 
z(t,e.).= 0 (e.) t

1/2 
+ R (e.)t + ?p(e.) t 

' 

+ (,)(0.) t
2 
+ + f

n 
S4 () t

n/2 
...(36) 
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Table 1 - Basic Set-up for the Various Models 

Reference Type of Linearization Independent Depth 

discreti- variable inter- 

zation in the val 

governing (cm) 

equation 

Time step 

(seconds) 

Upper 

boundary 

condition 

(9
u
) 

Model 1 Explicit Explicit h 1.0 0.4 0.267 

Model 2 Implicit Explicit h 1.0 5.0 0.267 

Model 3 Implicit Implicit with 

prediction-

correction 

h 1.0 2.5 0.267 

Model 4 Crank-Nicolson Scheme h 1.0 5.0 0.268 

Model 5 Implicit Explicit e 1.0 5.0 0.268 

Model 6 Crank-Nicolson Scheme e 1.0 5.0 0.268 

Model 7 Implicit Explicit 0 1.0 5.0 0.267 

(Miller and Bresler re-

lation for diffusivity) 

Table 2 - 

Water 

content 

Water Content Profiles determined with the Solution of Philip 

Depth (Z) 

(G) t = 0.1 hour t = 0.2 hour t = 0.8 hour 

0.2523 9.4 17.7 65.2 

0.2356 12.0 20.7 69.2 

0.2189 13.2 22.1 71.1 

0.2021 14.1 23.1 72.3 

0.1854 14.8 23.8 73.2 

0.1686 15.3 24.5 74.0 

0.1519 15.9 25.2 74.8 

0.1351 16.5 25.9 75.7 

0.1184 17.3 26.8 76.8 

0.1016 19.5 29.5 78.6 
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The numerical models, on the other hand, calculates a 
for a given value of Z . As a result, interpolations are 

necessary ,at a given stage of calculations to compare the 
results. The prediction of the water content profiles using 
Philip's method is only valid within the domain of convergence of 

the series ( equation 36). To calculate the time for which the 
series would converge, Philip (1969, pp. 250) introduced a 
characteristic time of infiltration, t

gray 
, as : 

t
gray 
  ]

2 
K
u
- K

n 

...(37) 

where, K
u 
 is the hydraulic conductivity corresponding with e

u
and S 

is the sorptivity, defined as 

S = feu 0 dG ...(38) 
e
n 

For the sand material, S was found to be 5.441 cm/h
1/2

, 

and the characteristic time was 
tgray= 

 0.16hour. Consequently for 

t 0.2 hour, the water content profile could be calculated with 
equation (36). In our calculations the series was limited to four 
terms. To use more terms of the series would, according to Philip, 

'extend the range of accurate results only by small amounts quite 

disproportionate to the extra labour involved'. For t 0.3 hour, 
the profiles were calculated by an approximation of the 'infinite' 
profile, as proposed by Philip (1957, pp. 444). The power series 
solution ( equation 36) and the asymptotic solution of the profile 

at infinity are expected to overlap. 

Tables 3,4 and 5 present the comparison between water 
content profiles determined with the solution of Philip and the 

seven models at t. = 0.1 hour, 0.2 hour and 0.8 hour respectively. 

In all cases the rate of advance of the water front is 
particularly well described. Some discrepancies are found between 
numerical water content profiles and quasi-analytical solution in 
the low water content domain. However, all numerical models yield 
comparable results, which are not significantly different from the 

quasi-analytical solution. 
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Table 3 - Comparison between Water Content Profiles at t = 0.1 hour 

Depth 

(Z) 

 

Water Content (e) 

Philip Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

10 0.2484 0.2484 0.2481 0.2491 0.2477 0.2479 0.2492 0.2391 

11 0.2420 0.2423 0.2416 0.2434 0.2404 0.2404 0.2426 0.2324 

12 0.2356 0.2338 0.2325 0.2354 0.2295 0.2291 0.2329 0.2243 

13 0.2217 0.2215 0.2189 0.2240 0.2126 0.2111 0.2181 0.2143 

14 0.2040 0.2039 0.1990 0.2076 0.1853 0.1833 0.1949 0.2017 

15 0.1787 0.1796 0.1719 0.1847 0.1484 0.1503 0.1629 0.1852 

16 0.1491 0.1514 0.1427 0.1566 0.1204 0.1244 0.1325 0.1633 

17 0.1247 0.1270 0.1206 0.1302 0.1075 0.1103 0.1137 0.1366 

18 0.1130 0.1118 0.1086 0.1131 0.1026 0.1040 0.1052 0.1154 

19 0.1054 0.1046 0.1033 0.1050 0.1008 0.1015 0.1018 0.1051 

Table 4 - Comparison between Water Content Profiles at t = 0.2 hour 

Depth 

(Z) 

Water Content (e) 

 

Philip Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

18 0.2506 0.2480 0.2479 0.2487 0.2491 0.2489 0.2499 0.2378 

19 0.2451 0.2432 0.2430 0.2442 0.2442 0.2438 0.2452 0.2327 

20 0.2395 0.2369 0.2364 0.2382 0.2375 0.2367 0.2389 0.2266 

21 0.2320 0.2284 0.2273 0.2302 0.2281 0.2267 0.2301 0.2195 

22 0.2201 0.2166 0.2146 0.2193 0.2146 0.2120 0.2174 0.2110 

23 0.2038 0.2006 0.1972 0.2044 0.1951 0.1911 0.1993 0.2008 

24 0.1806 0.1799 0.1746 0.1847 0.1686 0.1646 0.1747 0.1884 

25 0.1567 0.1560 0.1498 0.1611 0.1403 0.1388 0.1476 0.1730 

26 0.1332 0.1338 0.1285 0.1377 0.1198 0.1202 0.1255 0.1542 

27 0.1172 0.1178 0.1144 0.1199 0.1088 0.1096 0.1121 0.1336 

28 0.1109 0.1084 0.1067 0.1094 0.1037 0.1043 0.1053 0.1166 

29 0.1047 0.1038 0.1030 0.1042 0.1015 0.1019 0.1023 0.1068 
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Table 5 - Comparison between Water Content Profiles at t = 0.8 hour 

Depth 

(Z) 

Philip Model 1 Model 

Water Content (9) 

2 Model 3 Model 4 Model 5 Model 6 Model 

66 0.2490 0.2470 0.2478 0.2482 0.2542 0.2533 0.2539 0.2354 
67 0,2448 0.2427 0.2437 0.2442 0.2515 0.2503 0.2511 0.2308 
68 0.2406 0.2372 0.2383 0.2392 0.2481 0.2465 0.2475 0.2254 
69 0.2364 0.2300 0.2312 0.2327 0.243; 0.2414 0.2429 0.2193 
70 0.2286 0.2204 0.2217 0.2240 0.2379 0.2346 0.2368 0.2121 
71 0.2198 0.2076 0.2088 0.2124 0.2300 0.2253 0.2285 0.2038 
72 0.2063 0.1909 0.1918 0.1972 0.2193 0.2122 0.2171 0.1940 
73 0.1891 0.1707 0.1709 0.1781 0.2043 0.1943 0.2012 0.1824 
74 0.1686 0.1493 0.1489 0.1566 0.1840 0.1716 0.1803 0.1686 
75 0.1482 0.1305 0.1298 0.1361 0.1594 0.1477 0.1563 0.1525 
76 0.1305 0.1170 0.1164 0.1205 0.1358 0.1280 0.1342 0.1354 
77 0.1165 0.1088 0.1085 0.1107 0.1190 0.1150 0.1185 0.1202 
78 0.1072 0.1044 0.1043 0.1053 0.1094 0.1076 0.1093 0.1099 

7 
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uonsidering Philip's solution as standard, the average 

relative error in the water content distributions for various 

times was found to vary from 2% to 6% for all the numerical 

scheMes. The best performance was obtained with model 3 

(implicit solution with implicit linearization - 2.31%) and 

model 1 (explicit solution - 2.70%). 

The agreement between infiltration profiles calculated 

with Philip's method and model 3 is very good . Model 1 (iirect 
explicit) has the advantage that it is simple and easy to 
program. However, for reasons of stability the time step should 
be adjusted with equation (23). Since D is large in wet soil, 
this method is too slow when the soil is quite wet, notably 

during the infiltration. Another limitation is that when the soil 
becomes saturated, the right hand side of equation (15) is 
divided by very small C-values. In general the agreements 
obtained through methods solved in terms of h (model 1, 2 and 3) 

are better than the methods solved in terms of e (model 5, 6 and 
7) with the exception of model 4 (Crank-Nicolson scheme solved in 

terms of h). The discrepancies obtained through model 7, 

however, can be attributed to the use of empirical relationship 

for soil water diffusivity. 

But the results could not be obtained with eu 
= e

s 
= 0.287 

since dh/de becomes infinity at saturation and the value of 
diffusivity is not properly represented by equations (19) and 

(20) for this situation. Haverkamp et al. (-1977) compared the 
water content profiles with quasi-analytical solution of Philip, 

subject to the condition eu 
= 0.267. However in the present 

study, better agreements were obtained with 9
u 

= 0.268 in some 

cases ( model 4, 5 and 6). Need arises, therefore, to test the 
validity of the presented numerical models under saturation 

conditions at the surface. 
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6.0 CONCLUSIONS 

The close agreement between water content profiles 
obtained through quasi-analytical solution of Philip and those 
computed with seven different numerical schemes, as well as the 
close agreement among these seven schemes, indicate that 
numerical models are a reliable tool for predicting infiltration 
of water into soil. Considering computer time and stability 
problems, it appears that the implicit finite difference 
approximation with implicit or explicit evaluation of the 
hydraulic conductivity and water capacity functions has the 
widest range of applicability for predicting water movement in 
soil with both saturated and nonsaturated regions. For specific 
cases explicit models may be preferred, mainly because they are 
easy to program. 

The excellent agreement between water content 
distributions obtained with the implicit model with implicit 
linearization of the hydraulic conductivity and water capacity 
functions and Philip's quasi-analytical solution shows that 
numerical solutions can yield very accurate results. 
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MODEL 1 APPENDIX 

SOIL MOISTURE PREDICTION MODEL 

EXPLICIT SCHEME SOLVED DIRECTLY 
(MODEL 2 OF HAVERKAMP ET AL., 1977) 

DIMENSION THETA(90,2),HYDCON(90),CCC(90),H(90,2) 
OPEN(UNIT=1,FILE='EXPLIC.DAT'1 STATUS='OLD') 
OPEN(UNIT=2,FILE=1 EXPLIC.OUT',STATUS=1 NEW) 

J REFERS TO TIME 
I REFERS TO DEPTH 
Z = DEPTH (CM), ORIENTED POSITIVELY DOWNWARD 
THETA = VOLUMETRIC MOISTURE CONTENT (CUBIC CM / CUBIC CM) 
H = SOIL WATER PRESSURE (RELATIVE TO THE ATMOSPHERE) 

EXPRESSED IN CM OF WATER 
THETAR = RESIDUAL MOISTURE CONTENT 
THETAS = MOISTURE CONTENT AT SATURATION 
THETAU = MOISTURE CONTENT AT THE SURFACE NODE 

(UPPER BOUNDARY CONDITION) 
BETA1, CONA = PARAMETERS IN THE HYDRAULIC CONDUCTIVITY 

AND SOIL WATER PRESSURE RELATIONSHIP 
BETA2, ALPHA = PARAMETERS IN THE MOISTURE CONTENT AND 

SOIL WATER PRESSURE RELATIONSHIP 
HYDCON = HYDRAULIC CONDUCTIVITY OF THE SOIL (CM/HOUR) 
AKS = HYDRAULIC CONDUCTIVITY AT SATURATION (CM/HOUR) 
DELT = TIME STEP (HOURS) 
DELZ = DEPTH INTERVAL (CM) 
NTIME = NUMBER OF TIME STEPS 
NNODE = NUMBER OF NODES 
CCC = SPECIFIC WATER CAPACITY (/CM) DEFINED AS d(theta)/dh 

READ(1,11)THETAR,THETAS,THETAU 
11 FORMAT(3F12.3) 

READ(1,12)BETA1,BETA2 
12 FORMAT(2F12.3) 

READ(1,13)CONA,ALPHA 
13 FORMAT(2F12.3) 

READ(1,14)AKS 
14 FORMAT(F12.3) 

READ(1,15)DELT,DELZ 
15 FORMAT(F12.8,F12.3) 

READ(1,16)NTIME,NNODE 
16 FORMAT(I4,6X,I4) 

READING OF INITIAL CONDITIONS 

READ(1,17)(THETA(I,1),I=1,NNODE) 
17 FORMAT(5F10.4) 

WRITE(2,18) 
18 FORMAT(2X,'Soil Moisture Prediction Model (EXPLIC)') 

WRITE(2,19) 
19 FORMAT(2X,'Explicit Scheme Solved Directly') 

WRITE(2,21) 
21 FORMAT(/2X,'THETAR',9X,'THETAS1 ,9X,'THETAU') 

WRITE(2,31)THETAR,THETAS,THETAU 
31 FORMAT(2X,F5.3,10X,F5.3,10X,F5.3) 

WRITE(2,22) 
22 FORMAT(2X,'BETA11 ,10X,'BETA21 ) 

29 



WRITE(2,32)BETA1,BETA2 
32 FORMAT(2X,F5.3,10X,F5.3) 

WRITE(2,23) 
23 FORMAT(2X,'CONA',11X,'ALPHA') 

WRITE(2,33)CONA,ALPHA 
33 FORMAT(2X,F11.3,4X,F11.3) 

WRITE(2,24) 
24 FORMAT(2X,'AKS') 

WRITE(2,34)41(5 
34 FORMAT(2X,F6.3) 

WRITE(2,25) 
25 FORMAT(2X,'DELT',11X,'DELZ') 

WRITE(2,35)DELT,DELZ 
35 FORMAT(2X,F10.8,5X,F5.3) 

WRITE(2,26) 
26 FORMAT(2X,'NTIME',10X,'NNODE') 

WRITE(2,36)NTIME,NNODE 
36 FORMAT(2X,I4,9X,I4) 

WRITE(2,27) 
27 FORMAT(/2X,'SOI1 MOISTURE AT DIFFERENT NODES') 

WRITE(2,28) 
28 FORMAT(/2X,'INITIAL CONDITIONS') 

WRITE(2,38)(THETA(I,1),I=1,NNODE) 
38 FORMAT(5F10.4) 

DO 100 I=1,NNODE 
H(I,1)=-(ALPHA*(THETAS-THETA(I,1))/(THETA(I,1) 

1 -THETAR))**(1./BETA2) 
100 CONTINUE 

GENERATION OF UPPER BOUNDARY CONDITION 

THETA(1,1)=THETAU 
THETA(1,2)=THETA(1,1) 
H(1,1)=-(ALPHA*(THETAS-THETA(1,1))/(THETA(1,1) 

1 -THETAR))**(1./BETA2) 
H(1,2)=H(1,1) 

GENERATION OF LOWER BOUNDARY CONDITION 

THETA(NNODE,2)=THETA(NNODE,11  
H(NNODE,2)=H(NNODE,1) 

E1=BETA1/BETA2 
E2=(THETAS-THETAR) 
E3=ALPHA**E1 
E4=CONA*AKS 
E5=1./BETA2*ALPHA**(1./BETA2) 

DO 200 JJ=2,NTIME 

DO 300 I=1,NNODE 
TERM1=(THETA(I,1)-THETAR)/E2 
HYDCON(I)=E4*TERM1**E1/(CONA*TERM1**El+E3*(1.-TERM1)**E1) 
CCC(I)=1./(E5*E2)*(THETAS-THETA(I,1))**(-1./BETA2+1.)* 

1 (THETA(I,1)-THETAR)**(1./BETA2+1.) 
300 CONTINUE 
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DO 400 I=2,NNODE-1 
TERM2=DELT/DELZ*( (HYDCON(I+1)+HYDCON(I)) *.5* 

1 ( (H(I+1,1)-H(I,I))/DELZ -1.)- 
2 (HYDCON(I)+HYDCON(I-1)) *.5* 
3 ( (H(I,1)-H(I-1,1))/DELZ -1.)) 

11(I,2)=TERM2/CCC(I)+H(I,1) 
THETA(I,2)=ALPHA*(THETAS-THETAR)/(ALPHA+ABS(H(I,2))**HETA2)+ 

1 THETAR 
400 CONTINUE 

IF(JJ.EQ.2) GO TO 500 
IF(JJ.EQ.450) GO TO 500 
IF(JJ.EQ.900) GO TO 600 
IF(JJ.EQ.1800) GO TO 500 
IF(JJ.EQ.2700) GO TO 500 
IF(JJ.EQ.3600) GO TO 500 
IF(JJ.EQ.7200) GO TO 500 
GO TO 600 

500 CONTINUE 
WRITE(2,41)JJ 

41 FORMAT(/2X,'TIME STEP = ',I4) 
WRITE(2,42)(THETA(I,2),I=1,NNODE) 

42 FORMAT(5F10.4) 
600 CONTINUE 

DO 700 I=2,NNODE-1 
H(I,1)=H(I,2) 

700 THETA(I,1)=THETA(I,2) 
200 CONTINUE 

STOP 
END 
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MODEL 2 

C SOIL MOISTURE PREDICTION MODEL 
C 
C IMPLICIT SCHEME WITH EXPLICIT LINEARIZATION 
C (MODEL 3 OF HAVERKAMP ET AL., 1977) 
C 

DIMENSION SUB(90),SUP(90),DIAG(90),B(90) 
DIMENSION H(90,577),CCC(90,577) 
DIMENSION THETA(90,577),HYDCON(90,577) 
OPEN(UNIT=1,FILE=I IMPLIC1.DAT',STATUS=1 OLD') 
OPEN(UNIT=2,FILE&IMPLICLOUT',STATUS='NEW) 

J REFERS TO TIME 
I REFERS TO DEPTH 

C Z = DEPTH (CM), ORIENTED POSITIVELY DOWNWARD 
C THETA = VOLUMETRIC MOISTURE CONTENT (CUBIC CM / CUBIC CM) 
C H = SOIL WATER PRESSURE (RELATIVE TO THE ATMOSPHERE) 
C EXPRESSED IN CM OF WATER 
C THETAR = RESIDUAL MOISTURE CONTENT 
C THETAS = MOISTURE CONTENT AT SATURATION 
C THETAU = MOISTURE CONTENT AT THE SURFACE NODE 
C (UPPER BOUNDARY CONDITION) 
C BETA1, CONA = PARAMETERS IN THE HYDRAULIC CONDUCTIVITY 
C AND SOIL WATER PRESSURE RELATIONSHIP 
C BETA2, ALPHA = PARAMETERS IN THE MOISTURE CONTENT AND 
C SOIL WATER PRESSURE RELATIONSHIP 
C HYDCON = HYDRAULIC CONDUCTIVITY OF THE SOIL (CM/HOUR) 
C AKS = HYDRAULIC CONDUCTIVITY AT SATURATION (CM/HOUR) 
C DELT = TIME STEP (HOURS) 
C DELZ = DEPTH INTERVAL (CM) 
C NTIME = NUMBER OF TIME STEPS 
C NNODE = NUMBER OF NODES 
C CCC = SPECIFIC WATER CAPACITY (/CM) DEFINED AS d(theta)/dh 
C 

READ(1,11)THETAR,THETAS,THETAU 
11 FORMAT(3F12.3) 

READ(1,12)BETA1,BETA2 
12 FORMAT(2F12.3) 

READ(1,13)CONA,ALPHA 
13 FORMAT(2F12.3) 

READ(1,14)AKS 
14 FORMAT(F12.3) 

READ(1,16)DELT,DELZ 
15 FORMAT(F12.8,F12.3) 

READ(1,16)NTIME,NNODE 
16 FORMAT(I3,8X,I3) 
C 
C READING OF INITIAL CONDITIONS 
C 

READ(1,17)(THETA(I,1),I=1,NNODE) 
17 FORMAT(5F10.4) 
C 

WRITE(2,18) 
18 FORMAT(2X,'Soil Moisture Prediction Model (IMPLICW) 

WRITE(2,19) 
19 FORMAT(2X,'Implicit Scheme with Explicit Linearization') 

WRITE(2,21) 
21 FORMAT(/2X,'THETAR',9X,'THETAS1 ,9X,I THETAU') 

WRITE(2,31)THETAR,THETAS,THETAU 
31 FORMAT(2X,F5.3,10X,F5.3,10X,F6.3) 

32 



WRITE(2,22) 
22 FORMAT(2X,'BETA1',10X,'BETA2') 

WRITE(2,32)BETA1,BETA2 
32 FORMAT(2X,F5.3,10X,F5.3) 

WRITE(2,23) 
23 FORMAT(2X,'CONA',11X,'ALPHA') 

WRITE(2,33)CONA,ALPHA 
33 FORMAT(2X,F11.3,4X,F11.3) 

WRITE(2,24) 
24 FORMAT(2X,'AKS') 

WRITE(2,34)AKS 
34 FORMAT(2X,F6.3) 

WRITE (2,25) 
25 FORMAT(2X,'DELT',11X,'DELZ') 

WRITE(2,35)DELT,DELZ 
35 FORMAT(2X,F10.8,5X,F5.3) 

WRITE(2,26) 
26 FORMAT(2X,'NTIME',10X,'NNODE') 

WRITE(2,36)NTIME,NNODE 
36 FORMAT(2X,I3,12X,I3) 

WRITE(2,27) 
27 FORMAT(/2X,'SOIL MOISTURE AT DIFFERENT NODES') 

WRITE(2,28) 
28 FORMAT(/2X,'INITIAL CONDITIONS') 

WRITE(2,38)(THETA(I,1),I=1,NNODE) 
38 FORMAT(5F10.4) 
C 

DO 100 I=1,NNODE 
H(I,1)=-(ALPHA*(THETAS-THETA(I,1))/(THETA(I,1) 

1 -THETAR))**(1./BETA2) 
100 CONTINUE 

GENERATION OF UPPER BOUNDARY CONDITION 

DO 200 J=1,NTIME 
THETA(1,J)=THETAU 
H(1,J)=-(ALPHA*(THETAS-THETA(1,J))/(THETA(1,J) 

1 -THETAR))**(1./BETA2) 
200 CONTINUE 

GENERATION OF LOWER BOUNDARY CONDITION 

DO 300 J=1,NTIME 
THETA(NNODE,J)=THETA(NNODE,1) 
H(NNODE,J)=-(ALPHA*(THETAS-THETA(NNODE,J))/(THETA(NNODE,J) 

1 -THETAR))**(1./BETA2) 
300 CONTINUE 

E1=BETAl/BETA2 
E2=(THETAS-THETAR) 
E3=ALPHA**E1 
E4=CONA*AKS 
E5=1./BETA2*ALPHA**(1./BETA2) 

DO 400 J=2,NTIME 

DO 500 I=1,NNODE 
TERM1=(THETA(I,J-1)-THETAR)/E2 
HYDCON(I,J-1)=E4*TERM1**E1/(CONA*TERM1**El+E3*((1.-TERM1))**E1) CCC(I,J-1)=1./(E5*E2)*(THETAS-THETA(I,J-1) )**(-1./BETA2+1.)* 

1 ( THETA(I,J-1)-THETAR ) **(1./BETA2+1.) 
500 CONTINUE 
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DO 600 I=2,NNODE-1 
F1=(HYDCON(I,J-1)+HYDCON(I+1,J-1))*0.5 
F2=(HYDCON(I,J-1)+HYDCON(I-1,J-1))*0.5 
DIAG(I-1)=CCC(I,J-1)+(F1+F2)*DELT/DELZ**2 
SUB(I-1)=-F2*DELT/DELZ**2 
SUP(I-1)=-Fl*DELT/DELZ**2 
B(I-1)=CCC(I,J-1)*H(I,J-1)+(F2-F1)*DELT/DELZ 

600 CONTINUE 

B(1 )=B(1 )-SUB(1 )*H(1,J) 
B(NNODE-2)=B(NNODE-2)-SUP(NNODE-2)*H(NNODE,J) 
DO 700I=1,NNODE-3 

700 SUB(I)=SUB(I+1) 
M=NNODE-2 
CALL TRID(M,SUP,SUB,DIAG,B) 
DO 800 I=1,NNODE-2 

800 H(I+1,J)=B(I) 
DO 900 I=2,NNODE-1 
THETA(I,J)=ALPHA*(THETAS-THETAR)/(ALPHA+ABS(H(I,J))**BETA2)+ 

I. THETAR 
900 CONTINUE 

IF (J.EQ.2) GO TO 111 
IF (J.EQ.36) GO TO 111 
IF (J.EQ.72) GO TO 111 
IF (J.EQ.144) GO TO 111 
IF (J.EQ.216) GO TO 111 
IF (J.EQ.288) GO TO 111 
IF (J.EQ.576) GO TO 111 
GO TO 222 

111 CONTINUE 
WRITE(2,41)J 

41 FORMAT(/2X,'TIME STEP = ',I4) 
WRITE(2,42)(THETA(I,J),I=1,NNODE) 

42 FORMAT(5F10.4) 
222 CONTINUE 
400 CONTINUE 

STOP 
END 

SUBROUTINE TRID(M,SUP,SUB,DIAG,B) 
DIMENSION SUP(90),SUB(90),DIAG(90),B(90) 
N=M 
NN=N-1 
SUP(1)=SUP(1)/DIAG(1) 
B(1)=B(1)/DIAG(1) 
DO 51 I=2,N 
II=I-1 
DIAG(I)=DIAG(I)-SUP(II)*SUB(II) 
IF (I.EQ.N) GO TO 51 
SUP(I)=SUP(I)/DIAG(I) 

51 B(I)=(B(I)-SUB(II)*B(II))/DIAG(I) 
DO 52 K=1,NN 
I=N-K 

52 B(I)=B(I)-SUP(I)*B(I+1) 
RETURN 
END 
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MODEL 3 

SOIL MOISTURE PREDICTION MODEL 

IMPLICIT SCHEME WITH IMPLICIT LINEARIZATION (PREDICTION - CORRECTION) 
(MODEL 4 OF HAVERKAMP ET AL., 1977) 

DIMENSION SUB(90),SUP(90),DIAG(90),B(90) 
DIMENSION H(90,1153),CCC(90,1153) 
DIMENSION THETA(90,1153),HYDCON(90,1153) 
DIMENSION HP(90,1153),THETAP(90,1153) 
OPEN(UNIT=1,FILE='IMPLIC2.DAT',STATUS=1 OLD') 
OPEN(UNIT=2,FILE='IMPLIC2.0UT',STATUS=I NEW1 ) 

J REFERS TO TIME 
I REFERS TO DEPTH 
Z = DEPTH (CM), ORIENTED POSITIVELY DOWNWARD 
THETA = VOLUMETRIC MOISTURE CONTENT (CUBIC CM / CUBIC CM) 
H = SOIL WATER PRESSURE (RELATIVE TO THE ATMOSPHERE) 

EXPRESSED IN CM OF WATER 
THETAR = RESIDUAL MOISTURE CONTENT 
THETAS = MOISTURE CONTENT AT SATURATION 
THETAU = MOISTURE CONTENT AT THE SURFACE NODE 

(UPPER BOUNDARY CONDITION) 
BETA', CONA = PARAMETERS IN THE HYDRAULIC CONDUCTIVITY 

AND SOIL WATER PRESSURE RELATIONSHIP 
BETA2, ALPHA = PARAMETERS IN THE MOISTURE CONTENT AND 

SOIL WATER PRESSURE RELATIONSHIP 
HYDCON = HYDRAULIC CONDUCTIVITY OF THE SOIL (CM/HOUR) 
AKS = HYDRAULIC CONDUCTIVITY AT SATURATION (CM/HOUR) 
DELT = TIME STEP (HOURS) 
DELZ = DEPTH INTERVAL (CM) 
NTIME = NUMBER OF TIME STEPS 
NNODE = NUMBER OF NODES 
CCC = SPECIFIC WATER CAPACITY (/CM) DEFINED AS d(theta)/dh 

READ(1,11)THETAR,THETAS,THETAU 
11 FORMAT(3F12.3) 

READ(1,12)BETA1,BETA2 
12 FORMAT(2F12.3) 

READ(1,13)CONA,ALPHA 
13 FORMAT(2F12.3) 

READ(1,14)AKS 
14 FORMAT(F12.3) 

READ(1,16)DELT,DELZ 
15 FORMAT(F12.8,F12.3) 

READ(1,16)NTIME,NNODE 
16 FORMAT(I4,6X,I4) 

READING OF INITIAL CONDITIONS 

READ(1,17)(THETA(I,1),I=1,NNODE) 
17 FORMAT(6F10.4) 

WRITE(2,18) 
18 FORMAT(2X,'Soil Moisture Prediction Model (IMPLIC2).) 

WRITE(2,19) 
19 FORMAT(2X,'Implicit Scheme with Implicit Linearization') 

WRITE(2,20) 
20 FORMAT(2X,'(Prediction - Correction)') 

WRITE(2,21) 
21 FORMAT(/2X,'THETAR',9X,'THETAS',9X,'THETAU') 
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WRITE(2,31)THETAR,THETAS,THETAU 
31 FORMAT(2X,F5.3,10X,F5.3,10X,F5.3) 

WRITE(2,22) 
22 FORMAT(2X,'BETA1',10X,'BETA2') 

WRITE(2,32)BETA1,BETA2 
32 FORMAT(2X,F5.3,10X,F5.3} 

WRITE(2,23) 
23 FORMAT(2X,'CONA',11X,'ALPHA') 

WRITE(2,33)CONA,ALPHA 
33 FORMAT(2X,FI1.3,4X,F11.3) 

WRITE(2,24) 
24 FORMAT(2X,'AKS') 

WRITE(2,34)AKS 
34 FORMAT(2X,F6.3) 

WRITE(2,25) 
25 FORMAT(2X,'DELT1 ,11X,'DEW) 

WRITE(2,35)DELT,DELZ 
35 FORMAT(2X,F10.8,5X,F5.3) 

WRITE(2,26) 
26 FORMAT(2X,'NTIME',10X,'NNODE') 

WRITE(2,36)NTIME,NNODE 
36 FORMAT(2X,I4,9X,I4) 

WRITE(2,27) 
27 FORMAT(/2X,'SOIL MOISTURE AT DIFFERENT NODES') 

WRITE(2,28) 
28 FORMAT(/2X,'INITIAL CONDITIONS') 

WRITE(2,38)(THETA(I,1),I=1,NNODE) 
38 FORMAT(5F10.4) 

DO 100 I=1,NNODE 
H(I,1)=-(ALPHA*(THETAS-THETA(I,1))/(THETA(I,1) 

1 -THETAR))**(1./BETA2) 
100 CONTINUE 

GENERATION OF UPPER BOUNDARY CONDITION 

DO 200 J=1,NTIME 
THETA(1,J)=THETAU 
THETAP(1,J)=THETAU 
H(1,J)=-(ALPHA*(THETAS-THETA(1,J))/(THETA(1,J) 

1 -THETAR))**(1./BETA2) 
HP(1,J)=H(1,J) 

200 CONTINUE 

GENERATION OF LOWER BOUNDARY CONDITION 

DO 300 J=1,NTIME 
THETA(NNODE,J)=THETA(NNODE,1) 
THETAP(NNODE,J)=THETA(NNODE,1) 
H(NNODE,J)=-(ALPHA*(THETAS-THETA(NNODE,J))/(THETA(NNODE,J) 

1 -THETAR))**(1./BETA2) 
HP(NNODE,J)=H(NNODE,J) 

300 CONTINUE 

E1=BETA1/BETA2 
E2=(THETAS-THETAR) 
E3=ALPHA**E1 
E4=CONA*AKS 
E5=1./BETA2*ALPHA**(1./BETA2) 
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DO 400 J=2,NTIME 

DO 600 I=1,NNODE 
TERM1=(THETA(I,J-1)-THETAR)/E2  
HYDCON(I,J-1)=E4*TERM1**E1/(CONA*TERM1**El+E3*((1.-TERM1))**E1)  
CCC(I,J-1)=1./(E5*E2)*(THETAS-THETA(I) )**(-1./BETA2+1.)* 

1 ( THETA(I,J-1)-THETAR ) **(1./BETA2+1.) 
500 CONTINUE 

DO 600 I=21 NNODE-1 
DIAG(I-1)=2.*CCC(I,J-1)/HYDC0N(I,J-1)+2.*1 ELT/DELZ**2  
SUB(I-1)=-DELT/DELZ**2 
SUP(I-1)=-DELT/DELZ**2 
B(I-1)=2.*CCC(I,J-1)/HYDC0N(I,J-1)*H(I,J-1)+DELT/0ELZ*.5  

1 *(HYDCON(I+1,J-1)-HYDCON(I-1,J-1))/HYDCON(I,J-1)*((H(I+1,J-1)- 
2 H(I-1,J-1))/(2.*DELZ)-1.) 

600 CONTINUE 

B(1)=B(1)-SUB(1)*H(1,J) 
B(NNODE-2)=B(NNODE-2)-S1jP(NN0DE-2)*H(NN0DE,J) 
DO 700 I=1,NNODE-3 

700 SUB(I)=SUB(I+1) 
M=NNODE-2 
CALL TRID(M,SUP,SUB,DIAG,B) 
DO 800 I=1,NNODE-2 

800 HP(I+1,J)=B(I) 
DO 900 I=2,NNODE-1 
THETAP(I,J)=ALPHA*(THETAS-THETAR)/(ALPHA+ABS(HP(I1J))**  

1 BETA2)+THETAR 
900 CONTINUE 

DO 1000 I=1,NNODE 
TERM1=(THETAP(I,J)-THETAR)/E2  
HYDCON(I,J-1)=E4*TERM1**E1/(CONA*TERM1**El+E3*((1.-TERM1))**E1)  
CCC(I,J-1)=1./(E5*E2)*(THETAS-THETAP(I,J) )**(-1./BETA2+1.)* 

1 ( THETAP(I,J)-THETAR ) **(1./BETA2+1.) 
1000 CONTINUE 

DO 1100 I=2,NNODE-1 
DIAG(I-1)=CCC(I,J-1)/HYDCON(I,J-1)+DELT/DELZ**2  
SUB(I-1)=-DELT/DELZ**2*.5  
SUP(I-1)=-DELT/DELZ**2*.5 
B(I-1)=CCC(I,J-1)/HYDCON(I,J-1)*H(I,J-1)+DELT/DELZ*.5  

1 *(HYDCON(I+1,J-1)-HYDCON(I-1,J-1))/HYDCON(I,J-1)*((HP(I+1,J)- 
2 HP(I-1,J))/(2.*DELZ)-1.)+DELT/DELZ**2*.5*(H(I+1,J-1)-2.*  
3 H(I,J-1)+H(I-1,J-1)) 

1100 CONTINUE 

B(1)=B(1)-SUB(1)*H(1,J) 
B(NNODE-2)=B(NNODE-2)-SUP(NNODE-2)*H(NN0DE,J) 
DO 1200 I=1,NNODE-3 

1200 SUB(I)=SUB(I+1) 
M=NNODE-2 
CALL TRID(M,SUP,SUB,DIAG,B) 
DO 1300 I=1,NNODE-2 

1300 H(I+1,J)=8(I) 
DO 1400 I=2,NNODE-1 
THETA(I,J)=ALPHA*(THETAS-THETAR)/(ALPHA+ABS(H(I,J))**BETA2)+  

1 THETAR 
1400 CONTINUE 
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IF (J.EQ.2) GO TO 111 
IF (J.EQ.72) GO TO 111 
IF (J.EQ.144) GO TO 111 
IF (J.EQ.288) GO TO 111 
IF (J.EQ.432) GO TO 111 
IF (J.EQ.576) GO TO 111 
IF (J.EQ.1152) GO TO 111 
GO TO 222 

111 CONTINUE 
WRITE(2,41)J 

41 FORMAT(/2X,'TIME STEP = ',I4) 
WRITE(2,42)(THETA(I,J),I=1,NNODE) 

42 FORMAT(5F10.4) 
222 CONTINUE 
400 CONTINUE 

STOP 
END 

C 
SUBROUTINE TRID(M,SUP,SUB,DIAG,B) 
DIMENSION SUP(90),SUB(90),DIAG(90),B(90) 
N=M 
NN=N-1 
SUP(1)=SUP(1)/DIAG(1) 
B(1)=8(1)/DIAG(1) 
DO 51 I=2,N 
II=I-1 
DIAG(I)=DIAG(I)-SUP(II)*SUB(II) 
IF (I.EQ.N) GO TO 51 
SUP(I)=SUP(I)/DIAG(I) 

51 B(I)=(B(I)-SUB(II)*B(II))/DIAG(I) 
DO 52 K=1,NN 
I=N-K 

52 B(I)=B(I)-SUP(I)*B(I+1) 
RETURN 
END 
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MODEL 4 

SOIL MOISTURE PREDICTION MODEL 

CRANK-NICOLSON SCHEME 

DIMENSION SUB(90),SUP(90),DIAG(90),B(90) 
DIMENSION H(90,577),CCC(90,577) 
DIMENSION THETA(90,577),HYDCON(90,577) 
OPEN(UNIT=1,FILE=1 CRANK.DAT',STATUS=1OLD') 
OPEN(UNIT=2,FILE='CRANK.OUT',STATUS='NEW1 ) 

J REFERS TO TIME 
I REFERS TO DEPTH 
Z = DEPTH (CM), ORIENTED POSITIVELY DOWNWARD 
THETA = VOLUMETRIC MOISTURE CONTENT (CUBIC CM / CUBIC CM) 
H = SOIL WATER PRESSURE (RELATIVE TO THE ATMOSPHERE) 

EXPRESSED IN CM OF WATER 
THETAR = RESIDUAL MOISTURE CONTENT 
THETAS = MOISTURE CONTENT AT SATURATION 
THETAU = MOISTURE CONTENT AT THE SURFACE NODE 

(UPPER BOUNDARY CONDITION) 
BETA1, CORA = PARAMETERS IN THE HYDRAULIC CONDUCTIVITY 

AND SOIL WATER PRESSURE RELATIONSHIP 
BETA2, ALPHA = PARAMETERS IN THE MOISTURE CONTENT AND 

SOIL WATER PRESSURE RELATIONSHIP 
HYDCON = HYDRAULIC CONDUCTIVITY OF THE SOIL (CM/HOUR) 
AKS = HYDRAULIC CONDUCTIVITY AT SATURATION (CM/HOUR) 
DELT = TIME STEP (HOURS) 
DELZ = DEPTH INTERVAL (CM) 
NTIME = NUMBER OF TIME STEPS 
ERODE = NUMBER OF NODES 
CCC = SPECIFIC WATER CAPACITY (/CM) DEFINED AS d(theta)/dh 

READ(1,11)THETAR,THETAS,THETAU 
11 FORMAT(3F12.3) 

READ(1,12)BETA1,BETA2 
12 FORMAT(2F12.3) 

READ(1,13)CONA,ALPHA 
13 FORMAT(2F12.3) 

READ(I,14)AKS 
14 FORMAT(F12.3) 

READ(1,15)DELT,DELZ 
15 FORMAT(F12.8,F12.3) 

READ(1,16)NTIME,NNODE 
16 FORMAT(I3,8X,I3) 

READING OF INITIAL CONDITIONS 

READ(1,17)(THETA(I,1),I=1,NNODE) 
17 FORMAT(5F10.4) 

WRITE(2,18) 
18 FORMAT(2X,'Soil Moisture Prediction Model (CRANK)') 

WRITE(2,19) 
19 FORMAT(2X,'Crank-Nicolson Scheme') 

WRITE(2,21) 
21 FORMAT(/2X,'THETAR',9X 1 'THETAS',9X,I THETAW) 

WRITE(2,31)THETAR,THETAS,THETAU 
31 FORMAT(2X,F5.3,10X,F5.3,10X,F5.3) 
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WRITE(2,22) 
22 FORMAT(2X,'BETA1',10X,'BETA2') 

WRITE(2,32)BETA1,BETA2 
32 FORMAT(2X,F5.3,10X,F5.3) 

WRITE(2,23) 
23 FORMAT(2X,'CONA',11X,'ALPHA') 

WRITE(2,33)CONA,ALPHA 
33 FORMAT(2X,F11.3,4X,F11.3) 

WRITE(2,24) 
24 FORMAT(2X,'AKS') 

WRITE(2,34)AKS 
34 FORMAT(2X,F6.3) 

WRITE(2,25) 
25 FORMAT(2X,'DELT',11X,'DELZ') 

WRITE(2,35)DELT,DELZ 
35 FORMAT(2X,F10.8,5X,F5.3) 

WRITE(2,26) 
26 FORMAT(2X,'NTIME',10X,'NNODE') 

WRITE(2,36)NTIME,NNODE 
36 FORMAT(2X,I3,12X,I3) 

WRITE(2,27) 
27 FORMAT(/2X,'SOIL MOISTURE AT DIFFERENT NODES') 

WRITE(2,28) 
28 FORMAT(/2X,'INITIAL CONDITIONS') 

WRITE(2,38)(THETA(I,1),I=1,NNODE) 
38 FORMAT(5F10.4) 

DO 100 I=1,NNODE 
H(I,1)=-(ALPHA*(THETAS-THETA(I,1))/(THETA(I,1) 

1 -THETAR))**(1./BETA2) 
100 CONTINUE 

GENERATION OF UPPER BOUNDARY CONDITION 

DO 200 J=1,NTIME 
THETA(1,J)=THETAU 
H(1,J)=-(ALPHA*(THETAS-THETA(1,J))/(THETA(1,J) 

1 -THETAR))**(1./BETA2) 
200 CONTINUE 

GENERATION OF LOWER BOUNDARY CONDITION 

DO 300 J=1,NTIME 
THETA(NNODE,J)=THETA(NNODE,1) 
H(NNODE,J)=-(ALPHA*(THETAS-THETA(NNODE,J))/(THETA(NNODE ,J) 

1 -THETAR))**(1./BETA2) 
300 CONTINUE 

E1=BETA1/BETA2 
E2=(THETAS-THETAR) 
E3=ALPHA**E1 
E4=CONA*AKS 
E5=1./BETA2*ALPHA**(1./BETA2) 

DO 400 J=2,NTIME 

DO 500 I=2,NNODE-1 
THETA(I,J)=THETA(I,J-1) 
ITER=1 

500 CONTINUE 
600 CONTINUE 
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DO 700 I=1,NNODE 
TERM1=(THETA(I,J-1)-THETAR)/E2 
HYDCON(I,J-1)=E4*TERM1**E1/(CONA*TERM1**El+E3*((1.-TERM1))**E1) 
TERM1=(THETA(I,J)-THETAR)/E2 
HYDCON(I,J)=E4*TERM1**E1/(CONA*TERM1**El+E3*((1.-TERM1))**E1) 
CCC(I,J-1)=1./(E5*E2)*(THETAS-THETA(I,J-1) )**(-1./BETA2+1.)* 

1 ( THETA(I,J-1)-THETAR ) **(1./BETA2+1.) 
CCC(I,J)=1./(E5*E2)*(THETAS-THETA(I,J) )**(-1./BETA2+1.)* 

1 ( THETA(I,J)-THETAR ) **(1./BETA2+1.) 
700 CONTINUE 

DO 800 I=2,NNODE-1 
F1=(HYDCON(I,J-1)*HYDCON(I-1,J-1)/(HYDCON(I,J-1)+HYDCON(I-1,J-1)))+ 

1 (HYDCON(I,J)*HYDCON(I-1,J)/(HYDCON(I,J)+HYDCON(I-1,J))) 
F2=(HYDCON(I,J-1)*HYDCON(I+1,J-1)/(HYDCON(I,J-1)+HYDCON(I+1,J-1)))+ 

1 (HYDCON(I,J)*HYDCON(I+1,J)/(HYDCON(I,J)+HYDCON(I+1,J))) 
F3=0.5*(CCC(I,J-1)+CCC(I,J)) 
DIAG(I-1)=F3+0.5*(F1+F2)*DELT/DELZ**2 
SUB(I-1)=-0.5*F1*DELT/DELZ**2 
SUP(I-1)=-0.5*F2*DELT/DELZ**2 
B(I-1)=(0.5*Fl*DELT/DELZ**2)*H(I-1,J-1)+(F3-0.5*(Fl+F2)*DELT/DELZ**2)* 

1 H(I,J-1)+(0.5*F2*DELT/DELZ**2)*H(I+1,7-1)+(F1-F2)*DELT/DELZ 
800 CONTINUE 

B(1)=B(1)-SUB(1)*H(1,J) 
B(NNODE-2)=B(NNODE-2)-SUNNNODE-2)*H(NNODE,J) 
DO 900I=1,NNODE-3 

900 SUB(I)=SUB(I+1) 
M=NNODE-2 
CALL TRID(M,SUP,SUB,DIAG,B) 
SUM=0. 
DO 1000 I=1,NNODE-2 

1000 SUM=SUM+(H(I+1,J)-B(I))**2 
DO 1100 I=1,NNODE-2 

1100 H(I+1,J)=B(I) 
ITER=ITER+1 
IF(ITER.GT.10)G0 TO 1200 
IF(SUM.GT.0.0001)G0 TO 600 

1200 CONTINUE 
DO 1300 I=2,NNODE-1 
THETA(I,J)=ALPHA*(THETAS-THETAR)/(ALPHA+ABS(H(I,J))**BETA2)+ 

1 THETAR 
1300 CONTINUE 

IF (J.EQ.2) GO TO 111 
IF (J.EQ.36) GO TO 111 
IF (J.EQ.72) GO TO 111 
IF (J.EQ.144) GO TO 111 
IF (J.EQ.216) GO TO 111 
IF (J.EQ.288) GO TO 111 
IF (J.EQ.576) GO TO 111 
GO TO 222 

111 CONTINUE 
WRITE(2,41) 

41 FORMAT(/2X,'TIME STEP',7X,'ITERATION') 
WRITE(2,42)J,ITER 

42 FORMAT(2X,I5,14X,I2) 
WRITE(2,43)(THETA(I,J),I=1,NNODE) 

43 FORMAT(5F10.4) 
222 CONTINUE 
400 CONTINUE 

STOP 
END 
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SUBROUTINE TRID(M,SUP,SUB,DIAG,B) 
DIMENSION SUP(90),SUB(90),DIAG(90),B(90) 
N=M 
NN=N-1 
SUP(1)=SUP(1)/DIAG(1) 
B(1)=B(1)/DIAG(1) 
DO 51 I=2,N 
II=I-1 
DIAG(I)=DIAG(I)-SUP(II)*SUB(II) 
IF (I.EQ.N) GO TO 51 
SUP(I)=SUP(I)/DIAG(I) 

51 B(I)=(B(I)-SUB(II)*B(II))/DIAG(I) 
DO 52 K=1,NN 
I=N-K 

62 B(I)=B(I)-SUP(I)*B(I+1) 
RETURN 
END 
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MODEL 5 and 6 

SOIL MOISTURE PREDICTION MODEL 

RICHARDS EQUATION SOLVED IN TERMS OF THETA 
(IMPLICIT SCHEME AND CRANK-NICOLSON SCHEME) 
FOR THE VALUES OF HYDRAULIC CONDUCTIVITY AND DIFFUSIVITY : 
HARMONIC MEANS (WITH RESPECT TO SPACE) AND ARITHMETIC MEANS 
(WITH RESPECT TO TIME) HAVE BEEN TAKEN. 

DIMENSION SUB(90),SUP(90),DIAG( 90),B(90) 
DIMENSION DTHETA(90,577) 
DIMENSION THETA(90,577),HYDCON( 90,577) 
OPEN(UNIT=1,FILE='IMPLIC4.DAT', STATUS='OLD') 
OPEN(UNIT=2,FILE='IMPLIC4.0UT', STATUS 'NEW') 

W = 1.0 INDICATES IMPLICIT SCHEME 
W = 0.5 INDICATES CRANK-NICOLSON SCHEME 
J REFERS TO TIME 
I REFERS TO DEPTH 
Z = DEPTH (CM), ORIENTED POSITIVELY DOWNWARD 
THETA = VOLUMETRIC MOISTURE CONTENT (CUBIC CM / CUBIC CM) 
THETAR = RESIDUAL MOISTURE CONTENT 
THETAS = MOISTURE CONTENT AT SATURATION 
THETAU = MOISTURE CONTENT AT THE SURFACE NODE 

(UPPER BOUNDARY CONDITION) 
BETA1, CONA = PARAMETERS IN THE HYDRAULIC CONDUCTIVITY 

AND SOIL WATER PRESSURE RELATIONSHIP 
BETA2, ALPHA = PARAMETERS IN THE MOISTURE CONTENT AND 

SOIL WATER PRESSURE RELATIONSHIP 
HYDCON = HYDRAULIC CONDUCTIVITY OF THE SOIL (CM/HOUR) 
AKS = HYDRAULIC CONDUCTIVITY AT SATURATION (CM/HOUR) 
DELT = TIME STEP (HOURS) 
DELZ = DEPTH INTERVAL (CM) 
NTIME = NUMBER OF TIME STEPS 
NNODE = NUMBER OF NODES 
CCC = SPECIFIC WATER CAPACITY (/CM) DEFINED AS d(theta)/dh 
DTHETA = SOIL WATER DIFFUSIVITY DEFINED AS HYDCON/CCC 

READ(1,10)W 
10 FORMAT(F3.1) 

READ(1,11)THETAR,THETAS,THETAU 
11 FORMAT(3F12.3) 

READ(1,12)BETA1,BETA2 
12 FORMAT(2F12.3) 

READ(1,13)CONA,ALPHA 
13 FORMAT(2F12.3) 

READ(1,14)AKS 
14 FORMAT(F12.3) 

READ(1,15)DELT,DELZ 
15 FORMAT(F12.8,F12.3) 

READ(1,16)NTIME,NNODE 
16 FORMAT(I3,8X,I3) 

READING OF INITIAL CONDITIONS 

READ(1,17)(THETA(I,1),I=1,NNODE) 
17 FORMAT(5F10.4) 
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WRITE(2,18) 
18 FORMAT(2X,'Soil Moisture Prediction Model (IMPLIC4)') 

WRITE(2,19) 
19 FORMAT(2X,'Richards Equation solved in terms of Theta') 

WRITE(2,20)W 
20 FORMAT(2X,'W = ',F3.1) 

WRITE(2,21) 
21 FORMAT(/2X,'THETAR',9X,'THETAS',9X,'THETAU') 

WRITE(2,31)THETAR,THETAS,THETAU 
31 FORMAT(2X,F5.3,10X,F5.3,10X,F5.3) 

WRITE(2,22) 
22 FORMAT(2X,'BETA1',10X,'BETA2') 

WRITE(2,32)BETA1,BETA2 
32 FORMAT(2X,F5.3,10X,F5.3) 

WRITE(2,23) 
23 FORMAT(2X,'CONA',11X,'ALPHA') 

WRITE(2,33)CONA,ALPHA 
33 FORMAT(2X,F11.3,4X,F11.3) 

WRITE(2,24) 
24 FORMAT(2X,'AKS') 

WRITE(2,34)AKS 
34 FORMAT(2X,F6.3) 

WRITE(2,25) 
25 FORMAT(2X,'DELT',11X,'DELZ') 

WRITE(2,35)DELT,DELZ 
35 FORMAT(2X,F10.8,5X,F5.3) 

WRITE( 2,26) 
26 FORMAT(2X,'NTIME',10X,'NNODE') 

WRITE(2,36)NTIME,NNODE 
36 FORMAT(2X,I3,11X,I3) 

WRITE(2,27) 
27 FORMAT(/2X,'SOIL MOISTURE AT DIFFERENT NODES') 

WRITE(2,28) 
28 FORMAT(/2X,'INITIAL CONDITIONS') 

WRITE(2,38)(THETA(I,1),I=1,NNODE) 
38 FORMAT(FF10.4) 

GENERATION OF UPPER BOUNDARY CONDITION 

DO 100 J=1,NTIME 
100 THETA(1,J)=THETAU 

GENERATION OF LOWER BOUNDARY CONDITION 

DO 200 J=1,NTIME 
200 THETA(NNODE,J)=THETA(NNODE,1) 

E1=BETAI/BETA2 
E2=(THETAS-THETAR) 
E3=ALPHA**E1 
E4=CONA*AKS 
E5=1./BETA2*ALPHA**(1./BETA2) 

DO 300 J=2,NTIME 

DO 400 I=2,NNODE-1 
THETA(I,J)=THETA(I,J-1) 
ITER=1 

400 CONTINUE 
500 CONTINUE 
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DO 600 I=1,NNODE 
TERM1=(THETA(I,J-1)-THETAR)/E2 
HYDCON(I,J-1)=E4*TERM1**E1/(CONA*TERM1**El+E3*(1.-TERM1)**E1) 
TERM1=(THETA(I,J)-THETAR)/E2 
HYDCON(I,J)=E4*TERM1**E1/(CONA*TERM1**El+E8*(1.-TERM1)**E1) 
TERM2=E5*E2*(THETAS-THETA(I,J-1))**(1./BETA2-1.)*(THETA(I,J-1) 

1 -THETAR)**(-1./BETA2-1.) 
DTHETA(I,J-1)=HYDCON(I,J-1)*TERM2 
TERM2=E5*E2*(THETAS-THETA(I,J))**(1./BETA2-1.)*(THETA(I,J) 

1 -THETAR)**(-1./BETA2-1.) 
DTHETA(I,J)=HYDCON(I,J)*TERM2 

600 CONTINUE 

DO 700 I=2,NNODE-1 
F11=2.*DTHETA(I+1,J)*DTHETA(I,J)/(DTHETA(I+1,J)+DTHETA(I,J)) 
F12=2.*DTHETA(I+1,J-1)*DTHETA(I,J-1)/(DTHETA(I+1,J-1)+ 

1 DTHETA(I,J-1)) 
F1=(F11+F12)*0.5 
F21=2.*DTHETA(I,J)*DTHETA(I-1,J)/(DTHETA(I,J)+DTHETA(I-1,J)) 
F22=2.*DTHETA(I,J-1)*DTHETA(I-1,J-1)/(DTHETA(I,J-1)+ 

1 DTHETA(I-1,J-1)) 
F2=(F21+F22)*0.5 
F31=2.*HYDCON(I+1,J)*HYDCON(I,J)/(HYDCON(I+1,J)+HYDCON(I,J)) 
F32=2.*HYDCON(I+1,J-1)*HYDCON(I,J-1)/(HYDCON(I+1,J-1)+ 

1 HYDCON(I,J-1)) 
F3=(F31+F32)*0.5 
F41=2.*HYDCON(I,J)*HYDCON(I-1,J)/(HYDCON(I,J)+HYDCON(I-1,J)) 
F42=2.*HYDCON(I,J-1)*HYDCON(I-1,J-1)/(HYDCON(I,J-1)+ 

1 HYDCON(I-1,J-1)) 
F4=(F41+F42)*0.5 
DIAG(I-1)=1.+W*(F1+F2)*DELT/DELZ**2 
SUB(I-1)=-W*F2*DELT/DELZ**2 
SUP(I-1)=-W*Fl*DELT/DELZ**2 
B(I-1)=THETA(I,J-1)-DELT/DELZ*(F3-F4)+(1.-W)*(F1*DELT/DELZ**2* 

1 (THETA(I+1,J-1)-THETA(I,J-1)))-(1.-W)*(F2*DELT/DELZ**2* 
2 (THETA(I,J-1)-THETA(I-1,J-1))) 

700 CONTINUE 

B(1)=B(1)-SUB(1)*THETA(1,J) 
B(NNODE-2)=B(NNODE-2)-SUP(NNODE-2)*THETA(NNODE,J) 
DO 800 I=2,NNODE-1 

800 SUB(I-1)=SUB(I) 
M=NNODE-2 
CALL TRID(M,SUP,SUB,DIAG,B) 
SUM=0. 
DO 900 I=1,NNODE-2 

900 SUM=SUM+(THETA(I+1,J)-B(I))**2 
DO 1000 I=1,NNODE-2 

1000 THETA(I+1,J)=B(I) 
ITER=ITER+1 
IF(ITER.GT.10) GO TO 1100 
IF(SUM.GT.0.0001) GO TO 500 

1100 CONTINUE 
IF (J.EQ.2) GO TO 111 
IF (J.EQ.36) GO TO 111 
IF (J.EQ.72) GO TO 111 
IF (J.EQ.144) GO TO 111 
IF (J.EQ.216) GO TO 111 
IF (J.EQ.288) GO TO 111 
IF (J.EQ.576) GO TO 111 
GO TO 222 

111 CONTINUE 

45 



WRITE(2,41) 
41 FORMAT(/2X,'TIME STEP',7X,'ITERATION') 

WRITE(2,42)J,ITER 
42 FORMAT(2X,I5,14X,I2) 

WRITE(2,43)(THETA(I,J),I=1,NNODE) 
43 FORMAT(6F10.4) 
222 CONTINUE 
300 CONTINUE 

STOP 
END 

SUBROUTINE TRID(M,SUP,SUB,DIAG,B) 
DIMENSION SUP(90),SUB(90),DIAG(90),B(90) 
N=M 
NN=N-1 
SUP(1)=SUP(1)/DIAG(1) 
B(1)=B(1)/DIAG(1) 
DO 61 I=2,N 
II=I-1 
DIAG(I)=DIAG(I)-SUP(II)*SUB(II) 
IF (I.EQ.N) GO TO 51 
SUP(I)=SUP(I)/DIAG(I) 

61 B(I)=(B(I)-SUB(II)*B(II))/DIAG(I) 
DO 52 K=1,NN 
I=N-K 

52 B(I)=B(I)-SUP(I)*B(I+1) 
RETURN 
END 
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MODEL 7 

SOIL MOISTURE PREDICTION MODEL 

RICHARDS EQUATION SOLVED IN TERMS OF THETA (IMPLICIT SCHEME) 

USING MILLER AND BRESLER RELATIONSHIP FOR SOIL WATER DIFFUSIVITY 
AND BOUWER'S CAPILLARY DRIVE 

FOR THE VALUES OF HYDRAULIC CONDUCTIVITY AND DIFFUSIVITY : 
HARMONIC MEANS (WITH RESPECT TO SPACE) AND ARITHMETIC MEANS 
(WITH RESPECT TO TIME) HAVE BEEN TAKEN. 

DIMENSION SUB(90),SUP(90),DIAG(90),B(90) 
DIMENSION DTHETA(90,577) 
DIMENSION THETA(90,577),HYDCON(90,577) 
OPEN(UNIT=1,FILE=1 BCD.DAT',STATUS='OLD') 
OPEN(UNIT=2,FILE='BCD.OUT',STATUS=1 NEW1 ) 

J REFERS TO TIME 
I REFERS TO DEPTH 
Z = DEPTH (CM), ORIENTED POSITIVELY DOWNWARD 
THETA = VOLUMETRIC MOISTURE CONTENT (CUBIC CM / CUBIC CM) 
THETAR = RESIDUAL MOISTURE CONTENT 
THETAS = MOISTURE CONTENT AT SATURATION 
THETAU = MOISTURE CONTENT AT THE SURFACE NODE 

(UPPER BOUNDARY CONDITION) 
BETA1, CONA = PARAMETERS IN THE HYDRAULIC CONDUCTIVITY 

AND SOIL WATER PRESSURE RELATIONSHIP 
BETA2, ALPHA = PARAMETERS IN THE MOISTURE CONTENT AND 

SOIL WATER PRESSURE RELATIONSHIP 
HYDCON = HYDRAULIC CONDUCTIVITY OF THE SOIL (CM/HOUR) 
AKS = HYDRAULIC CONDUCTIVITY AT SATURATION (CM/HOUR) 
DELT = TIME STEP (HOURS) 
DELZ = DEPTH INTERVAL (CM) 
NTIME = NUMBER OF TIME STEPS 
NNODE = NUMBER OF NODES 
CCC = SPECIFIC WATER CAPACITY (/CM) DEFINED AS d(theta)/dh 
DTHETA = SOIL WATER DIFFUSIVITY DEFINED AS HYDCON/CCC 
HF = BOUWER'S CAPILLARY DRIVE 

READ(1,11)THETAR,THETAS,THETAU 
11 FORMAT(3F12.3) 

READ(1,12)BETA1,BETA2 
12 FORMAT(2F12.3) 

READ(1,13)CONA,ALPHA 
13 FORMAT(2F12.3) 

READ(1,14)AKS 
14 FORMAT(F12.3) 

READ(1,15)DELT,DELZ 
15 FORMAT(F12.8,F12.3) 

READ(1,16)NTIME,NNODE 
16 FORMAT(I3,8X,I3) 

READING OF INITIAL CONDITIONS 

READ(1,17)(THETA(I,1),I=1,NNODE) 
17 FORMAT(5F10.4) 
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WRITE(2,18) 
18 FORMAT(2X,'Soil Moisture Prediction Model (BCD)') 

WRITE(2,19) 
19 FORMAT(2X,'Richards Equation solved in terms of Theta') 

WRITE(2,20) 
20 FORMAT(2X,'using Miller and Bresler relation for diffusivity') 

WRITE(2,21) 
21 FORMAT(/2X,'THETAR',9X,'THETAS',9X,'THETAU') 

WRITE(2,31)THETAR,THETAS,THETAU 
31 FORMAT(2X,F5.3,10X,F5.3,10X,F5.3) 

WRITE(2,22) 
22 FORMAT(2X,'BETA1',10X,'BETA2') 

WRITE(2,32)BETA1,BETA2 
32 FORMAT(2X,F5.3,10X,F5.3) 

WRITE(2,23) 
23 FORMAT(2X,'CONA',11X,'ALPHA') 

WRITE(2,33)CONA,ALPHA 
33 FORMAT(2X,F11.3,4X,F11.3) 

WRITE(2,24) 
24 FORMAT(2X,'AKS') 

WRITE(2,34)AKS 
34 FORMAT(2X,F6.3) 

WRITE(2,25) 
25 FORMAT(2X,'DELT',11X,'DELZ') 

WRITE(2,35)DELT,DELZ 
35 FORMAT(2X,F10.8,5X,F5.3) 

WRITE(2,26) 
26 FORMAT(2X,'NTIME',10X,'NNODE') 

WRITE(2,36)NTIME,NNODE 
36 FORMAT(2X,I3,11X,I3) 

WRITE(2,27) 
27 FORMAT(/2X,'SOIL MOISTURE AT DIFFERENT NODES') 

WRITE(2,28) 
28 FORMAT(/2X,'INITIAL CONDITIONS') 

WRITE(2,38)(THETA(I,1),I=1,NNODE) 
38 FORMAT(5F10.4) 

GENERATION OF UPPER BOUNDARY CONDITION 

DO 100 J=1,NTIME 
100 THETA(1,J)=THETAU 

GENERATION OF LOWER BOUNDARY CONDITION 

DO 200 J=1,NTIME 
200 THETA(NNODE,J)=THETA(NNODE,1) 

HF=20.489 
THETAI=0.100 
AM=SQRT((2.0*AKS*HF)/(THETAS-THETAI)) 
E1=BETA1/BETA2 
E2=(THETAS-THETAR) 
E3=ALPHA**E1 
E4=CONA*AKS 
E5=1./BETA2*ALPHA**(1./BETA2) 

DO 300 J=2,NTIME 
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DO 400 I=2,NNODE-1 
THETA(I,J)=THETA(I,J-1) 
ITER=1 

400 CONTINUE 
500 CONTINUE 

DO 600 I=1,NNODE 
TERM1=(THETA(I,j-1)-THETAR)/E2 
HYDCON(I,J-1)=E4*TERM1**E1/(CONA*TERM1**El+E3*(1.-TERM1)**E1) 
DTHETA(I,J-1)=0.0054*AM**2*EXP(4.7*((THETA(I,J-1)-THETAR) 

1 /(THETAS-THETAR))) 
600 CONTINUE 
700 CONTINUE 

DO 800 I=1,NNODE 
TERM1=(THETA(I,J)-THETAR)/E2 
HYDCON(I,J)=E4*TERM1**E1/(CONA*TERM1**El+E3*(1.-TERM1)**E1) 
DTHETA(I,J)=0.0054*AM**2*EXP(4.7*((THETA(I,J)-THETAR) 

1 /(THETAS-THETAR))) 
800 CONTINUE 

DO 900 I=2,NNODE-1 
F11=2.*DTHETA(I+1,J)*DTHETA(I,J)/(DTHETA(I+1,J)+DTHETA(I,J)) 
F12=2.*DTHETA(I+1,J-1)*DTHETA(I,J-1)/(DTHETA(I+1,J-1)+ 
DTHETA(I,J-1)) 
F1=(F11+F12)*0.5 
F21=2.*DTHETA(I,J)*DTHETA(I-1,J)/(DTHETA(I,J)+DTHETA(I-1,J)) 
F22=2.*DTHETA(I,j-1)*DTHETA(I-1,J-1)/(DTHETA(I,J-1)+ 

1 DTHETA(I-1,J-1)) 
F2=(F21+F22)*0.5 
F31=2.*HYDCON(I+1,J)*HYDCON(I,J)/(HYDCON(I+1,J)+HYDCON(I,J)) 
F32=2.*HYDCON(I+1,J-1)*HYDCON(I,J-1)/(HYDCON(I+1,J-1)+ 

1 HYDCON(I,J-1)) 
F3=(F31+F32)*0.5 
F41=2.*HYDCON(I,J)*HYDCON(I-1,J)/(HYDCON(I,J)+HYDCON(I-1,J)) 
F42=2.*HYDCON(I,J-1)*HYDCON(I-1,J-1)/(HYDCON(I,J-1)+ 

1 HYDCON(I-1,J-1)) 
F4=(F41+F42)*0.5 
DIAG(I-1)=1.+(Fl+F2)*DELT/DELZ**2 
SUB(I-1)=-F2*DELT/DELZ**2 
SUP(I-1)=-F1*DELT/DELZ**2 
B(I-1)=THETA(I,J-1)-DELT/DELZ*(F3-F4) 

900 CONTINUE 

B(1)=B(1)-SUB(1)*THETA(1,J) 
B(NNODE-2)=B(NNODE-2)-SUP(NNODE-2)*THETA(NNODE,J) 
DO 1000 I=2,NNODE-1 

1000 SUB(I-1)=SUB(I) 
M=NNODE-2 
CALL TRID(M,SUP,SUB,DIAG,B) 
SUM=0. 
DO 1100 I=1,NNODE-2 

1100 SUM=SUM+(THETA(I+1,J)-B(I))**2 
DO 1200 I=1,NNODE-2 

1200 THETA(I+1,J)=B(I) 
ITER=ITER+1 
IF(ITER.GT.10) GO TO 1300 
IF(SUM.GT.0.0001) GO TO 700 

1300 CONTINUE 
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IF (J.EQ.2) GO TO 111 
IF (J.EQ.36) GO TO 111 
IF (J.EQ.72) GO TO 111 
IF (J.EQ.144) GO TO 111 
IF (J.EQ.216) GO TO 111 
IF (J.EQ.288) GO TO 111 
IF (J.EQ.576) GO TO 111 
GO TO 222 

111 CONTINUE 
WRITE(2,41) 

41 FORMAT(/2X,'TIME STEP',7X,'ITERATION') 
WRITE(2,42-)J,ITER 

42 FORMAT(2X,I5,14X,I2) 
WRITE(2,43)(THETA(I,J),I=1,NNODE) 

43 FORMAT(5F10.4) 
222 CONTINUE 
300 CONTINUE 

STOP 
END 

SUBROUTINE TRID(M,SUP,SUB,DIAG,B) 
DIMENSION SUP(90),5U0490),DIAG(90),B(90) 
M=M 
NN=N-1 
SUP(1)=SUP(1)/DIAG(1) 
B(1)=13(1)/DIAG(1) 
DO 51 I=2,N 
II=I-1 
DIAG(I)=DIAG(I)-SUP(II)*SUB(II) 
IF (I.EQ.N) GO TO 51 
SUP(I)SUP(I)/DIAG(I) 

51 B(I)=(B(I)-SUB(II)*B(II))/DIAG(I) 
DO 52 K=1,NN 
IN-L( 

52 B(I)=B(I)-SUP(I)*B(I+1) 
RETURN 
END 
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