TR - 43

FORECASTING OF MONSOON RUNOFF USING DATA FROM SPECIFIC BASINS

SATISH CHANDRA DIRECTOR

STUDY GROUP

N K GOEL

NATIONAL INSTITUTE OF HYDROLOGY JALVIGYAN BHAWAN ROORKEE - 247 667

1987-88

CONTENTS

		Page
List	of Figures	1
	of Tables	iv
Absti	ract	vii
1.0	INTRODUCTION	1
2.0	STATEMENT OF THE PROBLEM	4
3.0	METHODOLOGY	5
4.0	DESCRIPTION OF STUDY AREA	8
5.0	DATA USED	23
6.0	ANALYSIS AND RESULTS	43
7.0	SUGGESTIONS FOR FURTHER WORK	140
8.0	CONCLUSIONS	142
9.0	ACKNOWLEDGEMENTS	143
	REFERENCES	144

LIST OF FIGURES

Figu	Title	Page
1.	The Krishna River basin	11
2.	The Mahanadi river basin	12
3.	The Chaliyar river basin	15
4.	The Sabarmati river basin	17
5.	Beas dam at Pong (River Beas Catchment)	19
6.	The Godavari river basin	21
7.	Map of India showing the study areas	22
8.	Estimation of monsoon runoff for the calibration run period (1968-77) for Bhima at Dhond	44
9.	Forecasting of monsoon runoff for the period (1978-85) for Bhima at Dhond	46
10.	Estimation of monsoon runoff for the calibra- tion run period (1965-74) for Bhima at Wodakabal	49
11.	Forecasting of monsoon runoff for the period (1975-85) for Bhima at Wodakabal	51
12.	Estimation of monsoon runoff for the calibra- tion run period (1967-76) for Bhima at Narsingpur	54
13.	Forecasting of monsoon runoff for the period (1977-85) for Bhima at Narsingpur	56
14.	Estimation of monsoon runoff for calibration run period (1966-75) for Bhima at Takali	59
15.	Forecasting of monsoon runoff for the period (1976–83) for Bhima at Takali	61
16.	Estimation of monsoon runoff for the calibra- tion run period (1965–74) for Bhima at Yadgir	64
17.	Forecasting of monsoon runoff for the period (1975-85) for Bhima at Yadgir	66

18.	Estimation of monsoon runoff for the calibration run period (1967-76) for Tungbhadra at Haralahalli	69
19.	Forecasting of monsoon runoff for the period (1977–85) for Tungbhadra at Haralahalli	71
20.	Estimation of monsoon runoff for the calibra- tion period (1966-75) for Tungbhadra at T.Ramapuram	74
21.	Forecasting of monsoon runoff for the period (1976-85) for Tungbhadra at T.Ramapuram	76
22.	Estimation of monsoon runoff for the calibration run period (1963-72) for Koyna reservoir	80
23.	Forecasting of monsoon runoff for the period (1973-83) for Koyna reservoir	81
24.	Estimation of monsoon runoff for the calibration run period (1961-75) for Gandhisagar reservoir	84
25.	Forecasting of monsoon runoff for the period (1976-87) for Gandhisagar reservoir	86
26.	Estimation of monsoon runoff for the calibration run period (1946-65) for Mahanadi at Hirakud	89
27.	Forecasting of monsoon runoff for the period (1966-82) for Mahanadi at Hirakud	91
28.	Estimation of monsoon runoff for the calibration run period (1965-74) for Chaliyar	94
29.	Forecasting of monsoon runoff for the period (1975-78) for Chaliyar	96
30.	Estimation of monsoon runoff for the calibration run period (1965-74) for Kanhirapuzha	99
31.	Forecasting of monsoon runoff for the period (1975-78) for Kanhirapuzha	101
32.	Estimation of monsoon runoff for the calibration run period (1965-74) for Koodathai	104
33.	Forecasting of monsoon runoff for the period (1975-78) for Koodathai	106
34.	Estimation of monsoon runoff for the calibration run period (1965-74) for Punnarpuzha	109

35.	Forecasting of monsoon runoff for the calibration (1975-78) for Punnarpuzha	111
36.	Estimation of monsoon runoff for the calibration run period (1960-79) for Gobindsagar at Bhakra	114
37.	Forecasting of monsoon runoff for the period (1980-86) for Gobindsagar at Bhakra	116
38.	Estimation of monsoon runoff for the calibration run period (1935-64) for Sabarmati at Dharoi.	119
39.	Forecasting of monsoon runoff for the period (1965-75) for Sabarmati at Dharoi	121
40.	Estimation of monsoon runoff for the calibration run period (1974-83) for Pong	124
41.	Forecasting of monsoon runoff for the period (1984-85) for Pong	126
42.	Estimation of monsoon runoff for the calibra- tion run period (1976-82) for Malaprabha	130
43.	Forecasting of monsoon runoff for the period (1983-85) for Malaprabha	131
44.	Estimation of monsoon runoff for the calibration run period (1974–81) for Jayakwadi	134
45.	Forecasting of monsoon runoff for the period (1982-85) for Javakwadi	136

×.

LIST OF TABLES

Tabl	e Title	Page
1.	Data used for various sites	23
2.	Observed monthly and monsoon flows in cumec-days for Bhima at Dhond (1968–85)	24
3.	Observed monthly and monsoon flows in cumec-days for Bhima at Wodakabal (1965-85)	25
4.	Observed monthly and monsoon flows in cumec- days for Bhima at Narsingpur (1967-85)	26
5.	Observed monthly and monsoon flows in cumec- days for Bhima at Takali (1966-83)	27
6.	Observed monthly and monsoon flows in cumec- days for Bhima at Yadgir (1965-85)	28
7.	Observed monthly and monsoon flows in cumec- days for Tungbhadra at Haralahalli (1967-85)	29
8.	Observed monthly and monsoon flows in cumec- days for Tungbhadra at T Ramapuram (1966-85)	30
9.	Observed monthly and monsoon flows in MCM for Koyna reservoir (1963-83)	31
10.	Observed monthly and monsoon flows in TAF for Gandhisagar reservoir (1961-86)	32
11.	Observed monthly and monsoon flows in MM for Hirakud reservoir (1946-82)	33
12.	Observed monthly and monsoon flows in cumec- days for Chaliyar river (1965-78)	34
13.	Observed monthly and monsoon flows in cumec- days for Kanhirapuzha river (1965-78)	35
14.	Observed monthly and monsoon flows in cumec- days for Koodathai river (1965-78)	36
15.	Observed monthly and monsoon flows in cumec- days for Punnarpuzha river (1965-78)	37
16.	Observed monthly and monsoon flows in cusec- days for Gobindsagar at Bhakra (1960-86)	38
17.	Observed monthly and monsoon flows in cusec- days for Sabarmati at Dharoi (1935-75)	39

iv

18.	Observed monthly and monsoon flows in cusec-	40
10	days for Pong reservoir (1974-86)	
19.	Observed monthly and monsoon flows in MCM for Malaprabha reservoir (1976-85)	41
20.	Observed monthly and monsoon flows in MCM for Jayakwadi reservoir (1974-85)	42
21.	Forecasting of monsoon runoff (1978-85) from drought point of view for Bhima at Dhond	47
22.	Forecasting of monsoon runoff (1975-85) from drought point of view for Bhima at Wodakabal	52
23.	Forecasting of monsoon runoff (1977-85) from drought point of view for Bhima at Narsingpur	57
24.	Forecasting of monsoon runoff (1976-83) from drought point of view for Bhima at Takali	62
25.	Forecasting of monsoon runoff (1975-85) from drought point of view for Bhima at Yadgir	67
26.	Forecasting of monsoon runoff (1977-85) from drought point of view for Tungbhadra at Haralahall	72 li
27.	Forecasting of monsoon runoff (1976-85) from drought point of view for Tungbhadra at T. Ramapuram	77
28.	Forecasting of monsoon runoff (1973-83) from drought point of view for Koyna	83
29.	Forecasting of monsoon runoff (1976-86) from drought point of view for Gandhisagar	87
30.	Forecasting of monsoon runoff (1966-82) from drought point of view for Mahanadi at Hirakud	92
31.	Forecasting of monsoon runoff (1975-78) from drought point of view for Chaliyar	97
32.	Forecasting of monsoon runoff (1975–78) from drought point of view for Kanhirpuzha	102
33.	Forecasting of monsoon runoff (1975–78) from drought point of view for Koodathai	107
34.	Forecasting of monsoon runoff (1975-78) from drought point of view for Punnarpuzha	112
35.	Forecasting of monsoon runoff (1980-86) from drought point of view for Gobindsagar at Bhakra	117

v

36.	Forecasting of monsoon runoff (1965-75) from drought point of view for Sabarmati at Dharoi	122
37.	Forecasting of monsoon runoff (1984-86) from drought point of view for Pong	127
38.	Forecasting of monsoon runoff (1983-85) from drought point of view for Malaprabha	132
39.	Forecasting of monsoon runoff (1982-85) from drought point of view for Jayakwadi	137
40.	Forecasting of monsoon flows for various rivers/ reservoirs.	139

ABSTRACT

The water resources planning and operation activities are dependent mainly on the monsoon behaviour that being a crucial period contributing 80-90% of annual rainfall and runoff. The forecasting of monsoon runoff based upon the available runoff data upto the end of June, July, August and September coule be an important aspect for drought management and in planning and operation of surface water reservoirs. The correct and timely assessment of water resources before the beginning of their utilization period say before Rabi is a must.

For forecasting of monsoon rainfall and runoff, a methodlology based on simple regression relationships was earlier developed and was applied to the data of Mahanadi river basin at Hirakud. The methodology gave very encouraging results in forecasting the monsoon rainfall and runoff and in identifying whether the current year is going to be below normal or above normal. In order to examine the applicability of the technique for other reservoirs and rivers located in different agroclimatic regions of the country, the methodology has been applied to the runoff data of following reservoirs/river sites in the present study; (i) Bhima at Dhond, (ii) Bhima at Wodakabal, (iii) Bhima at Narsingpur,(iv)Bhima at Takali, (v) Bhima at Yadgir, (vi) Tungbhadra at Haralahalli (vii) Tungbhadra at T Ramapuram, (viii) Koyna reservoir, (ix) Gandhisagar reservoir, (x) Mahanadi at Hirakud

vii

(xi) Chaliyar river, (xii) Kanhirpuzha river, (xiii) Koodathar river, (xiv) Punnarpuzha river, (xv) Gobindsagar at Bhakra, (xvi) Sabarmati at Dharoi, (xvii) Pong reservoir, (xviii) Malaprabha, and (xix) Jayakwadi reservoir. The catchment areas v ry from 71.77 Km² to 83400 Km² and the length of data vary from 10 years to 41 years.

The report gives the efficiency in percentage in estimation and forecasting of monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and (iv) September. The report also gives the results of these relationships in identifying whether the current year is going to be below normal or above normal from runoff point of view.

1.0 INTRODUCTION

The water resources planning and operation activities are dependent mainly on the monsoon behaviour that being a crucial period contributing 80-90% of annual rainfall and runoff. The forecasting of monsoon runoff based upon the available runoff data upto the end of June, July, August and September could be an important aspect for drought management and in planning and operation of surface water reservoirs. The correct and timely assessment of water resources before the beginning of their utilization period i.e. before Rabi is a must.

IMD is forecasting rainfall in different categories of time spells. The short term forecast is done generally 48 hours in advance. It covers generally the weather over a particular area. The rainfall forecasts for one week are included in weekly bulletins and these cover various sub divisions. The forecasts upto days are generally based on the behaviour of weather systems during the past week and subsequent movement as observed on day to day synoptic charts prepared in forecasting offices.

The long term predictions in India are based on statistical associations and meteorological tele connections. The best known work in this area is that of Sir Gilbert Walker in the early years of the century. Jagannathan (1960), Rao (1964, 1972) and Das (1986) give excellent review of seasonal forecasting of rainfall in India.

In the direction of forecasting monsoon runoff not much work has been done in India. Earlier Goel (1986) made an attempt to forecast the monsoon rainfall and runoff for river Mahanadi at Hirakud based on simple regression relationships. The runoff data (1946-82) and rainfall data (1901-79) were used.

The results based on the analysis of abovedata indicate that for Hirakud.

- (i) the efficiencies of monsoon runoff forecasts are
 71%, 81% and 98% at the end of July, August and
 September respectively.
- (ii) the efficiencies in identifying whether the current year is going to be below normal or above normal are 71%, 88%, 94% and 100% at the end of June, July, August and September respectively on the basis of 1968-82 runoff data.
- (iii) the efficiencies of forecasting monsoon rainfall are 60%, 80% and 97% at the end of July, August and September respectively on the basis of 1966-79 rainfall data, and
- (iv) the efficienciesof regression relationships in identifying whether the current year is going to be below normal or above normal are 62%, 62%, 63% and 93% at the end of June, July, August and September respectively on the basis of 1951-79 data and 64%, 79%, 93% and 93% on the basis of 1968-79 rainfall

data.

Since these results are based on the analysis of only one site data, it was felt appropriate to study the effectiveness of the technique for other reservoirs/rivers located in different agro climatic regions of the country also and to restrict the scope of the report for monsoon runoff forecasting only.

2.0 STATEMENT OF THE PROBLEM

For forecasting the monsoon rainfall and runoff a methodology based on simple regression relationships, was earlier developed by the author and was applied to the data of Mahanadi river basin at Hirakud. The methodology gave very encouraging results in forecasting the monsoon rainfall and runoff and in identifying whether the current year is going to be below normal or above normal. In order to examin the applicability of the technique for other reservoirs and rivers located in different agro climatic regions of the country the objectives of the study are:

- (i) To forecast the monsoon runoff on the basis of total runoff upto the end of (a) June, (b) July,
 (c) August and (d) September using simple regression relationships for reservoirs/rivers located in different agroclimatic regions of the country.
- (ii) To judge the efficiency of these regression relationships in forecasting the magnitude of runoff for various reservoirs/rivers.
- (iii) To study the effectiveness of these relationships in judging whether the current year is going to be below normal or above normal from runoff point of view.

4

3.0 METHODOLOGY

The methodology, developed earlier by Goel (1986), for forecasting of monsoon rainfall and runoff has been adopted for this study also. The methodology for forecasting of monsoon runoff include the following steps

(a) Plot the graph between monsoon runoff v/s total runoff upto the end of

(i) June, (ii) July, (iii) August and (iv) September

The graph may be linear or may be nonlnear. If the graph is linear then develop the relationship in original domain otherwise in log domain.

(b) Devide the data in two parts i.e. one for calibration and other for verification of forecast.

(c) Develop the following relationships

Y	=	a ₁ +b ₁	x ₁		(1)
Y	=	a ₂ +b ₂	x ₂		(2)
Y	=	a ₃ +b ₃	x ₃		(3)
Y	=	$a_4 + b_4$	x ₄		(4)

where,

Y is monsoon runoff,

 X_1 is the total runoff upto the end of June, X_2 is the total runoff upto the end of July, X_3 is the total runoff upto the end of August, X_4 is the total runoff upto the end of September

and a_1 , b_1 , a_2 , b_2 etc. are coefficients which are estimated by least squares approach.

The equations to be used for the estimation of a and b are

$$b = \frac{\sum_{i=1}^{N} x_{i} Y_{i} - \sum_{i=1}^{N} x_{i} Y_{i}/N}{\sum_{i=1}^{N} x_{i}^{2} (\sum_{i=1}^{N} x_{i})^{2}/N} \dots (5)$$

 $a = \overline{Y} - b \overline{X} \qquad \dots (6)$

where,

N is number of years of data, Y_i is monsoon runoff of ith year, X_i is runoff data (X, or X_2 or X_3 or X_4) of ith year.

In case of non-linear relationships Y_i and X_i are logarithmic of respective runoff.

(d) Judge the fitting of regression relationship in calibration. Efficiency of regression relationships (γ) has been used as the criteria to judge the fitting of regression relationship. Efficiency (γ) is computed as follows:

$$\gamma = \frac{m}{F_0} \times 100\% \qquad \dots (7)$$

where,

新志。

 γ is the efficiency of regression relationship,

 F_m , is variance explained by the regression relationship or model variance; $F_{m} = \text{ initial variance - residual variance}$ $F_{o} = \text{ initial variance}$ $\text{Initial variance = } \Sigma (Y_{i} - \overline{Y})^{2} \qquad \dots (8)$ $\text{Residual variance = } \Sigma (Y_{i} - Y_{c})^{2} \qquad \dots (9)$ $Y_{c} = \text{Computed monsoon runoff}$

 (e) Forecast the monsoon runoff after updating the paramter. The forecasting is done as follows:
 Develop the relationship for n year (calibration

run period using equation (1) to (4). Forecast for (n+1)th year is given by these relationships. To give forecast for (n+2)th year, develop the relationships using (n+1) year data and so on.

- (f) Judge the efficiency of regression relationship given by equation (7) for the data for verification of forecast.
- (g) Judge the effectiveness of the regression relationships in identifying whether the current year is going to be a below normal year or above normal year.

4.0 DESCRIPTION OF STUDY AREAS

The methodology of monsoon runoff forecasting has been applied to the runoff data of following 19 reservoirs/ rivers:

Sl.No	. Name of reservoir/river site	Catchment area(km²)	River basin
1.	Bhima at Dhond	11660	Krishna
2.	Bhima at Wodakabal	12092	0
3.	Bhima at Narsingpur	22856	
4.	Bhima at Takali	33916	u
5.	Bhima at Yadgir	69863	
6.	Tungbhadra at Haralhalli	14582	
7.	Tungbhadra at T. Ramapuram	23500	"
8.	Koyna Reservoir	891	.0
9.	Gandhi Sagar Reservoir	23140	Chambal
10.	Mahanadi at Hirakud	83400	Mahanadi
11.	Chaliyar	448.15	Chaliyar
12.	Kanhirpuzha	71.77	
13.	Kudathai	121.25	
14.	Punnarpuzha	468.9	u
15.	Gobind Sagar at Bhakra	56876	Sutlej
16.	Sabarmati at Dharoi	5540	Sabarmati
17.	Pong reservoir	12562	Beas
18.	Malprabha dam	2176	Krishna
19.	Jayakwadi	21750	Godavari

The description of Krishna, Chambal, Mahanadi, Chaliyar, Sutlej, Sabarmati, Beas and Godavari river basins is given in subsequent sections.

4.1 The Krishna River Basin

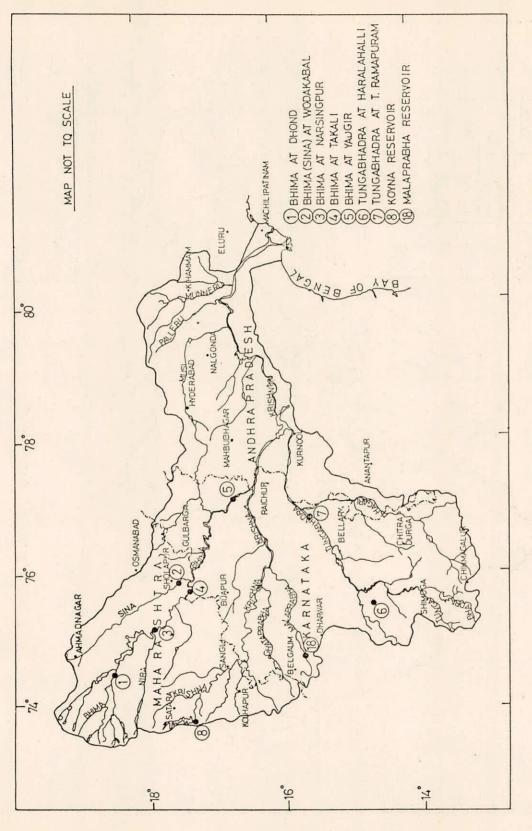
The river Krishna rises near Mahabalesh warat 1360 m elevation from a water spring. The place is held in esteem. After flowing 1400 km it joins the bay of Bengal. Its drainage area is 258948 km of which 26.8% lies in Maharashtra, 43.8% in Karnataka and 29.4% in Andhra. The river passes through a narrow gorge from Sangameswaram, , just below the confluence of the Tungbhadra with Krishna, to Nagarjunasagar a distance of 130km. It is in this reach that two large reservoirs, the Sreesailam and the Nagarjunasagar are located.

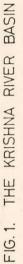
The ^Chief tributaries are the Koyna, the Ghataprabha, the ^{Ma}laprabha, the Tungbhadra, the Musi and the Muneru. The maximum discharge of the Krishna river is 33810 cumecs and the minimum is less than 3 cumecs. The total annual mean runoff is 57764 million cu.m.

The gross sown area is 16 million ha forming 80% the cultivable area. The percentage of irrigation is 21. Soils consist of black, red, laterite, alluvium, mixed soils and saline and alkaline soils, Rao (1979).

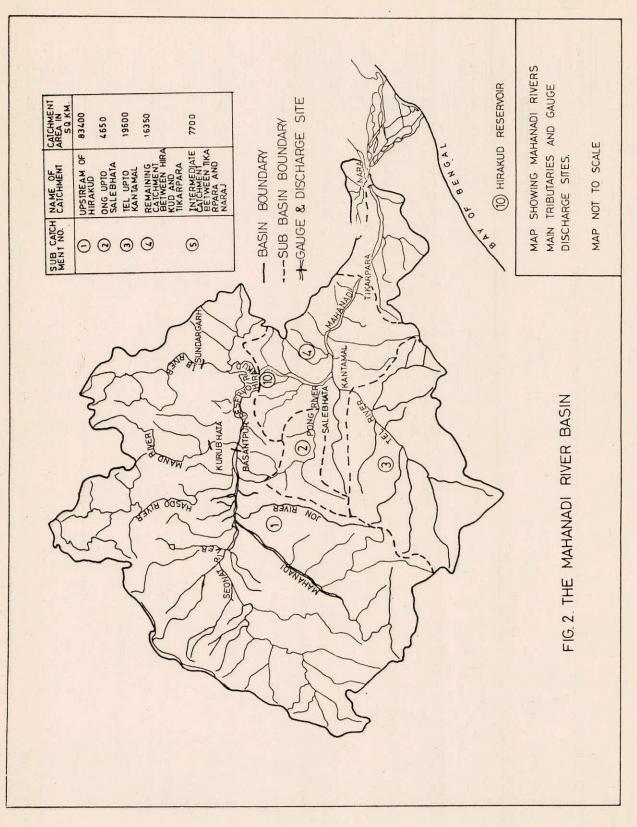
In most of the areas of the basin, the ground water is to be tapped from open wells. In Krishna basin good water occurs in the flood plains of the Muneru, The wyra, and the Krishna. In areas underlain by crystalline rocks like granite, the quality of water is unsuitable for domestic purposes, due to the presence of fluorides in excess of the prescribed safe limits. The basin map of Krishna basin

is given in Figure 1.


4.2 The Chambal River Basin


The Chambal rises in Vindhya ranges and flows for 965m before it joins the Yamuna. It flows through the flat fertile Malwa Plateau and then enters a gorge at Chaurasingarh. The gorge is 96 km long and stretches upto Kotah city. The river runs for another 34 km flowing through plains. The total drop between the source and outfall is 766 m and of this drop 128 km is in the gorge itself. Taking advantage of this three dams have been constructed at Gandhi Sagar, Rama Pratap Sagar and Jawahar Sagar, where 386 MW of power is generated. As the river flows much below the banks and due to poor rainfall, sever erosion has occurred over centuries and numerous deep ravines have been formed in Chambal Valley.

4.3 The Mahanadi River Basin

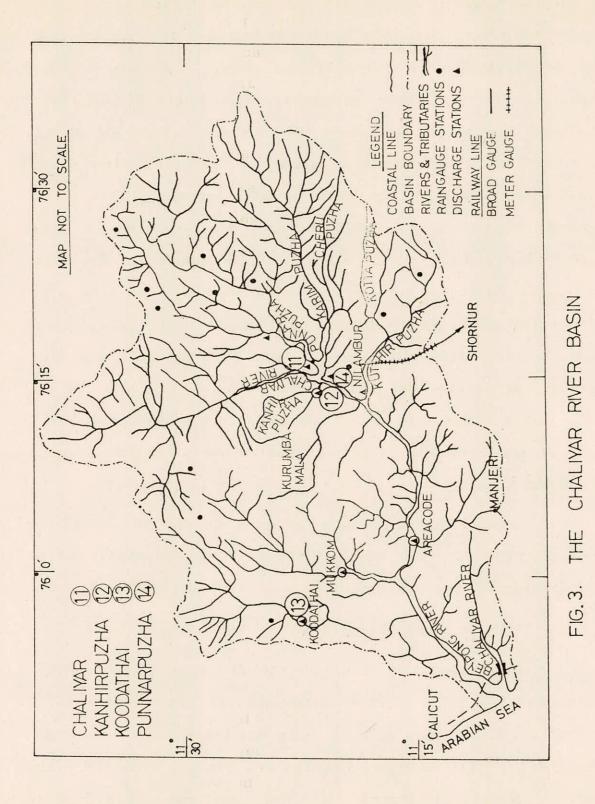

The Mahanadi basin lies between North latitudes $19^{\circ} 21'$ and $23^{\circ} 35'$ and east longitudes $80^{\circ} 30'$ and $84^{\circ} 50'$ (Figure 2). The basin extends over an area of 141592 sq.km. It is nearly 4.3% of the geographical area of the country.

Lying in the north-east of the Deccan Plateau, the basin covers large areas in the states of Madhya Pradesh and Orissa and only small areas in Bihar and Maharastra. The state wise distribution of the drainage basin of the river is given below:

State		Drainage A	Area	<u>(Sq.Km.</u>)
Bihar		633		
Madhya Pradesh		75,138		
Orissa		65,581		
Maharashtra		238		
	Total	141,592		

The Mahanadi basin is bounded on the north by the Central India hills, on the south and east by the eastern Ghats and on the west by the Maikala range. The upper basin is a saucershaped depression known as the Chattigarh. The basin is circular in shape with a diameter of about 400 km and an exit passage of about 160 km length and 60 km breadth.

There are four well defined physical regions in the basin namely (i) The northern plateau, (ii) The Eastern Ghats, (iii) The Coastal Plain, and (iv) The erosional plains of the central table land. The Northern Plateau and the Eastern Ghats are well forested hilly regions. The coastal plains stretching over the districts of Cuttack and Puri cover the large delta formed by the Mahanadi and is a fertile area well suited for intensive cultivation. The erosional plains of the Central table land are traversed by the Mahanadi and its tributaries.


4.4 The Chaliyar River Basin

Western Ghats nurse some of the major river systems of the peninsular India. Chaliyar river basin is one of them.

The Chaliyar river basin has been chosen for this study as this basin represents the general topography of Kerala and the river and its tributaries traverse all the three physiographic terrains i.e. the high lands, the mid land and the coastal low lands. Chalivar river basin is situated between 11°5' and 11°37' North latitude; 75°48' and 76⁰35' East longitude in Wynad, Kozhikode and Malappuram districts of Kerala and some portion of Gudalur districts of Tamil Nadu state. The basin extends from north to south over a distance of 60 km, from east to west over a distance of about 90 km and alongwith tributaries it drains an area of 2952.87 km². It is bounded in the east and north by east flowing river basins Kabbani and Bhavani respectively, south by Kadalundi river and west by Arabian sea. Chaliyar river originates on the eastern slope of Elamaleri hills at an elevation of 2068 meters above mean sea level and joins the Arabian sea near Byporeport. The length of Chaliyar river is 169 km. The Chaliyar river is the third largest river of Kerala state and it is known near the mouth as Beypore river. The main tributaries of the Chaliyar river are Karimpuzha, Kuthirpuzha, Kanhirpuzha, Cherupuzha, Punnarpuzha, Mukkom, Koodathai etc. (Figure 3).

4.5 The Sutlej River Basin

The river Sutlej is a tributary of the Indus. It rises from the Mansarover lake in the Tibetan Plateau situated at an elevation of about 4500 m above mean sea

level. It flows for a distance of about 320 km in Tibet. between Zaksar and Ladakh ranges. This plateau is formed of boulders, gravel, clay and mud in the through between the two ranges. The deposits lie in parallel and nearly horizontal beds. This part of the river is purely snow fed and the river has been able to cut a channel 1000 m deep through the plateau by means of water received from the glaciers. The banks stand almost vertical as there is no rainfall in this area. During the months of May and June, when thawing of snow takes place, this river brings in considerable discharge from this area and the water is heavily loaded with silt consisting of boulder, shingle and mud. In India, it cuts through successive Himalayan ranges carving out beautiful gorges and enters the plains near Bhakra. Its length in India upto Bhakra is about 260 km. The total catchment area of the Sutlej and its tributaries above Bhakra is about 57000 km^2 .

Out of the Catchment area of 20,000 km² lying in India, 6700 km² lie in the area of heavy rainfall of 125 cm per year on the average.

4.6 The Sabarmati River Basin

The Sabarmati rises in the Aravalli hills and has a length of 300 km². The drainage area of the river is 21674 km² of which 19% lies in Rajasthan and the balance in Gujarat (Figure 4). Its main tributaries are the Sei from the right and the Wakul, the Harnav, the Hathmati and the Watrak on

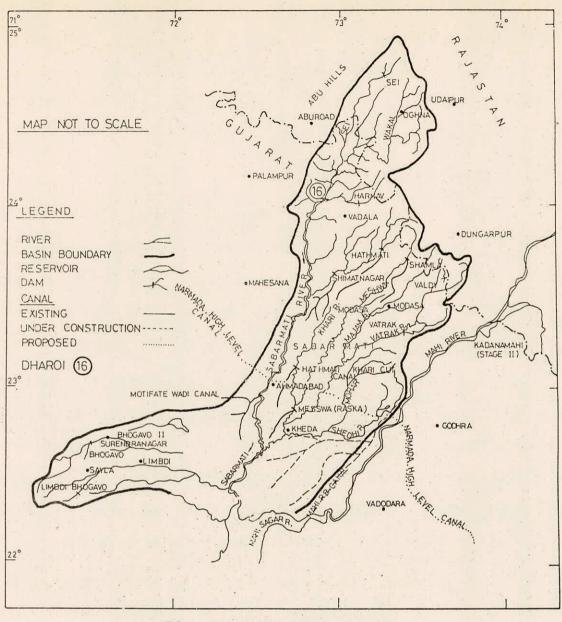


FIG. 4. THE SABARMATI RIVER BASIN

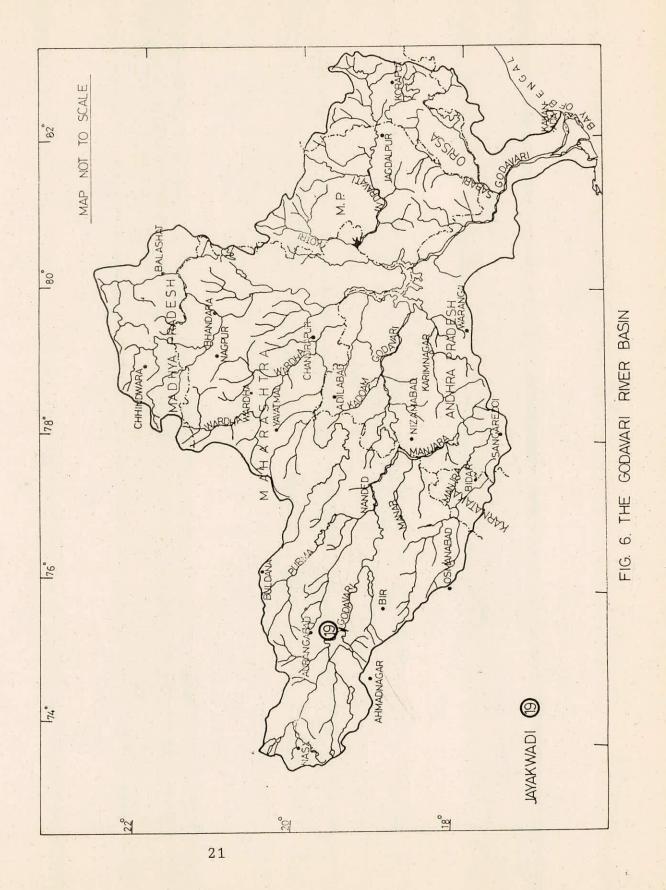
the left. At Dharoi the river passes through a gorge and later after 240 km of its course, it passes through Ahmedabad and finally falls into the Gulf of Cambay. The important tributaries are the Hathmati (1523 km²), the Sei (946 km²) the Wakul (1625 km²), and the Harnav (972 km²).

4.7 The Beas River Basin

The river Beas is principal tributary of river Sutlej in Indus basin (Figure 5). The river Beas originates in the Upper Himalayas from Beas Kund near Rohtang Pass at a height of about 3960 m and flows in the east westerly direction till it emerges in the plain at the Pong dam site.

The total length of the Beas river upto its Confluence with Sutlej is about 395 km and the length upto Pong dam is 230 km. The total area of the Beas catchment upto Pong dam is 12560 km² out of which about 777 km² is under permanent snow. Pandoha diversion dam is also situated on the river Beas at about 140 Km upstream of Pong dam.

The average river bed slope upto Larji is 30 m/km. Below Larji the river slope flattens sharply and in the vicinity of the Pong dam it is of the order of 1.0 m/km. The upstream part of the catchment is bowl shaped with mountain ranges on both north and east. The catchment area of 7284 km downstream of the Pandoh dam is fan shaped and produces the high floods. The catchment area consists scientifically managed forest, degraded forest, cultivated land and uncultivated weathered rocks.



4.8 The Godavari Basin

The Godavari rises in the Nasik district of Maharashtra and after flowing 1465 km joins the Bay of Bengal in Andhra Pradesh. It has a catchment area of 312812 km² of which 48.6% lies in Maharashtra, 20.7% in Madhya Pradesh, 1.4% in Karnataka, 5.5% in Orissa and 23.8% in Andhra Pradesh. It is the largest of the Peninsular rivers and is held in reverence as 'Vridha Ganga' or 'Dakshina Ganga'. The delta of the river consists of a wide belt of river borne alluvium and gradually extending into the sea. It pierces through the Eastern Ghats flowing through a narrow gorge 130 km from the sea.

The Jayakwadi project (Paithan Dam) is on river Godavari in Dist. Aurangabad (Maharashtra). The catchment area upto Paithan Dam is 21750 km^2 . The annual rainfall is of the order of 100 cm per annum. The catchment map of Godavari basin is given in Figure 6.

All these 19 sites have been shown on the map of India in Figure 7.

5.0 DATA USED

The monthly runoff data for various sites have been used. The length of data, and units of runoff are given below in Table-1.

TABLE - 1

DATA USED FOR VARIOUS SITES

S.NO. Name of reservoir/ river site	Length of Dat Years Period	a Unit of runoff
1. Bhima at Dhond	18 1968-85	Cumec days
2. Bhima at Wodakabal	21 1965-85	Cumec days
3. Bhima at Narsingpur	19 1967-85	Cumec days
4. Bhima at Takali	18 1966-83	Cumec days
5. Bhima at Yadgir	21 1965-85	Cumec days
6. Tungbhadra at Haralahalli	19 1967-85	Cumec days
7. Tungbhadra at T. Ramapuram	20 1966-85	Cumec days
8. Koyna Reservoir	21 1963-83	M.O.M.days
9. Gandhisagar Reservoir	26 1961-86	T.A.F.
10. Mahanadi at Hirakud	39 1944-82	M.M.
11. Chaliyar	14 1965-78	Cumec days
12. Kanhirpuzha	14 1965-78	Cumec days
13. Koodathai	14 1965-78	Cumec days
14. Punnarpuzha	14 1965-78	Cumec days
15. Gobindsagar at Bhakra	28 1960-87	Cusec days
16. Sabarmati at Dharoi	41 1935-75	Cusec days
17. Pong Reservoir	13 1974-86	Cusec days
18. Malprabha Reservoir	10 1975-85	M.C.M.
19. Jayakwadi reservoir	12 1974-85	M.C.M.

The runoff for monsoon months i.e. for june, July, August, September and October and monsoon total are given in table 2-20 for various sites.

TABLE-2

OBSERVED MONTHLY AND MONSOON FLOWS IN CUMEC-DAYS FOR BHIMA AT DHOND (1968-85)

RUNOFF

YEAR	JLNE	JULY	AUG.	SEPT.	OCT.	MONSOCN
1968	1243.6	0.0	20947.3	3603.5	3547.3	29341.7
1969	537.6	19907.8	40818.4	19067.5	889.2	81220.5
1970	969.4	17926.5	24069.6	13181.4	2983.1	59130.0
1971	3858.0	19736.6	20159.1	14978.0	11740.6	75472.9
1972	87.2	22278.3	7712.2	3282.8	196.8	33557.3
1973	413.9	32657.8	19806.6	26718.0	4835.8	84432.1
1974	1009.9	10548.6	16492.6	9819.7	10349.5	48220.3
1975	2292.4	17058.5	26531.5	16489.0	10105.4	72476.8
1976	10286.0	28362.4	43385.0	10699.7	1139.8	93866.9
1977	1921.2	24194.3	13932.6	10603.5	1360.5	52012.1
1978	3937.2	10323.9	24331.6	11482.0	1321.9	51396.6
1979	1019.0	9072.2	32662.8	14080.8	3093.3	59928.1
1980	6054.0	24381.1	23048.4	9016.3	1955.2	69455.0
1981	874.0	30679.4	24362.7	8555.0	2319.7	66790.8
1982	327.5	3954.8	24148.2	2818.7	1213.1	32462.3
1983	304.3	7844.1	34490.5	12775.8	4740.1	60154.8
1984	896.2	23253.6	14831.5	6091.5	3433.7	48506.5
1985	589.5	7718.1	15270.9	1096-6	2291.4	26966.5

TABLE-3

OBSERVED MONTHLY AND MONSOON FLOWS IN CUMEC-DAYS FOR BHIMA AT WODAKABAL (1965-85)

RUNOFF

YEAR	JUNE	JULY	AUG.	SEPT.	OCT.	MONSOON
1965	712.1	1560.5	4551.9	1718.6	205.6	8748.7
1966	540.8	642.3	262.6	3746.8	341.6	5534.1
1967	445.8	4485.2	891.3	6632.8	2718.1	15173.2
1968	484.0	1383.5	160.4	-2106.4	3161.3	7296.2
1969	1337.0	3491.5	5729.8	15232.6	1333.9	27124.8
1970	688.0	693.1	2158.5	13829.3	3483.5	20852.4
1971	593.0	30.9	5008.9	4849.1	4496.6	14978.5
1972	119.8	31.9	36.8	980.3	36.2	1205.0
1973	674.0	3076.4	4777.5	2862.6	4726.6	16117.1
1974	618.0	378.2	2476.1	3307.9	6860.2	13641.0
1975	110.6	869.4	2714.3	9366.0	9576.0	22636.3
1976	778.0	185.3	1257.8	645.0	161.0	3027.1
1977	702.3	736.8	265.6	318:2	1002.2	3025.1
1978	3268.0	1193.6	362.6	2152.7	1833.6	8810.5
1979	0.3	521.0	185.5	8202.7	1861.1	10770.6
1980	2877.6	206.8	3611.2	2370.0	894.6	9960.2
1981	859.4	.25.7	90.4	4464.2	945.9	6385.6
1982	152.4	111.0	8.7	821.3	184.9	1278.3
1983	110.0	1702.0	1252.8	20907.0	5948.8	29920.6
1984	C.O	503.5	72.5	733.8	5093.0	6402.8
1985	340.7	159.2	56.2	572.6	1229.5	2358.2

TABLE-4

OBSERVED MONTHLY AND MONSOON FLOWS IN CUMEC-DAYS FOR BHIMA AT NARSINGPUR (1967-85)

RUNOFF

YEAR	JUNE	JULY	AUG.	SEPT.	CCT.	MCNSCCN
1967	587.4	30692.2	29695.1	8407.6	3944.6	73326.9
1968	1427.3	13708.2	29859.7	3861.2	8622.1	57478.5
1969	937.4	29420.6	55868.3	30245.9	1658.4	118130.6
1970	1134.7	19734.8	26027.6	20610.9	4411-4	71919.4
1971	6132.5	20311.4	18285.0	24960.0	13284.7	82973.6
1972	157.6	21482.5	7532.5	5052.1	319.1	34543.8
1973	1016.0	34735.3	19194.2	27819.3	8763.8	91528.6
1974	651.4	8488.4	16723.2	10977.5	24074.9	60915.4
1975	2046.7	18190.7	28857.4	20512.1	15669.8	85276.7
1976	13719.0	29809.9	60000.0	14766.0	1959.1	120254.0
1977	1260.2	14301.4	19759.7	19364.4	4130.0	58815.7
1978	1704.9	9939.4	29070.8	20710.8	4779.8	66205.7
1979	311.2	2407.2	38926.2	23843.2	519.0.2	73678.0
1980	1552.4	29943.1	37972.5	11168.5	2418.0	83054.5
1981	5540.2	32920.7	23065.7	17754.8	2094.5	86381.9
1962	4825.9	83.3	20947.5	1630.5	1149.9	28642.1
1983	452.4	4940.2	45998.5	17968.6	4289.2	73648.9
1984	3737.9	26550.3	17574.8	2159.6	5684.4	55707.0
1985	527.5	9218.0	16759.4	78.4	910.7	27494.0

OBSERVED MONTHLY AND MONSOON FLOWS IN CUMEC-DAYS FOR BHIMA AT TAKALI (1966-83)

YEAR	JUNE	JULY	AUG.	SEPT.	CCT.	MCNSOON
1960	1676.9	14825.3	22942.4	10033.0	2125.8	51603.4
1967	1422.2	25649.2	41730.3	17205.9	11989.1	97996.7
1968	1472.2	12168.5	25006.9	6416.7	14149.7	59214.0
1969	2341.0	23450.5	52124.0	33876.5	3309.5	115101.5
1970	1066.6	18992.7	24593.4	27560.3	6504.6	78717.6
1971	5134.0	18349.4	15763.5	32072.1	19281.1	90600.1
1972	42.0	17453.4	7333.2	5248.1	571.6	36648.3
1973	1058.8	33829.9	18162.8	31386.0	13010.1	97447.6
1974	939.5	8082.2	15893.9	17397.7	36084.3	78397.6
1975	1544.7	17710.8	29215.7	25483.9	41887.3	115842.4
1976	11997.5	27157.7	70420.7	14186.7	2283.7	126046.3
1977	3000.0	10358.1	17226.5			
1978	1659.9		· · · · · · · · · · · · · · · · · · ·	17796.6	6263.2	54644.4
		8615.2	25469.5	22763.4	7451.2	65960.2
1979	122.8	1772.4	39765.9	40838.8	12397.2	94897.1
1980	1199.5	25890.7	35846.4	9407.1	3430.7	75774.4
1981	7901.6	26316.7	27808.5	33693.1	5769.6	101489.5
1982	4303.7	480.1	17966.3	2794.3	2695.0	28233.4
1983	344.1	4027.7	44393.1	26662.4	7969.5	83396.8

OBSERVED MONTHLY AND MONSOON FLOWS IN CUMEC-DAYS FOR BHIMA AT YADGIR (1965-85)

YEAR	JUNE	JULY	AUG.	SEPT.	OCT.	MCNSOCN
1965	3034.2	37113.2	44997.1	21607.2	2612.4	109364.1
1966	4587.9	10877.4	28628.5	29580.0	5745.7	79419.5
1967	2631.5	27594.2	58643.8	42627.5	29186.5	160683.5
1968	2414.1	15825.3	27780.1	14288.4	31108.0	
1969	3010.9	26090.2				91415.9
		and the second	60132.8	74160.3	7344.2	170738.4
1970	3630.9	19918.8	35784.5	50342.3	15610.7	125287.2
1971	6623.6	21256.8	26661.4	35967.8	31515.6	122025.2
1972	196.5	17413.8	7866.2	9911.8	1060.2	36448.5
1973	1196.5	37796.2	28817.8	36362.2	48425.8	152598.5
1974	4115.6	10269.0	22199.4	21372.9	59738.2	118295.1
1975	2554.5	42481.3	40784.7	45466.9	91309.7	
1976	12533.1					222597.1
		32804.7	72874.9	22771.4	4556.2	145540.3
1977	9972.1	8925.5	26468.9	21622.7	15327.6	82316.8
1978	5816.8	12546.8	41261.9	41789.4	23337.4	124752.3
1979	1135.2	2222.9	40669.8	57260.2	24450.0	125738.1
1980	4938.5	24301.5	42883.0	15999.4	6997.0	95119.4
1981	11761.8	25559.7	30958.3	55463.8	18380.4	142144.0
1982	3501.7	6083.8	17645.8	11796.1	5329.1	
1983	2330.6	6019.1				44356.5
1984			52618.8	70209.0	36663.3	167840.8
	2417.8	28695.0	23525.2	7593.8	21620.4	83852.2
1985	3160.2	10176.7	20312.2	2320.3	8490.6	44460.0

obs

OBSERVED MONTHLY AND MONSOON FLOWS IN CUMEC-DAYS FOR TUNGBHADRA AT HARALAHALLI (1967-85)

YEAR	JUNE	JULY	AUG.	SEPT.	CCT.	MONSOON
1967	906.1	23414.9	27871.7	9728.1	7345.7	69266.5
1968	3387.3	22162.7	23517.8	8814.1	7205.2	65087.1
1969	2483.2	30857.8	25660.6	14815.0	9646.4	83463.0
1970	5425.3	22684.2	35368.5	15275.0	15351.5	94104.5
1971	15271.9	21906.2	15597.6	9186.8	6876.5	68839.0
1972	1862.8	25868.4	12896.4	7639.0	6162.0	54428.6
1973	10213.9	26451.4	23273.9	\$775.9	5120.5	73835.6
1974	1310.9	20642.2	24109.0	10297.9	8248.4	64608.4
1975	12152.4	23450.7	37209.4	21251.8	10539.1	104603.4
1976	1703.1	14063.3	16019.5	9678.2	3150.6	44614.7
1977	4842.9	24849.7	12493.5	13168.9	10440.5	65795.5
			54036.5	18508.2	8353.2	125622.0
1978	11327.4	33376.7			4751.8	56355.4
1979	3563.8	11624.9	27578.4	8836.5		
1930	11111.7	40278.2	32631.0	15052.3	7786.6	106859.8
1981	5063.4	15428.5	37797.3	11905.2	7374.7	77569.1
1982	4953.3	12665.5	41262.4	7601.6	5429.7	71912.5
1983	2529.9	18877.0	28017.5	12900.1	7589.7	69914.2
1984	8272.9	25600.1	19955.7	9392.0	10543.9	73764.6
1985	9594.8	12941.6	23199.2	5954.4	7145-4	58835.4

OBSERVED MONTHLY AND MONSOON FLOWS IN CUMEC-DAYS FOR TUNGBHADRA AT T RAMAPURAM (1966-85)

YEAR	JUNE	JULY	AUG.	SEPT.	OCT.	MCNSOCN
1966	223.7	627.1	505.1	3806.5	2121.7	7284.1
1967	307.9	429.1	238.0	679.4	2354.9	4009.3
1668	631.1	189.9	185.6	2695.7	6426.4	10128.7
1969	527.3	373.9	1245.7	861.0	2499.3	5507.2
1970	321.0	342.9	1225.2	3895.3	4086.5	9871.5
1971	232.9	175.0	652.9	2018.7	5670.8	8750.3
1972	745.8	192.8	204.8	2767.7	1507.8	5418.9
1973	995.4	338.6	1628.3	2938.2	3852.1	9752.6
1974	319.1	278.5	664.5	3765.1	4361.2	9828.4
1975	125.1	1368.3	1976.2	5464.2	8467.3	17401.1
1976	257.2	207.6	1096.8	708.5	508.8	2778.9
1978	898.5	299.0	1552.9	835.5	4337.5	7923.4
1979	11c.9 108.4	932.0 152.4	887.4	5177.1	2318.7	9432.1
1980	182.2	205.0	505.4	4020.8	1586.1	6373.1
1981	236.9	271.2	641.5 983.6	1417.5	1251.3	3697.5
1982	210.0	272.6	532.8	9956.0 2448.4	3174.2	14621.9
1983	850.5	78.2	661.C	2044.2	1690.4 3248.3	5154.2
1984	3.6	1065.5	350.8	738.5	1271.2	6882.2
1985	5.9	158.0	311.0	815.2	884.8	2174.9
					00480	611467

OBSERVED MONTHLY AND MONSOON FLOWS IN MCM FOR KOYNA RESERVOIR (1963-83)

YEAR	JUNE	JULY	AUG.	SEPT.	CCT.	MCNSOCN
1963	84.0	1679.0	1498.0	309.0	76.0	3646.0
1964	299.0	1155.0	2131.0	551.0	223.0	4359.0
1965	249.0	2667.0	834.0	234.0	35.0	4019.0
1966	113.0	1642.0	737.0	475.0	69.0	3036.0
1967	151.0	2006.0	1230.0	404.0	109.0	3900.0
1968	92.0	1093.0	1123.0	156.0	107.0	2571.0
1969	óC.O	1988.0	1449.0	623.0	48.0	4168.0
1970	247.0	1521.0	1552.0	621.0	131.0	4072.0
1971	909.0	1223.0	92C.C	116.0	168.0	3336.0
1972	139.0	1461.0	561.0	182.0	5.0	2348.0
1973	195.0	1797.0	1174.0	690.0	170.0	4026.0
1974	89.0	1205.0	1231.0	249.0	211.0	2985.0
1975	471.0	1395.0	1500.0	628.0	190.0	4184.0
1976	603.0	1856.0	1293.0	532.0	20.0	4304.0
1977	217.0	1890.0	952.0	704.0	144.0	3907.0
1978	0.896	1301.0	1859.0	585.0	72.0	4515.0
1979	402.0	915.0	1748.0	221.0	136.0	3422.0
1980	567.0	1680.0	1630.0	334.0	98.0	4309.0
1981	153.0	1629.0	1422.0	293.0	117.0	3614.0
1982	151.0	1135.0	1597.0	191.0	113.0	3187.0
1983	339.0	1125.0	1481.0	383.0	110.0	3438.0

OBSERVED MONTHLY AND MONSOON FLOWS IN TAF FOR GANDHISAGAR RESERVOIR (1961-86)

YEAR	JUNE	JULY	ALG.	SEPT.	CCT.	MCNSCCN
1961	14.4	574.6	815.3	3316.5	1252.2	5973.0
1962	15.3	832.2	608.6	1241.7	1198.2	3896.0
1963	189.7	694.4	2297.0	330.0	110.8	3621.9
1964	232.5	516.7	607.6	470.4	81.1	1908.3
1965	6.9	330.2	315.4	370.9	20.2	1043.6
1966	39.1	340.8	589.1	250.2	8.0	1233.2
1967	192.2	183.6	248.6	1323.0	31.1	1978.5
1968	673.9	1346.1	2168.1	116.4	80.8	4385.3
1969	367.0	712.1	4232.4	2187.6	131.9	7631.0
1970	638.4	276.3	837.3	1747.8	128.8	3628.6
1971	236.3	2228.9	1708.0	1975.9	383.0	6532.1
1972	93.9	655.2	1169.7	314.3	48.7	2281.8
1973	45.0	4349.8	3482.5	7352.4	436.4	15666.1
1974	55.7	392.3	3794.5	309.8	578.6	5130.9
1975	161.6	468.2	1702.2	2239.2	322.7	4893.9
1976	162.6	726.8	4244.7	2818.5	109.2	8061.8
1977	241.0	650.9	1883.6	2367.8	178.1	5351.4
1978	113.1	816.6	3776.1	676.7	123.8	5506.3
1979	74.1	161.3	1635.9	75.1	64.9	2011.3
1980	43c.1	481.8	1125.7	761.9	385.5	3191.0
1981	78.5	381.2	1879.7	351.2	92.3	2782.9
1982	29.8	291.8	1249.0	175.6	35.3	1781.5
1983	52.2	325.3	1061.9	795.2	187.8	2422.4
1984	33.4	162.8	5195.1	387.9	24.9	5804.1
1985	15.4	41.7	,1294.1	281.6	875.7	2508.5
1936	82.0	3473.6	4142.4	154.1	63.3	7915.4

OBSERVED MONTHLY AND MONSOON FLOWS IN M M FOR HIRAKUD RESERVOIR (1946-82)

YEAR	JLNE	JULY	AUG.	SEPT.	CCT.	MONSOCN
1946	34.7	156.4	366.2	105.6	39.3	702.2
1947	1.0	123.5	209.3	179.8	40.6	554.2
1948	7.3	92.3	240.4	92.8	113.1	545.9
1949	7.5	78.2	223.5	111.2	59.4	479.8
1950	10.0	146.6	245.7	86.3	12.9	495.5
1951	4 . 4	27.2	169.5	48.7	29.1	278.9
1952	8.4	96.6	177.9	224.7	30.9	538.5
1953	2.7	118.8	186.5	69.6	20.3	397.9
1954	4.2	26.7	63.3	123.5	20.5	238.2
1955	12.0	90.6	109.2	154.3	74.0	440.1
1956	36.3	169.6	194.1	64.1	29.4	493.5
1957	1.4	71.2	148.3	46.5	5.0	272.4
1958	5.3	171.8	106.3	148.8	71.8	504.0
1959	3.7	75.0	217.8	204.9	32.7	534.1
1960	7.5	95.7	266.1	59.4	54.4	483.1
1961	81.0	331.2	227.4	358.6	86.3	1084.5
1962	7.2	48.7	96.3	66.5	15.7	228.4
1963	11.5	73.4	162.1	164.3	31.8	443.1
1964	19.9	187.8	259.9	103.5	61.2	632.3
1965 1966	5.4	46.7	46.2	67.0	13.6	178.9
1967	32.0	66.5	125.2	24.3	10.8	258.8
1963	7.0	82.7	246.8	111.6	20.6	468.7
1969	7.3	56.2	167.0	40.5	21.2	302.2
1909	21.2	72.4	151.7	53.8	15.8	297.9
1971	69.4	150.5	207.0	121.9	29.0	535.6
1972	1.8	155.6	201.5	102.0	37.1	565.6
1973	1.4	63.6 125.2	107.5	82.0 190.4	21.1	276.0
1974	3.2	42.6	179.C 125.6	14.8	112.6	608.6 203.8
1975	5.6	101.5	220.2	98.9	57.9	484.1
1976	1.8	79.4	191.9	92.9	9.9	375.9
1977	23.8	115.9	170.2	110.9	28.1	448.9
1978	13.1	82.C	222.7	84.1	18.5	420.4
1979	2.5	34.0	92.3	9.8	14.4	153.0
1980	33.4	143.9	121.4	217.8	19.7	536-2
1981	4.3	62.8	133.0	76.0	27.4	303.5
1982	3.7	30.5	170.4	56.2	18.8	279.6

OBSERVED MONTHLY AND MONSOON FLOWS IN CUMEC-DAYS FOR CHALIYAR RIVER (1965-78)

RUNOFF

YEAR	JUNE	JULY	AUG.	SEPT.	<u>о</u> ст.	MONSOCN
1965	35.8	209.5	122.3	80.9	140.1	588.6
1966	98.7	400.6	254.8	64.8	52.7	871.6
1967	160.8	658.1	391.6	213.3	100.0	1523.8
1968	118.0	451.3	298.6	321.5	100.0	1289.5
1969	138.8	217.8	194.8	68.8	68.2	688.3
1970	371.3	140.1	135.6	45.8	67.2	759.9
1971	85.2	185.5	46.4	20.8	37.4	375.2
1972	267.8	513.5	372.5	97.2	43.2	1294.1
1973	17.5	394.5	381.9	145.8	98.5	1038.1
1974	77.6	155.0	311.3	131.7	96.9	773.0
1975	9.7	245.3	327.2	127.3	37.2	746.7
1976	155.2	274.5	144.2	133.5	126.6	833.9
1977	254.6	311.8	344.9	174.6	127.3	1213.2
1978	192.6	431.5	596.3	203.7	154.2	1578.4

OBSERVED MONTHLY AND MONSOON FLOWS IN CUMEC-DAYS FOR KANHIRAPUZHA RIVER (1965-78)

		RUNOFF				
YEAR	JUNE	JULY	AUG.	SEPT.	CCT.	MONSCON
1965 1966	4.6	46.2	15.9	10.7	34.3	111.7
1967 1968	26.2	187.5	129.5	84.7	39.1	467.1
1969	16.1	35.2	48.5	13.5	16.9	130.2
1970 1971	157.3	73.4 42.5	66.8 12.7	44.6	35.5	81.2
1972 1973	37.3	53.6	33 .1 75 . 9	8.0	4.0	136.1 190.0
1974 1975	8C.2 0.8	58 .1 27 . 9	86.9 3C.9	26.3 11.4	23.3	274.8
1976 1977	18.8	54.8 71.6	18.5	21.3 19.7	15.0	128.4
1978	26.2	86.0	146.9	20.2	10.7	290.0

OBSERVED MONTHLY AND MONSOON FLOWS IN CUMEC-DAYS FOR KOODATHAI RIVER (1965=78)

RUNCEE

YEAR	JUNE	JULY	AUG.	SEPT.	OCT.	MONSOCN
1965	9.1	132.0	139.3	26.1	40.2	346.7
1966	33.3	335.7	216.1	28.0	37.1	650.2
1967	46.3	451.0	107.3	2.6	7.7	614.8
1968	67.0	231.1	164.3	\$4.7	32.0	579.1
1969	82.5	190.6	184.4	40.7	57.5	567.8
1970	144.8	91.8	37.6	30.5	51.4	356.2
1971	22.4	126.4	66.0	21.7	36.3	272.8
1972	90.2	123.1	107.3	24.4	13.1	357.9
1973	11.1	195.5	116.1	95.3	41.7	459.7
1974	120.0	134.5	170.4	87.4	81.1	593.5
1975	2.8	60.4	70.0	36.1	27.0	196.4
1976	82.1	148.0	64.3	77.3	75.1	446.7
1977	216.8	310.9	281.4	92.0	43.3	944.4
1978	178.1	351.7	321.5	99.5	110.1	1060.9
						10 000 0 TO 10 TO 10 TO 10 TO

OBSERVED MONTHLY AND MONSOON FLOWS IN CUMEC#DAYS FOR PUNNARPUZHA RIVER (1965-78)

RUNOFF YEAR JUNE OCT. JULY AUG. SEPT. MONSCON 1965 14.0 28.0 26.3 69.7 20.0 158.1 79.4 1966 40.4 70.5 20.1 22.8 233.3 1967 76.4 641.C 108.6 1253.2 266.4 160.9 1968 18.0 432.9 465.1 74.9 1063.0 72.1 91.2 560.6 1969 47.5 138.4 167.5 116.0 1970 126.5 141.5 146.5 105.7 144.1 664.4 1971 37.2 91.4 69.3 39.7 57.2 294.8 1972 63.8 127.7 115.0 64.9 38.4 409.7 1973 18.3 158.3 83.9 524.6 161.5 102.7 1974 62.4 95.6 156.5 88.2 78.2 480.9 1975 11.6 99.3 41.4 306.1 65.1 88.7 1976 61.9 146.4 120.8 128.5 110.3 567.8 145.9 1977 56.5 531.8 192.2 83.9 53.3 1978 50.4 128.7 218.2 67.2 38.3 502.8

OBSERVED MONTHLY AND MONSOON FLOWS IN CUSEC-DAYS FOR GOBINDSAGAR AT BHAKRA (1960-86)

YEAR	JUNE	JULY	ALG.	SEPT.	OCT.	MONSOON
1960	26897.0	49107.0	47610.0	25319.0	8027.0	156960.0
1961 1962	38203.0	50066.0	54736.0	35960.0	11880.0	190845.0
1963	3042C.0 39347.0	36867.0	38088.0	29962.0	10271.0	145608.0
1964	25428.0	44796.0	45537.0	23728.0	9667.0	163575.0
1965		26795.0	56135.0	29922.0	11110.0	149390.0
1965	27448.0	41417.0	28938.0	12077.0	7061.0	116941.0
1967		45074.0	51011.C	20029.0	7191.0	164069.0
1968	28082.0	50751.0	53861.0	23923.0	8229.0	164846.0
1969	40064.0	43461.0	39044.0	17204.0	7492.0	146828.0
1970	17847.0	47306.0 32558.0	50800.0	22408.0	3056.0	168634.0
1971	35721.0	37817.0	39225.0	25532.0	8670.0	123832.0
1972	25196.0	36419.0	57511.0	20973.0	8365.0	160387.0
1973	52628.0	54444.0	32292.0	21530.0	7530.0	122961.0
1974	16978.0	33182.0	47158.0 35098.0	29178.0	9663.0	193071.0
1975	39034.0	43684.0	53460.0	14325.0	6330.0	105913.0
1976	27556.0	51364.0	40067.0	30104.0	10616.0	176898.0
1977	18803.0	50652.0	47444.0	20330.0 31709.0	8474.0	147791.0
1978	44021.0	58066.0	69785.0	33856.0	13006.0	161614.0
1979	36449.0	52695.0	42937.0	21213.0	10296.0	220815.0
1980	38755.0	53929.0	40863.0	20443.0	11219.0	163590.0
1981	28299.0	52511.0	50540.0	20719.0	11017.0	165209.0
1982	40571.0	54830.0	51901.0	22752.0	10375.0	
1983	36555.0	48779.0	58623.0	35623.0	13824.0	180429.0
1984	40331.0	38291.0	43185.0	25576.0	9616.0	156999.0
1985	32550.0	43133.0	51590.0	29162.0	18084.0	174519.0
1986	41740.0	59254.0	53889.0	23297.0	12081.0	190291.0
	41140.0	5720400	13007.0	23271.0	12001.0	170291.0

OBSERVED MONTHLY AND MONSOON FLOWS IN CUSEC-DAYS FOR SABARMATI AT DHAROI (1935-75)

RUNOFF

YEAR	JUNE	JULY	ALG.	SEPT.	сст.	MCNSOCN
1935	333.0	2684.0	500.0	2818.0	436.0	6771.0
1936	495.0	155.C	386.0	337.0	124.0	1497.0
1937	103.0	6136.0	997.0	1571.0	376.0	9283.C
1938	1804.0	1284.0	808.0	206.0	59.0	4161.0
1939	15.0	321.0	76C.0	1140.0	57.0	2293.C
1940	1287.0	582.0	607.0	135.0	65.0	2676.0
1941	678.0	7077.0	11981.0	709.0	151.0	20596.0
1942	637.0	11528.0	5485.0	6872.0	323.0	24845.0
1943	797.0	18460.0	6800.0	2752.0	399.0	29208.0
1944	990.0	9858.0	4209.0	14017.C	440.0	29514.0
1945	333.0	14653.0	8524.0	1784.0	320.0	25614.0
1946	33.0	864.0	6406.0	2491.0	223.0	10017.0
1947	9.0	370.0	4346.0	3389.0	123.0	8237.0
1948	5.0	4C4.C	264.0	164.0	74.0	911.0
1949	24.0	812.0	91C.O	274.0	69.0	2089.0
1950	4.0	5280.0	2141.0	16503.0	1673.0	25601.C
1951	80.0	2041.0	1922.0	219.0	42.0	4304.0
1952	5.0	372.0	1767.C	576.0	209.0	2929.0
1953	77.0	213.0	133.0	810.0	309.0	1547.0
1954	768.0	5573.0	1871.0	9021.0	2072.0	19305.0
1955	292.0	151.0	4565.0	12256.0	1080.0	18344.0
1956	383.0	7246.0	\$111.0	5278.0	5233.0	26251.0
1957	918.0	2251.0	1502.0	370.0	68.0	5109.0
1958	27.0	3245.0	321.0	929.0	429.0	4951.0
1959	4.0	781.0	2583.0	12335.0	1373.0	17076.0
1960	60.0	1715.0	3298.0	789.0	282.0	6144.0
1961	68.0	1605.0	989.0	11994.0	1094.0	15753.0
1962	7.0	2953.0	2589.0	1748.0	450.0	7747.0
1963	145.0	958.0	3185.0	4138.0	586.0	9012.0
1964	134.0	1720.0	5400.0	1347.0	406.0	9007.0
1965	10.0	1720.0	1191.0	346.0	2614.0	5881.0
1966	601.0	1518.0	339.0	705.0	39.0	3262.0
1967	136.0	4887.0	2518.0	3497.0	654.0	11742.0
1968	0.3	3481.0	1367.0	330.0	135.0	5321.0
1969	65.0	1133.0	886.0	502.0	33.0	2619.0
1970	635.0	186.0	4852.0	6069.0	1132.0	12874-0
1971	49.0	2887.0	1377.0	1794.0	145.0	6252.0
1972	279.0	1271.0	838.0	198.0	14.0	2600.0
1973	34.0	1987.0	13377.0	27688.0	2833.0	45919-0
1974	1981.0	611.0	1933.0	290.0	259.0	5074.0
1975	156.0	3567.C	5439.0	6956.C	1836.0	18004.0

OBSERVED MONTHLY AND MONSOON FLOWS IN CUSEC-DAYS FOR PONG RESERVOIR (1974-86)

YEAR	JUNE	JULY	AUG.	SEPT.	OCT.	MONSOCN
1974 1975 1976 1977 1978 1979 1980 1981 1981 1983 1983	10566.0 18444.0 17303.0 14899.0 1957C.0 13407.0 11591.0 6977.0 10382.0 5502.0 11057.0	33113.0 44375.C 55681.0 63390.0 66918.0 30842.0 35023.0 44676.0 19631.0 16548.0 21861.0	50623.0 56680.0 51820.0 58533.0 79926.0 27931.0 30529.0 34857.0 39272.0 35098.0 29588.0	13494.0 36647.0 24935.0 32300.0 25483.0 7244.0 7775.0 5832.0 5553.0 27654.0 14995.0	5393.0 11282.0 9668.0 9405.0 6380.0 2880.0 2620.0 2852.0 2852.0 2861.0 3801.0 2743.0	113189.0 167428.0 159457.0 178527.0 198277.0 82304.0 87538.0 95194.0 77699.0 91603.0 80244.0
1985 1986	3838.0 12773.0	26233.0 36999.0	52672.0	19540.0 7756.0	9871.0 4758.0	112154.C 109748.C

OBSERVED MONTHLY AND MONSOON FLOWS IN MCM FOR MALAPRABHA RESERVOIR (1976-85)

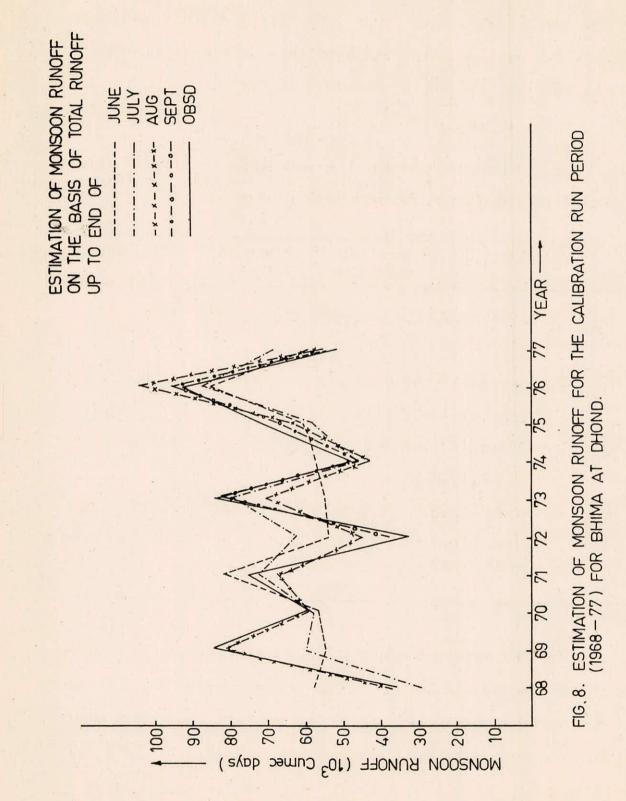
JUNE	JULY	AUG.	SEPT.	OCT.	MCNSOCN
153.9	323.0	203.8	140.6	28.0	849.4
364.6	4330.1	171.3	151.1		5100.5
232.3	295.9	516.3	-218.6		1327.4
85.5	167.6				1034.7
94.7	424.0		12 July 20 Parks		1180.6
58.3	527.9				1216.8
53.3	398.5				1875.0
375.0	· · · · · · · · · · · · · · · · · · ·				1281.2
79.0					1001.0
42.1	167.2	310.3	57.1	90.7	667.4
	153.9 364.6 232.3 85.5 94.7 58.3 53.3 375.0 79.0	153.9 323.0 364.6 4330.1 232.3 295.9 85.5 167.6 94.7 424.0 58.3 527.9 53.3 398.5 375.0 312.0 79.0 508.0	153.9 323.0 203.8 364.6 4330.1 171.3 232.3 295.9 51c.3 85.5 167.6 569.2 94.7 424.0 469.0 58.3 527.9 388.2 53.3 398.5 1274.1 375.0 312.0 423.4 79.0 508.0 202.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

OBSERVED MONTHLY AND MONSOON FLOWS IN MCM FOR JAYAKWADI RESERVOIR (1974-85)

RUNCFF

YEAR	JUNE	JULY	AUG.	SEPT.	OCT.	MONSCON
1974	41.0	49.0	251.0	306.0	294.0	941.0
1975	66.C	213.0	1185.0	1694.0	728.0	3886.0
1976	702.0	2321.0	3420.0	665.0	75.0	7183.0
1977	380.0	1597.0	580.0	643.0	106.0	3306.0
1978	110.0	320.0	239.0	461.0	134.0	1264.C
1979	92.0	141.0	1180.0	1456.0	360.0	3229.0
1980	445.0	720.0	1880.0	484.0	122.0	3651.0
1981	115.0	843.0	767.0	935.0	214.0	2874.0
1982	201.0	111.0	518.0	273.0	163.0	1266.0
1983	11ć.0	331.0	648.0	1700.0	375.0	3170.0
1984	165.0	311.0	433.0	358.0	188.0	1455.0
1985	60.0	62.0	258.0	70.0	115.0	565.0

6.0 ANALYSIS AND RESULTS


Graphical plots of monsoon runoff v/s total runoff upto the end of (i) June, (ii) July, (iii) August and (iv) September for various sites indicate that linear relationships given by equation 1-4 are good enough to try.

6.1 Bhima at Dhond

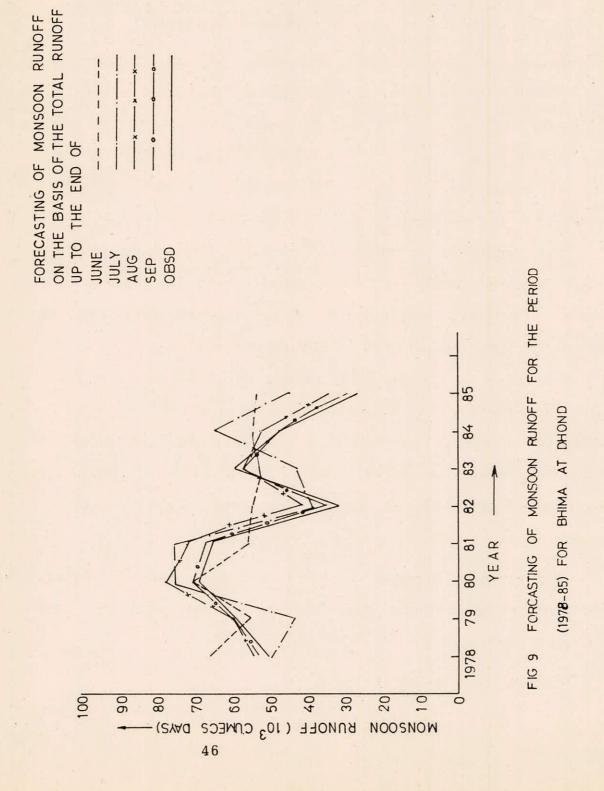
a. Using equations 1-9 and 1968-77 runoff data the following relationships have been developed:

			The second se		
S1. No.	Rel	ationship	Initial variance	Residual variance	Efficiency
1.	Q _{mon}	= 54179.95+3.1 0.	84×0.434x10 ¹⁰	0.312x10 ¹⁰	28.2%
2.	Q _{mon}	Q _{June} = 28627.89+1.55	9× 0.434x10 ¹⁰	0.187x10 ¹⁰	57.0%
3.	Q _{mon}	Q _{June+July} = 10776.92+1.14		⁰ 0.685x10 ⁹	84.2%
4.	Q _{mon}	Q _{June+July+Au} = 5788.2 +0.982≻	4	⁰ 0.172x10 ⁹	96.0%
		Q _{June+July+} August+Sept.			

b. The observed monsoon runoff and estimated monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August and (iv) September for the period 1968-77 are plotted in Figure 8.

c. Monsoon runoffs for 1978-85 period have been forecasted after updating the parameters. The effficiency of the regression relationships are as given below:

S1. No.	Forecast of monsoon runof on the basis of total run- off upto the end of		Residual I variance	Efficiency
1.	June	0.236x10 ¹⁰	0.175x10 ¹⁰) 26.1%
2.	July	0.236x10 ¹⁰	0.135x10 ¹⁰	42.6%
3.	Augus t	0.236x10 ¹⁰	0.345x10 ⁹	85.4%
4.	September	0.236x10 ¹⁰	0.369x10 ⁸	98.4%


d. The observed monsoon runoff and forecasted monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August and (iv) September for the period 1978-85 are plotted in Figure 9.

e. Out of 8 years (1978-85) runoff data used for verification of forecast the regression relationships are able to identify correctly whether the current year is going to be below normal or above normal for 6 years, 7 years, 8 years and 8 years at the end of June, July, August and September respectively.

The normal monsoon runoff, observed monsoon runoff and forecasted monsoon runoff from drought point of view are given in Table 21.

Comment on the Results:

The results are pretty good inspite of the short length of data.

FORECASTING OF MONSOON RUN OFF 1978-85 FROM DROUGHT POINT OF VIEW FOR BHIMA AT DHOND

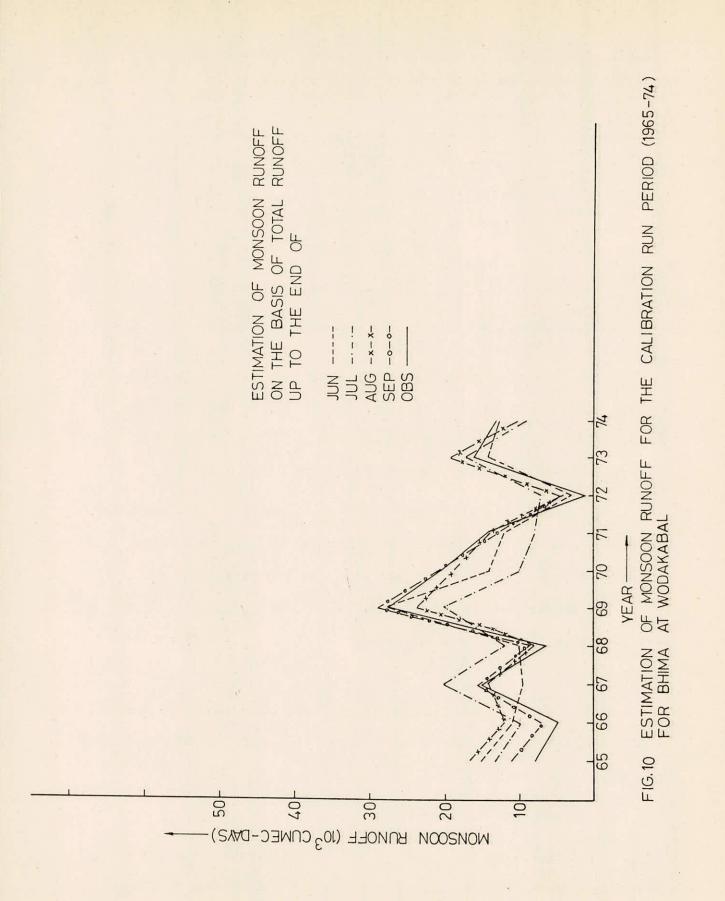
YEAR	NORMAL	OBSERVED				MEC DAYS ON THE END OF
			JUNE	JULY	AUGUST	SEPTEMBER
1978	62973	51396.6 -	66716.0-	50860.0+	55119.9-	54961.6 -
1979	61920	59928.1 -	56279.9-	44453.2-	59 577.3-	61273.5 -
1980	61754.62	59455.0 +	71778.1+	76051.0+	77775.2+	71689.7 +
1981	62346.9	66790.8 +	56164.9-	76627.7+	73834.9+	68471.4 +
1982	62664.38	32462.3 -	5569 2.6-	39662.8-	42871.0-	35758.2 -
1983	60650.9	60154.8 -	53195.5-	43338.8-	57692.9-	59712.9 -
1984	60619.9	48506.5 -	55672.4-	65946.6+	53635.8-	48594.0 -
1985	59907.0	26966.5 -	54179.7-	45300.0-	35428.1-	28581.3 -
		-,				

Note :

1. In calculating monsoon normal runoff for a year all the data prior to that year have been considered.

2. - ve sign shows runoff is below normal.

3. + ve sign shows runoff is above normal.


6.2 Bhima at Wodakabal

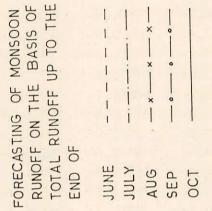
a. Using equations 1-9 and 1965-74 runoff data the following relationships have been developed.

-				
S. No	Relationship	Initial variance	Residual variance	Efficiency
1.	Q _{mon=232.11+20.656*} Q _{June}	0.525x10 ⁹	0.169x10 ⁹	67.9%
2.	Q _{mon=7231.61+2.654*} Q _{June+July}	0.525x10 ⁹	0.337x10 ⁹	35.8%
3.	Q _{mon=4463.68+1.791*} Q _{June+July+Aug.}	0.525x10 ⁹	0.216x10 ⁹	58.9%
4.	Q _{mon=2506.47+1.022*} Q _{June+July+Aug.+Sept.}	0.525x10 ⁹	0.460x10 ⁸	91.2%

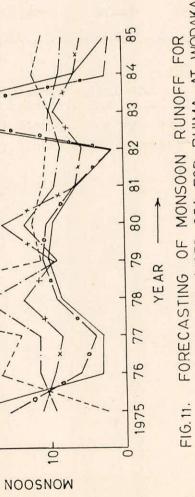
b. The observed monsoon runoff and estimated monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August and (iv) September for the period 1965-74 are plotted in Figure 10.

c. Monsoon runoffs for 1975-85 period have been forecasted after updating the parameters. The efficiency of the regression relationships are as given below:

		Forecast of monsoon runoff on the basis of total run- off upto the end of	Initial variance	Residual variance	Effici- ency
1	•	June	0.939x10 ⁹	0.206x10 ¹⁰	-118.9%
2	•	July	0.939x10 ⁹	0.906x10 ⁹	3.6%
3	•	August	0.939x10 ⁹	0.747x10 ⁹	20.4%
4	•	September	0.939x10 ⁹	0.804x10 ⁸	91.4%


d. The observed monsoon runoff and forecasted monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August and (iv)September for the period 1975-85 are plotted in Figure 11.

e. Out of 11 years (1975-85) runoff data used for verification of forecast the regression relationships are able to identify correctly whether the current year is going to below normal or above normal for 1 year, 7 years, 7 years and 11 years at the end of June, July, August and September respectively.


The normal monsoon runoff, observed monsoon runoff and forecasted monsoon runoff from drought point of view are given in Table 22.

Comment on the Resuts:

The results are very poor. This may be because of (i) measurement error in discharge (ii) short sample length

(103 CUMECS DAYS) 51 20-

влиоее

30-

40

60F

50-

FORECASTING OF MONSOON RUN OFF (1975-1985) FROM DROUGHT POINT OF VIEW FOR BHIMA AT WODAKABAL

YEAR	NORMAL	OBSERVED	FORECASTIN THE BASIS		UNCFF IN CU N OFF UPTO	MEC DAYS ON THE END OF
			JUNE	JULY	AUGUST	SEPTEMBER
1975	13067.1	22636.3+	2516.7-	9832.5-	11080.2-	15854.1+
1976	13937.0	3027.1-	16363.4+	11520.9-	9987.8-	5772.8-
1977	130 27.8	3025.1-	14101.0+	11668.5-	7945.2-	4357.6-
1978	12258.4	8810.5-	35493.8+	18779.0+	13307.2+	9646.3-
1979	12012.1	10770.6-	11886.0-	8887.7-	5093.1-	11736.0-
1980	11929.3	9960.2-	12483.8+	13908.4+	16531.4+	11842.5-
1981	11806.3	6385.6-	11807.9+	9679.6-	6466.1-	7676.2-
1982	11487.4	1278.3-	11586.4+	8225.5-	5305.3-	2691.1-
1983	10920.2	29920.6+	10634.2-	10687.3-	9577.3-	28575.9+
1984	11920.2	6402.8-	12375.1+	8984.3-	6657.0-	2632.1-
1985	11644.4	2358.2-	11750.1+	8744.3-	6596.7-	2846.9-
	•/					

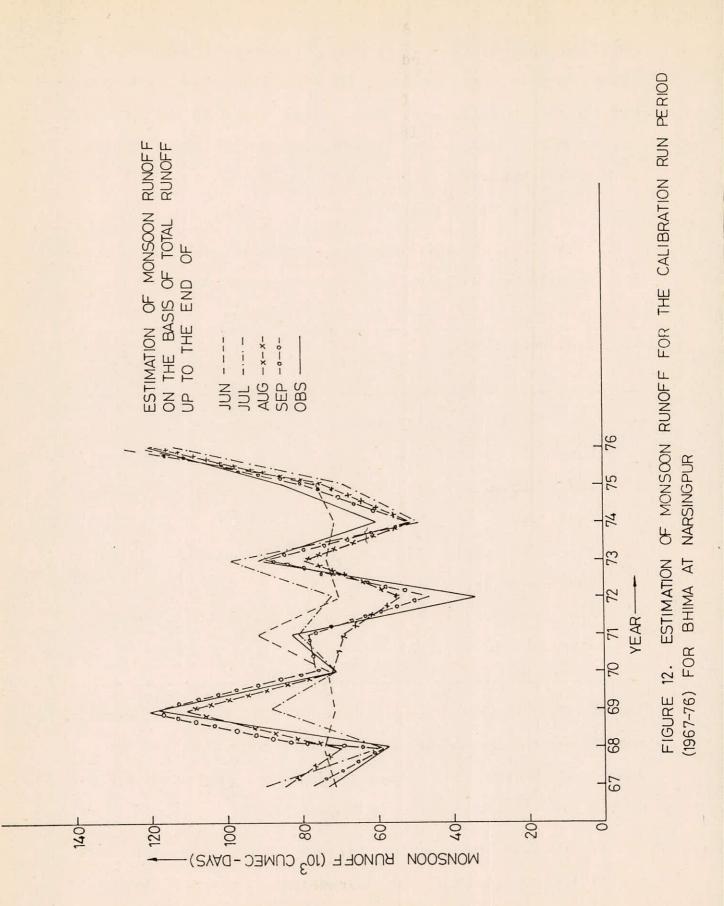
NOTE:

1. In calculating monsoon normal runoff for a year all the data prior to that year have been considered.

2. -ve sign shows runoff is below normal.

3. +ve sign shows runoff is above normal.

and (iii) variability of flow. A critical examination of flows reveals that monsoon flows at Wodakabal are much lesser than the flows at Dhond while there is no diversion in between. This makes the reliability of discharge data at Wadakbal doubtful.


6.3 Bhima at Narsingpur

a. Using equations 1-9 and 1967-76 runoff data the following relationships have been developed.

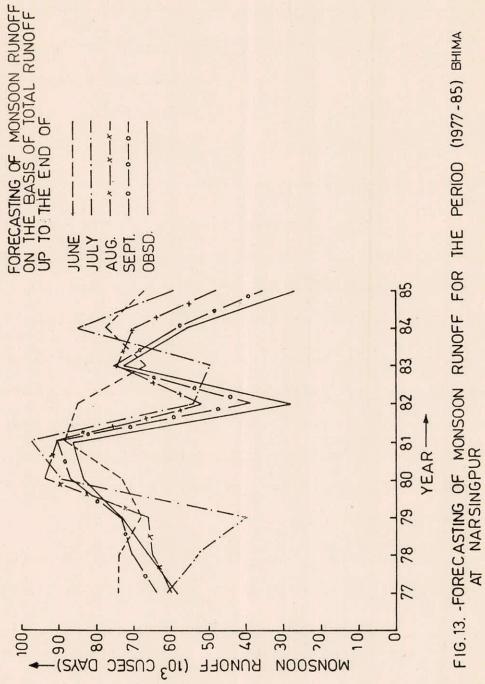
S. No.	Relationship	Initial variance		Effici- ency
1.	Q _{mon = 69574.91+3.617*} Q _{June}	0.629x10 ¹⁰	0.421x10 ¹⁰	33.0%
2.	$Q_{mon} = 32332.5+1.859*$ $Q_{June+July}$	0.629x10 ¹⁰	0.308x10 ¹⁰	51.0%
3.	$Q_{mon} = 26310.55 + 0.976 *$	0.629x10 ¹⁰	0.135x10 ¹⁰	78.5%
4.	Q _{June+July+Aug} . Q _{mon = 15343.88+0.887*}	0.629x10 ¹⁰	0.415x10 ⁹	93.4%
	Q _{June+July+August+Sept}			

b. The observed monsoon runoff and estimated monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and (iv) September for the period 1967-76 are plotted in Figure 12.

c. Monsoon runoffs for 1977-85 period have been forecasted after :updating the parameters. The efficiency of

the regression relationships are as given below:

S1. No.	Forecast of monsoon ru on the basis of total off upto the end of		Residual variance	Effici- ency
1.	June	0.558x10 ¹⁰	0.585x10 ¹⁰	-4.9%
2.	July	0.558x10 ¹⁰	0.458×10^{10}	17.8%
3.	August	0.558×10^{10}	0.139x10 ¹⁰	75.1%
4.	September	0.558x10 ¹⁰	0.268x10 ⁹	95.2%


d. The observed monsoon runoff and forecasted monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August and (iv) September for the period 1977-85 are plotted in Figure 13.

e. Out of 9 years (1977-85) runoff data used for verification of forecast the regression relationships are able to identify correctly whether the current year is going to be below normal or above normal for 6 years, 8 years, 9 years and 8 years at the end of June, July, August and September respectively.

The normal, observed and forecasted monsoon runoff from drought point of view are given in Table 23.

Comment on the Results:

The results show that monsoon flows can be forecasted with 75.1% and 95.2% reliability at the end of August and September respectively. The results are satisfactory.

FORECASTING OF MONSOON RUN OFF (1977-1985) FRCM DROUGHT POINT OF VIEW FCR BHIMA AT NARSINGHPUR

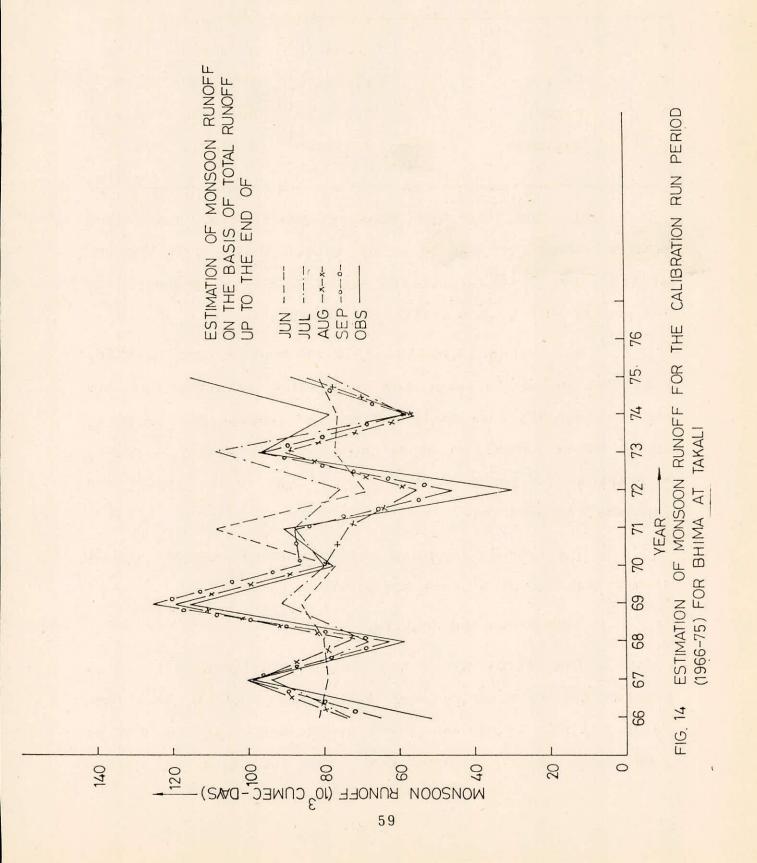
FORECASTING MONSOON RUNOFF IN CUMEC DAYS ON THE BASIS OF TOTAL RUNOFF UPTO THE END OF YEAR NORMAL OBSERVED JULY JUNE AUGUST SEPTEMBER A 1977 79534.7 58815.7-64850.1-74133.0-61261.5-60784.1-1978 77742.1 66205.7-74226.0-53480:3-65704.1-70191.2-1979 76780.7 73678.0-68236.6-40421.5-65732.6-73502.2-1980 76542.0 83054.5+ 73419.0-89505.7+ 94377.2+ 87202.8+ 1981 77007.2 86391.9+ E8835,4+ 97070.0+ 90259.5+ 90095.3+ 1982 77632.2 28642.1-85925.4+ 54802,4-52081.1-39176.5-1983 74570.3 73543.9-67947.4-50224.7-74355.6-75371.6+ 1984 74516.1 55707.0-77939.9* 85759.4+ 70725.1-57700.5-1985 73471.1 27494.0-67677.8-59100.7-47066.2-35557.4-

NOTE:

1. In calculating monsoon normal runoff for a year all the data prior to that year have been considered.

2. -ve sign shows runoff is below normal.

3. +ve sign shows runoff is above normal.


6.4 Bhima at Takali

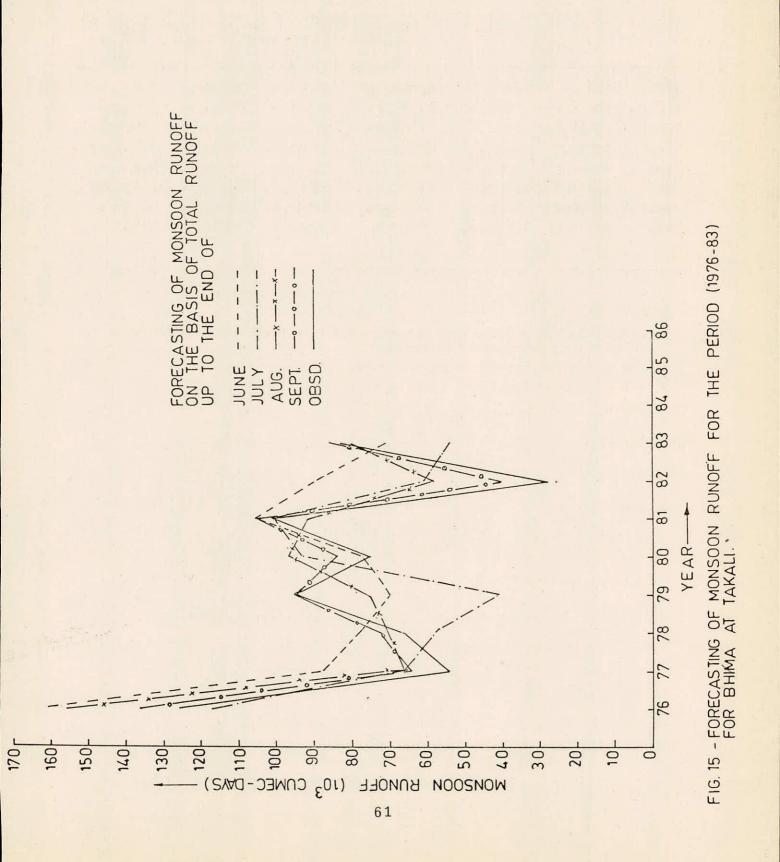
Using equations 1-9 and 1966-75 runoff data the following relationships have been developed:

Relationship	Initial variance	Residual variance	Efficiency
Q _{mon =68708.55+7.695*} Q _{June}	0.691x10 ¹⁰	0.594x10 ¹⁰	14.1%
Q _{mon =41058.01+1.954*} Q _{June+July}	0.691x10 ¹⁰	0.503x10 ¹⁰	27.2%
Q _{mon =27545.98+1.174*} Q _{June+July+Aug.}	0.691x10 ¹⁰	0.328x10 ¹⁰	52.5%
Q _{mon =17283.08+0.964*} Q _{June+July+Aug.+Sept.}	0.691x10 ¹⁰	0.178x10 ¹⁰	74.3%
	<pre>Qmon =68708.55+7.695* Q June Qmon =41058.01+1.954* QJune+July Qmon =27545.98+1.174* QJune+July+Aug. Qmon =17283.08+0.964*</pre>	variance Qmon =68708.55+7.695* 0.691x10 ¹⁰ Q June Qmon =41058.01+1.954* 0.691x10 ¹⁰ QJune+July Qmon =27545.98+1.174* 0.691x10 ¹⁰ QJune+July+Aug. Qmon =17283.08+0.964* 0.691x10 ¹⁰	variance variance Qmon =68708.55+7.695* 0.691x10 ¹⁰ 0.594x10 ¹⁰ Q June 0.691x10 ¹⁰ 0.503x10 ¹⁰ Qmon =41058.01+1.954* 0.691x10 ¹⁰ 0.503x10 ¹⁰ QJune+July 0.691x10 ¹⁰ 0.328x10 ¹⁰ Qmon =27545.98+1.174* 0.691x10 ¹⁰ 0.328x10 ¹⁰ QJune+July+Aug. 0.691x10 ¹⁰ 0.178x10 ¹⁰

b. The observed monsoon runoff and estimated monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August and (iv) September for the period 1966-75 are plotted in Figure 14.

c. Monsoon runoffs for 1976-83 period have been forecasted after updating the parameters. The efficiency of the regression relationships are as given below:

S. No.	Forecast of monsoon runoff on the basis of totalrun- off upto the end of	Initial variance	Residual variance	Effici- ency
1.	June	0.688x10 ¹⁰	0.709x10 ¹⁰	-3.1%
2.	July	0.688x10 ¹⁰	0.543×10^{10}	21.0%
3.	August	0.688x10 ¹⁰	0.289x10 ¹⁰	58.0%
4.	September	0.688x10 ¹⁰	0.525x10 ⁹	92.4%


d. The observed monsoon runoff and forecasted monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August and (iv) September for the period 1976-83 are plotted in Figure 15.

e. Out of 8 years (1976-83) runoff data used for verification of forecast the regression relationships are able to identify correcatly whether the current year is going to be below normal or above normal for 4 years, 5 years, 6 years and 7 years at the end of June, July, August and September respectively.

The normal, observed and forecasted monsoon runoff from drought point of view are given in Table 24.

Comment on the Results:

The efficiency of regression relationships in calibration and forecasting are 14.1%, 27.2%, 52.5%, 74.3% and -3.1%, 21.0%, 58.0% and 92.4% respectively at the end of June, July, August and September. This indicates that monsoon

FORECASTING OF MONSOON RUNOFF (1976-1983) FROM DROUGHT POINT OF VIEW FOR BHIMA AT TAKALI

YEAR	NORMAL	OBSERVED	FORECASTING MONSOON RUNOFF IN CUMEC DAYS ON THE BASIS OF TOTAL RUNOFF UPTO THE END OF					
-			JUNE	JULY	AUGUST	SEPTEMBER		
1976	81556.9	126046.3+	161029.3+	117567.3+	156188.1+	136590.2+		
1977	85601.4	54644.4-	87479.9+	66329.6-	66583.5-	64505.3-		
1978	83021.6	65960.2-	78412.4-	57534.8-	69713.6-	72500.6-		
1979	81709.2	94897.1+	69995.6-	41069.0-	74878.2-	94279.4+		
1980	82651.2	75774.4-	77497.5-	93713.9+	96026.2+	84881.5+		
1981	82192.7	101489.5+	106452.4+	101567.5+	93379.1+	105926.8+		
1982	83398.8	28233.4-	90242.3+	61757.3-	58872.6-	40970.5-		
1983	80153.8	83396.8+	71605.7-	54903.3-	80396.5+	86332.5+		

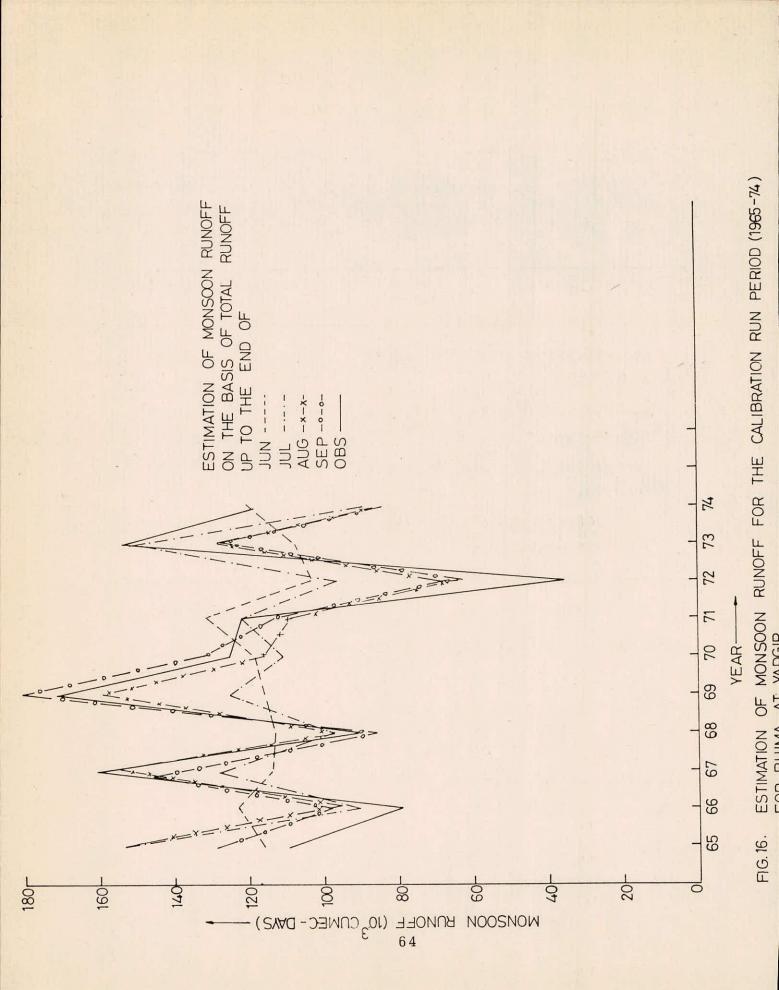
NOTE:

1. In calculating monsoon normal runoff for a year all the data prior to that year have been considered.

2. -ve sign shows runoff is below normal.

3. +ve sign shows runoff is above normal.

flows can be forecasted with good reliability only at the end of September. This may be because of short sample length.


6.5 Bhima at Yadgir

a. Using equations 1-9 and 1965-74 runoff data the following relationships have been developed:

	and the second secon	ter second and the second s		
S. No.	Relationship	Initial variance	Residual variance	Efficiency
1.	Q _{mon =102749.6+4.494*} Q _{June}	0.148x10 ¹¹	0.142x10 ¹¹	3.8%
2.	Q _{mon =51550.3+2.54*} Q _{June+July}	0.148x10 ¹¹	0.982x10 ¹⁰	33.5%
3.	^Q mon =30458.5+1.442* ^Q June+July+Aug.	0.148x10 ¹¹	0.527x10 ¹⁰	64.3%
4.	Q _{mon =29986.9+0.928} * Q _{June+July+Aug.+Sept.}	0.148x10 ¹¹	0.360x10 ¹⁰	75.6%

b. Theobserved monsoon runoff and estimated monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and (iv) September for the period 1965-74 are plotted in Figure 16.

c. Monsoon runoffs for 1975-85 period have been forecasted after updating the parameters. The efficiency of the regression relationships are as given below:

S. No.	Forecast of monsoon on the basis of tota off upto the end of		Residual variance	Effi- ciency
1.	June	0.307x10 ¹¹	0.323x10 ¹¹	-5.1%
2.	July	0.307×10^{11}	0.279x10 ¹¹	9.2%
3.	August	0.307×10^{11}	0.199x10 ¹¹	35.1%
4.	September	0.307×10^{11}	0.688x10 ¹⁰	77.6%

d. The observed monsson runoff and forecasted monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August and (iv) September for the period 1975-85 are plotted in Figure 17.

e. Out of 11 years (1975-85) runoff data used for verification of forecast the regression relationships are able to identify correctly whether the current ;year is going to be below normal or above normal for 5 years, 6 years, 7 years and 11 years at the end of June, July, August and September respectively.

The normal, observed and forecasted monsoon runoff from drought point of view are given in Table 25.

Comment on the Results:

The efficiency of regression relationships in calibration and forecasting are 3.8%, 33.5%, 64.3%, 75.6% and -5.1%, 9.2%, 35.1% and 77.6% respectively at the end of June, July, August and september. The results are very poor.

FORECASTING OF MONSOON RUN OFF (1975-1985) FROM DROUGHT POINT OF VIEW FOR BHIMA AT YADGIR

YEAR	NORMAL	OBSERVED	FORECASTING MONSOON RUN OFF IN CUMEC DAY ON THE BASIS OF TOTAL RUN OFF UPTO THE END OF			
		Marking and the second second second	JUNE	JULY	AUGUST	SEPTEMBER
1975	116627.5	222597.1+	114025.2-	165941.2+	154211.7+	151821.6+
1976	126261.1	145540.3+	148990.6+	188042.3+	224620.7+	174690.1+
1977	127867.7	82316.8-	140891.0+	98478.1-	101037.9-	93511.9-
1978	124363.8	124752.3+	124166.4-	94702.5-	117199.0-	127984.1+
1979	124391.6	125738.1+	124821.7+	55313.4-	97630.1-	127679.8+
1980	124481.3	95119.4-	124375.7-	131759.4+	135250.8+	113738.7-
1981	122646.2	142144.0+	120611.5-	146080.9+	127853.1+	150126.6+
1982	123793.1	44356.5-	123246.6-	88663.1-	79512.2-	60913.5-
1983	119380.0	167840.8+	117346.3-	78746.5-	117870.2-	157728.9+
1984	121930.5	83852.2-	121157.4-	133352.5+	112162.6-	82712.1-
1985	120026.6	44460.0-	119137.9-	99809.7-	82690.5-	53886.0-

NOTE :

1. In calculating monsoon normal runoff for a year all the data prior to that year have been considered.

2. -ve sign shows runoff is below normal.

3. +ve sign shows runoff is above normal.

The critical examination of flows reveals that the flows at Yadgir are not virgin.

6.6 Tungbhadra at Haralahalli

a. Using equations 1-9 and 1967-76 runoff data the following relationships have been developed:

		the second se		
S. No.	Relationship	Initial variance	Residual variance	Efficiency
1.	Q _{mon =63584.7+1.59*} Q _{June}	0.286x10 ¹⁰	0.225x10 ¹⁰	21.3%
2.	Q _{mon =27010.1+1.582*} Q _{June+July}	0.286x10 ¹⁰	0.174x10 ¹⁰	39.1%
	Q _{mon =5166.4+1.468*} Q _{June+July+Aug.}	0.286x10 ¹⁰	0.165x10 ⁹	94.3%
4.	Q _{mon =-2219.7+1.158*} Q _{June+July+Aug.+Sept.}	0.286x10 ¹⁰	0.481x10 ⁸	98.3%

b. The observed monsoon runoff and estimated monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and (iv) september for the period 1967-76 are plotted in Figure 18.

c. Monsoon runoffs for 1977-85 period have been forecasted after updating the parameters. The efficiency of the regression relationships are as given below:

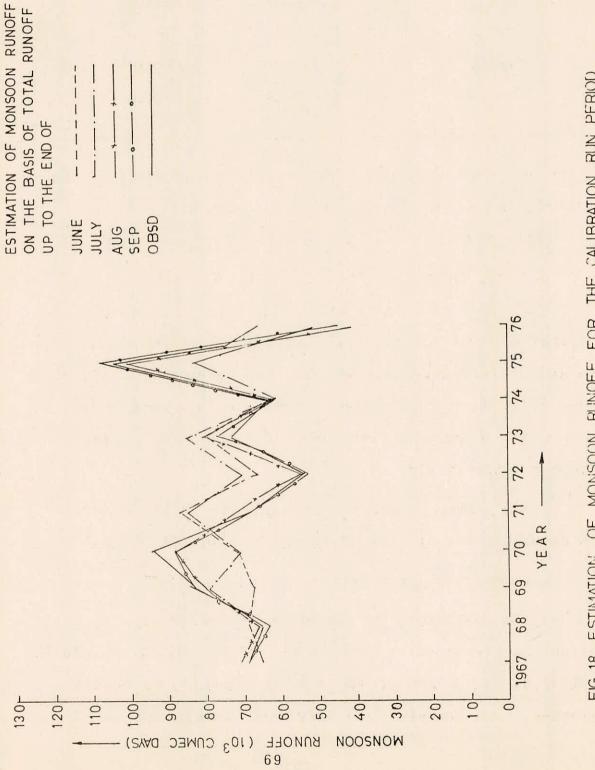
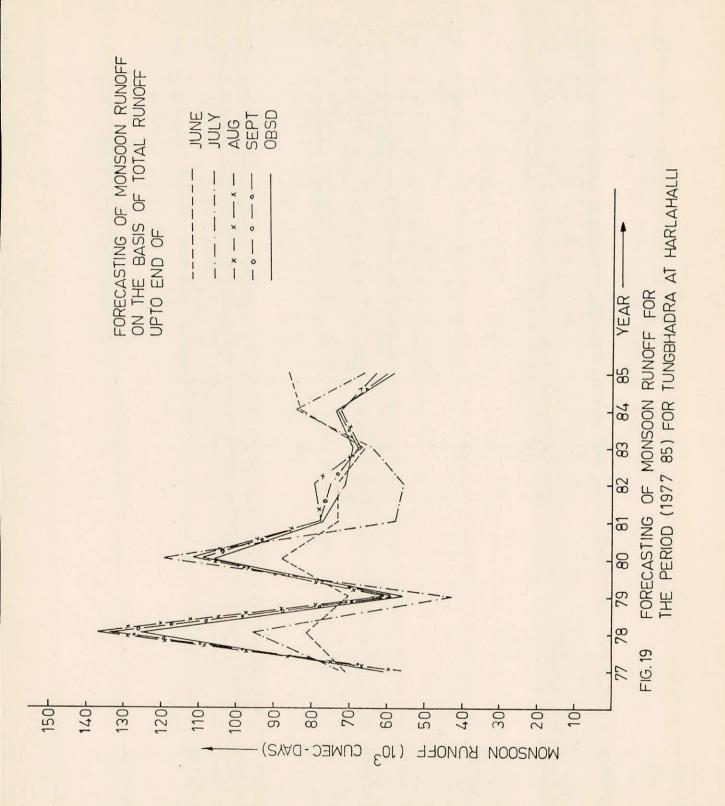


FIG. 18, ESTIMATION OF MONSOON RUNOFF FOR THE CALIBRATION RUN PERIOD (1967-76) FOR TUNGABHADRA AT HARALAHALLI

S. No.	Forecast of monsoon on the basis of tota off upto the end of		Residual variance	Effici- ency
1.	June	0.476x10 ¹⁰	0.342x10 ¹⁰	28.2%
2.	July	0.476×10^{10}	0.200x10 ¹⁰	57.9%
3.	August	0.476×10^{10}	0.344x10 ⁹	92.8%
4.	September	0.476×10^{10}	0.101x10 ⁹	97.9%


d. The observed monsoon runoff and forecasted monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August and (iv) September for the period 1977-85 are plotted in Figure 19.

e. Out of 9 years (1977-85) runoff data used for verification of forecast the regression relationships are able to identify correctly whether the current year is going to be below normal or above normal for 6 years, 6 years, 8 years and 9 years at the end of june, July, August and September respectively.

The normal, observed and forecasted monsoon runoff from drought point of view are given in Table 26.

Comment on the Results:

The efficiency of regression relationships in calibration and forecasting are 21.3%, 39.1%, 94.3% and 28.2%, 57.9%,92.8% and 97.9% at the end of june, July, August and September. The results are very good inspite of the short

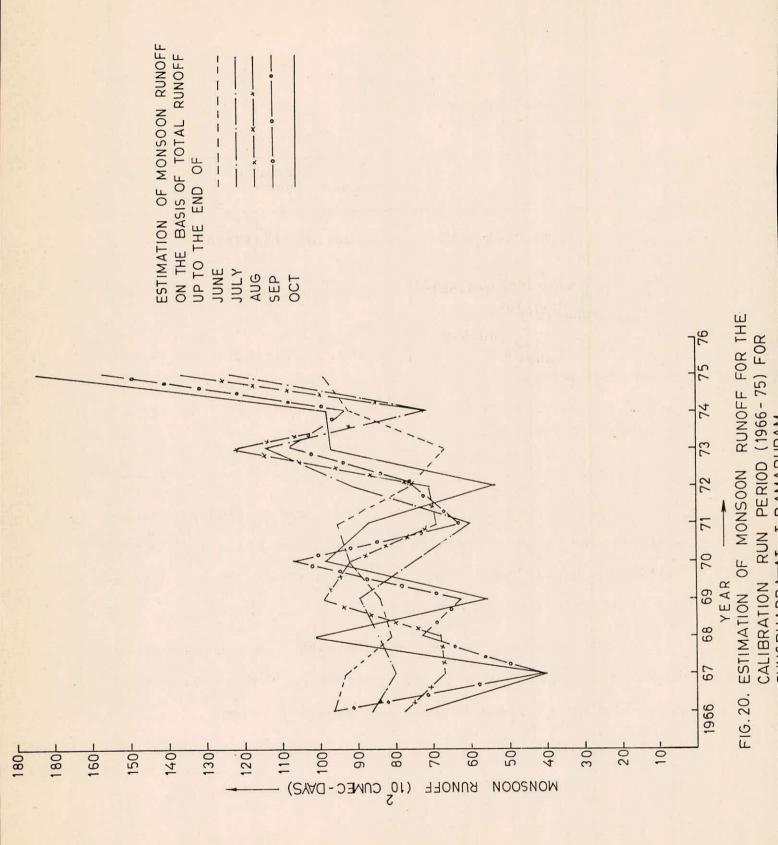
FORECASTING OF MONSCON RUN OFF (1977-85) FROM DROUGHT POINT OF VIEW FOR TUNGBHADRA AT HARALHALLI

YEAR	NORMAL	OBSERVED	FORECASTING MONSOON RUN OFF IN CUMEC DAY ON THE BASIS OF TOTAL RUN CFF UPTO THE END OF			
			JUNE	JULY	AUGUST	SEPTEMBER
1977	72285.0	65795.5-	71285.0-	73983.8+	56762.7-	61881.4-
1978	71695.1	1256 22.0+	81173.3+	96693.3+	137547.7+	133218.3+
1979	76189.0	56355.4-	70375.3-	43722.7-	59986.2-	58697.8-
1980	74663.3	106859.8+	88609.2+	119373.6+	111651.8+	109341.7+
1981	76963.1	77569.1+	73935.3-	58951.0-	78777.2+	78199.4+
1982	77003.5	71912.5-	73875.0-	56500.5-	79448.5+	74227.6-
198.3	76685.3	69914.2-	66756.8-	64665.8-	67303.1-	69669.5-
1984	76287.0	73764.6-	83419.7+	84363.5+	72892.9-	70591.8-
1985	76146.8	58835.4-	86394.7+	66503.4-	63055.8-	58606.0-

NOTE:

- 1. In calculating monsoon normal runoff for a year all the data prior to that year have been considered.
- 2. -ve sign shows runoff is below normal.
- 3. +ve sign shows runoff is above normal.

length of data.

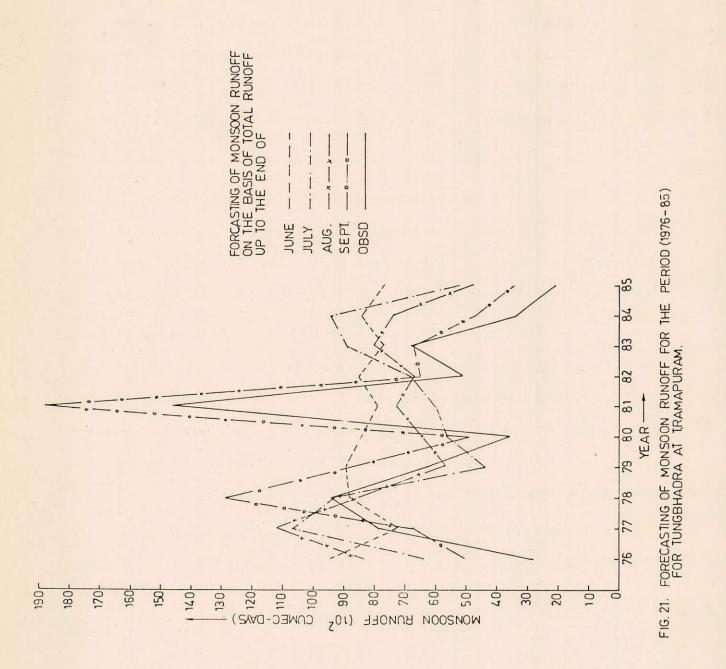

6.7 Tungbhadra at T Ramapuram

Using equations 1-9 and 1966-75 runoff data the following relationships have been developed.

S. No.	Relationship	Initial variance	Residual variance	Efficiency
1.	Q _{mon =10439.08-3.711*} Q _{June}	0.126x10 ⁹	0.117x10 ⁹	7.4%
2.	Q _{mon} =3698.5+5.827* Q _{June+July}	0.126x10 ⁹	0.938x10 ⁸	25.8%
3.	Q _{mon =4000.5+2.786*} Q _{June+July+Aug.}	0.126x10 ⁹	0.717x10 ⁸	43.3%
4.	Q _{mon =1360.7+1.613*} Q _{June+July+Aug.+Sept.}	0.126x10 ⁹	0.298x10 ⁸	76.4%

b. The observed monsoon runoff and estimated monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and (iv) September for the period 1966-75 are plotted in Figure 20.

c. Monsoon runoffs for 1976-85 period have been forecasted after updating the parameters. The efficiency of the regression relationships are as given below:



S. No.	Forecast of monsoon runoff on the basis of total runoff upto the end of	Initial variance	Residual variance	Efficiency
1.	June	0.171x10 ⁹	0.188x10 ⁹	-9.9%
2.	July	0.171x10 ⁹	0.155x10 ⁹	9.7%
3.	August	0.171x10 ⁹	0.130x10 ⁹	24.0%
4.	September	0.171x10 ⁹	0.487x10 ⁸	71.6%

d. The observed monsoon runoff and forecasted monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August and (iv) September for the perioid 1976-85 are plotted in Figure 21.

e. Out of 10 years (1976-85) runoff data used for verification of forecast the regression relationships are able to identify correctly whether the current year is going to be below normal or above normal for 5 years, 6 years, 8 years and 9 years at the end of June, July, August and September respectively.

The normal, observed and forecasted monsoon runoff from drought point of view are given in Table 27.

FORECASTING OF MONSOON RUN OFF (1976-85) FROM DROUGHT POINT OF VIEW FOR TUNGBHADRA AT T RAMAPURAM

YEAR	NORMAL	OBSERVED	FORECAS THE BAS		N RUNOFF IN RUNOFF UPTO	CUMEC DAY ON D THE END OF
			JUNE	JULY	AUGUST	SEPTEMBER
1976	8795.2	2778.9-	9484.6+	6406.9-	8351.1-	5022.4-
1977	8248.2	7323.4-	7246.3-	10784.1+	11275.0+	6847.9-
1978	8221.2	9432.1+	8849.0+	9360.1+	8578.9+	12972.0+
1979	8314.3	6373.1-	8969.4+	4414.5-	5700.7-	8686.3+
1980	8175.6	3697.5-	8473.5+	5662.3-	6459.5-	4972.1-
1981	7877.1	14621.9+	7942.2+	6070.5-	7371.8-	18847.7+
1982	8298.6	5154.2-	8521.9+	6837.9-	6658.4-	6508.2-
1983	8113.7	6882.2-	7743.4-	8908.8+	8002.0-	6625.8-
1984	8045.3	3429.6-	8466.8+	9457.8+	7497.9-	4726.5-
1985	7802.3	2174.9-	7746.4-	5232.4-	4737.9-	3437.4-

NOTE:

.

- 1. In calculating monsoon normal runoff for a year all the data prior to that year have been considered.
- 2. -ve sign shows runoff is below normal.
- 3. +ve sign shows runoff is above normal.

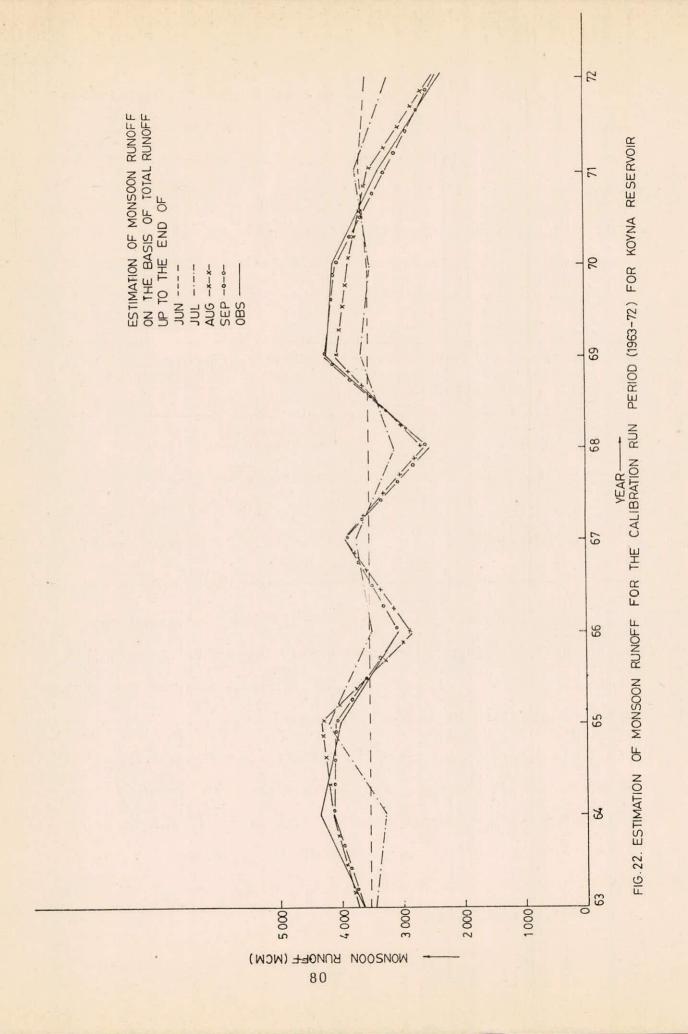
Comment on the Results:

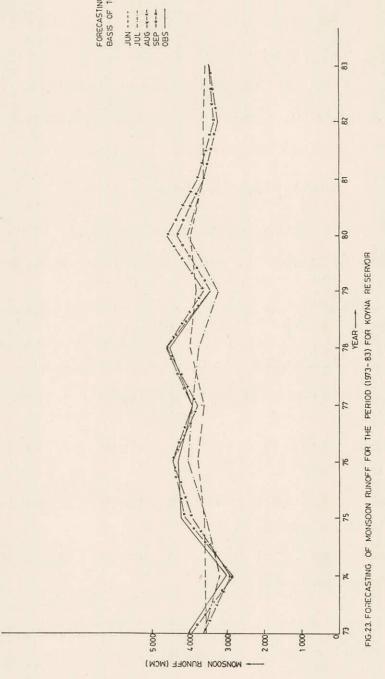
The efficiency of regression relationships in calibration and forecasting are 7.4%, 25.8%, 43.3%, 76.4% and 9.9%, 9.7%, 24.0% and 71.6% respectively at the end of June, July, August and september. The results are very poor. The flows at T Ramapuram were further investigated and it was found that flows are not virgin and affected by the upstsream structures as the flows at T Ramapuram are much lesser than the flows at Haralhalli while the catchment area upto T Ramapuram is much larger than Haralahalli.

6.8 Koyna Reservoir

a. Using equations 1-9 and 1963-72 runoff data the following relationships have been developed:

S. No.	Relationship	Initial variance	Residual variance	Efficiency
1.	Q _{mon = 3509.6+0.153*} Q _{June}	0.437x10 ⁷	0.436x10 ⁷	0.3%
2.	Q _{mon = 2341.3+0.641*} Q _{June+July}	0.437x10 ⁷	0.354x10 ⁷	19.1%
3.	Q _{mon =-130.35+1.193*} Q _{June+July+Aug.}	0.437x10 ⁷	0.318x10 ⁶	92.7%
4.	Q _{mon =-7.74+1.030*} Q _{June+July+Aug.+Sept.}	0.437x10 ⁷	0.345x10 ⁵	99.2%


b. The observed monsoon runoff and estimated monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and (iv) September for the period 1963-72 are plotted in Figure 22.


c. Monsoon runoffs for 1973-83 period have been forecasted after updating the parameters. The efficiency of the regression relationships are as given below.

S. No.	Forecast of monsoon runoff on the basis of total run- off upto the end of	Initial variance	Residual variance	Effi- ciency
1.	June	0.316x10 ⁷	0.216x10 ⁷	31.7%
2.	July	0.316x10 ⁷	0.144×10^{7}	54.4%
3.	August	0.316x10 ⁷	0.484×10^{6}	84.7%
4.	September	0.316x10 ⁷	0.443x10 ⁵	98.6%

d. The observed monsoon runoff and forecasted monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August and (iv) September for the period 1973-83 are plotted in Figure 23.

e. Out of 11 years (1973-83) runoff data used for verification of forecast the regression relationships are able to identify correctly whether the current year is going to be below normal or above normal for 7 years, 11 years, 9 years and 11 years at the end of June, July, August and September respectively.

FORECASTING OF MONSOON ON THE BASIS OF TOTAL RUNOFF UP TO END OI

The normal, observed and forecasted monsoon runoff from drought point of view are given in Table 28.

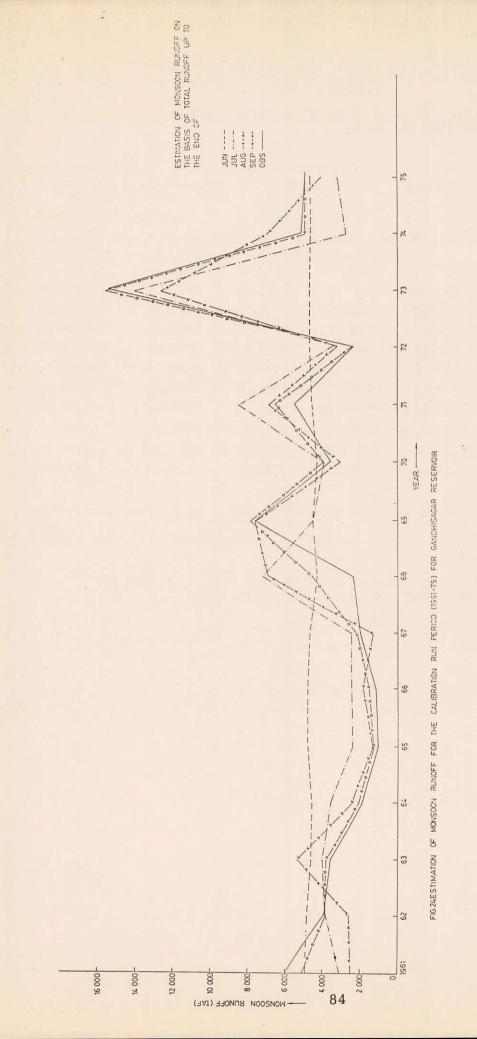
Comment on the Results:

The efficiency of regression relationships in calibration and forecasting are 0.3%, 19.1%, 92.7%, 99.2% and 31.7%, 54.4%, 84.7% and 98.6%. The results are very good and indicate that monsoon flows can be predicted with good reliability even at the end of August.

6.9 Gandhi Sagar Reservoir

a. Using equations 1-9 and 1961-75 runoff data the following relationships have been developed:

S. No.	Relationship	Initial variance	Residual variance	Efficiency
1.	Q _{mon = 4796.25-0.722*} Q _{June}	0.184x10 ⁹	0.183x10 ⁹	0.2%
2.	Q _{mon = 1446.44+2.852*} Q _{June+July}	0.184x10 ⁹	0.495x10 ⁸	73.0%
3.	Q _{mon = 328.68+1.565*} Q _{June+July+Aug.}	0.184x10 ⁹	0.397x10 ⁸	78.4%
4.	Q _{mon = 222.67+1.023*} Q _{June+July+Aug.+Sept.}	0.184x10 ⁹	0.221x10 ⁷	98.8%


b. The observed monsoon runoff and estimated monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August and (iv) September for the period 1961-75 are plotted in Figure 24.

FORECASTING OF MONSOON RUNOFF (1973-83) FROM DROUGHT POINT OF VIEW FOR KOYNA

YEAR	NORMAL	OBSERVED	FORECAS BASIS O			
			JUNE	JULY	AUGUST	SEP TEMBER
1973	3545.5	4026.0+	3539.4	3618.2+	3646.7+	3963.9+
1974	3589.1	2985.0-	3571.8-	3195.8-	2910.1-	2853.2-
1975	3538.8	4184.0+	3602.6+	3558.9+	3924.8+	4115.3+
1976	3588.4	4304.0+	3757.7+	4031.1+	4421.2+	4420.9+
1977	3639.5	3907.0+	3606.1-	3812.1+	3572.6-	3875.0+
1978	3657.4	4515.0+	3957.9+	3735.1+	4545.5+	4567.1+
1979	3711.0	3422.0-	3816.4+	3234.9-	3600.4-	3396.2-
1980	3694.0	4309.0+	3934.5+	3985.8+	4555.9+	4325. 5+
1981	3728.1	3614.0-	3574.3-	36 38. 5-	3740.5+	3607.1-
1982	3722.1	3187.0-	3575.3-	3235. 2-	3364.6-	3184.7-
1983	3695.4	3438.0-	3741.1+	3374.6-	3425.1-	3439.0-

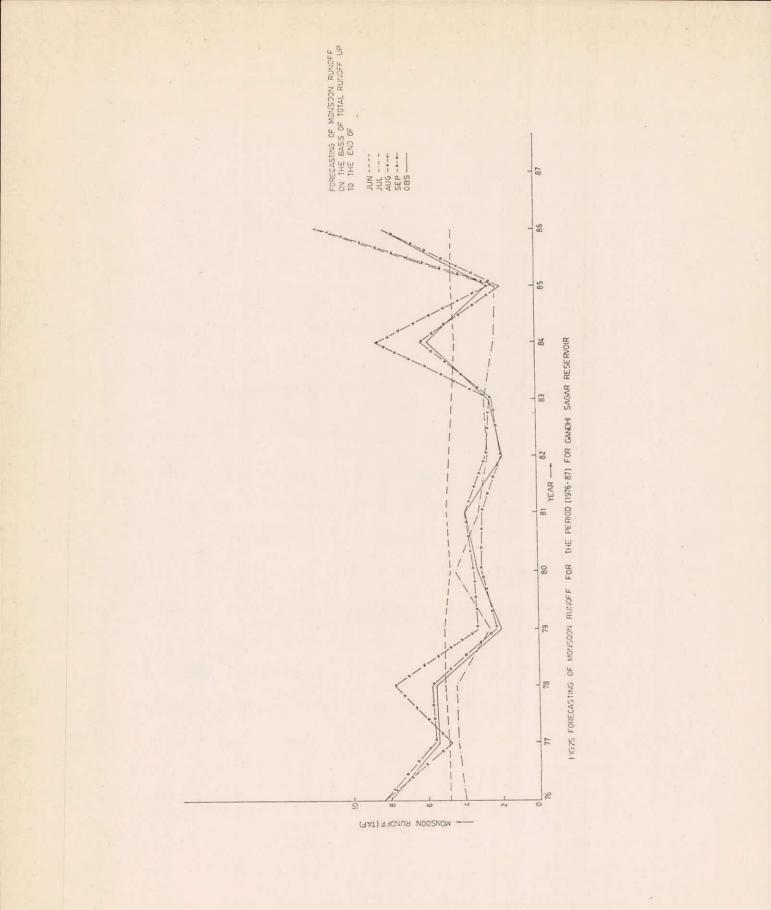
NOTE:

- 1. In akmode calculating monsoon normal runoff for a year all the data prior to that year have been considered.
- 2. -ve sign shows runoff is below normal.
- 3. +ve sign shows runoff is above normal.

-

c. Monsoon runoffs for 1976-86 period have been forecasted after updating the parameters. The efficiency of the regression relationships are as given below:

S. No.	Forecast of monsoon runoff on the basis of total run- off upto the end of	Initial Residual Effi variance variance cien	
	4		
1.	June	$0.574 \times 10^8 \ 0.589 \times 10^8 \ -2.$	5%
2.	July	0.574x10 ⁸ 0.481x10 ⁸ 16.	2%
3	August	$0.574 \times 10^8 \ 0.285 \times 10^8 \ 50.$	5%
4.	September	0.574×10^8 0.854×10^6 98.	5%


d. The observed monsoon runoff and forecasted monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August and (iv) September for the period 1976-86 are plotted in Figure 25.

e. Out of 11 years (1976-86) runoff data used for verification of forecast the regression relationships are able to identify correctly whether the current year is going to be below normal or above normal for 5 years, 7 years, 10 years and 11 years at the end of June, July, August and September respectively.

The normal, observed and forecasted monsoon runoff from drought point of view are given in Table 29.

Comment on the Results:

The efficiency of regression relationships in cali-

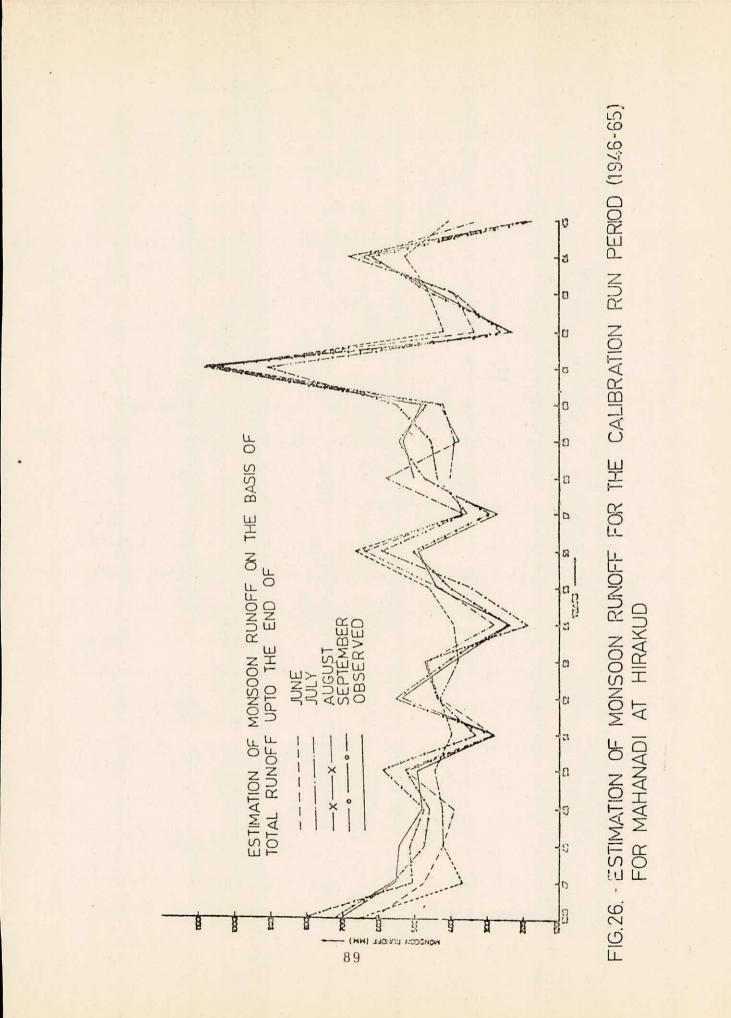
FORECASTING OF MONSOON RUNOFF (1976-86) FRCM DROUGHT POINT OF VIEW FOR GANDHI SAGAR

YEAR	NORMAL	OBSERVED	FORECASTED MONSOON RUNOFF IN 7.4 5 ON THE BASIS OF TOTAL RUNOFF UPTO THE END OF					
			J UNE	JULY	AUGUST	SEPTEMBER		
1976	4653.6	8061.8+	4678.9 +	3983.0-	8363.5+	8358.2+		
1977	4866.6	5351.4+	4825.6 -	4340.3-	4703.0-	5490.0+		
1978	4895.1	5506.3+	4968.2+	4424.2-	7694.3+	5696.6+		
1979	4929.0	2011.3-	5039.6+	2558.1-	3229.9-	2193.1-		
1980	4775.5	3191.0-	4673.6-	4421.0-	3406.2-	3051.1-		
1981	4696.3	2782.9-	4804.8+	3070.5-	3843.4-	2943.4-		
1982	4605.1	1781.5-	4700.1+	266 2. 5-	2613.3-	1973.0-		
1983	4476.8	2422.4-	4473.8-	2760.7-	2355.6-	2456.8-		
1984	4387.5	5804.1*	4334.3-	2221.2-	8454.2+	6073.1+		
1985	4446.5	2508.5-	4430.4-	2090.9-	2240.5-	1833.5-		
1986	4369.0	7915.4+	4329.6-	11592.6+	11481.0+	8174.2+		

NOTE:

- 1. In calculating monsoon normal runoff for a year all the data prior to that year have been considered.
- 2. -ve sign shows runoff is below normal.
- 3. +ve sign shows runoff por is above normal.

bration and forecasting are 0.2%, 73.0%, 78.4%, 98.8% and -2.5%, 16.2%, 50.5% and 98.5% respectively at the end of June, July, August and September. The results are poor. This may be because of short sample length. The parameters of the regression relationships are also highly unstable.


6.10 Mahanadi at Hirakud

a. Using equations 1-9 and 1944-65 runoff data the following relationships have been developed.

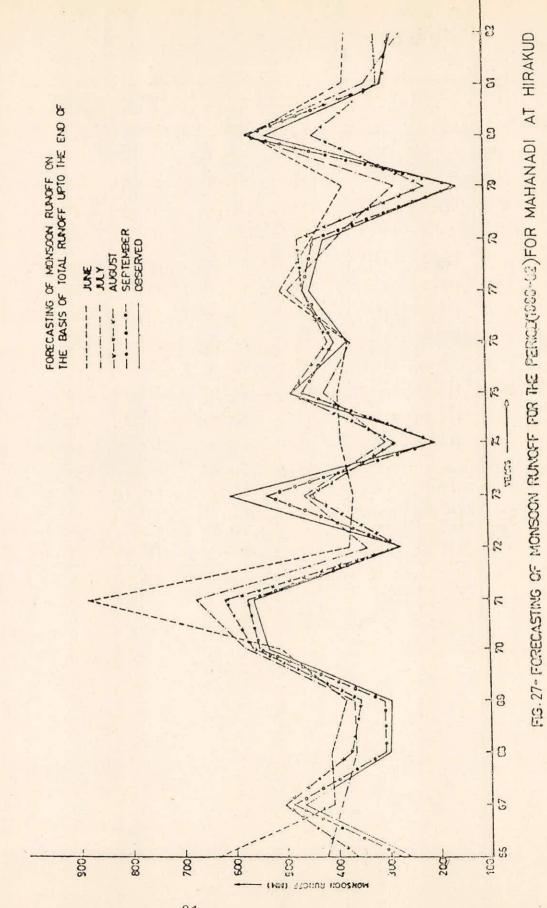
S. No.	Relationship	Initial variance	Residual variance	Efficiency
1.	Q _{mon = 360.75+8.513*}	0.760x10 ⁶	0.283x10 ⁶	62.7%
2.	Q _{June} Q _{mon = 218.22+2.070*}	0.760x10 ⁶	0.154x10 ⁶	79.6%
2	Q _{June+July} Q _{mon = 67.38+1.318*}	0.760x10 ⁶	0.120×10^{6}	84.2%
э.	Q _{June+July+Aug} .	0.700210	0.120/10	011-0
4.	Q _{mon = 9.135+1.076*} Q _{June+July+Aug.+Sept.}	0.760x10 ⁶	0.113x10 ⁵	98.5%

b. The observed monsoon runoff and estimated monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and (iv) September for the period 1946-65 are plotted in Figure 26.

c. Monsoon runoffs for 1966-82 period have been forecasted after updating the parameters. The efficiency

of the regression relationships are as given below:

S. No.	Forecast of monsoon runoff on the basis of total run- off upto the end of	Initial variance	Residual variance	Effici- ency
1. 2. 3. 4.	June July August September	0.390x10 ⁶ 0.390x10 ⁶	0.448×10^{6} 0.114 \times 10^{6} 0.724 \times 10^{5} 0.836 \times 10^{4}	-15.10% 70.8% 81.4% 97.9%


d. The observed monsoon runoff and forecasted monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and (iv) September for the period 1966-82 are plotted in Figure 27.

e. Out of 17 years (1966-82) runoff data used for verification of forecast the regression relationships are abel to identify correctly whether the current year is going to be below normal or above normal for 12 years, 15 years, 16 years and 17 years at the end of June, July, August and September respectively.

The normal, observed and forecasted monsoon runoff from drought pointof view are given in Table 30.

Comment on the Results:

The efficiency of monsoon runoff forecasts are 71%, 81% and 98% at the end of July, August and September respectively. The relationships are also good enough in identifying

YEAR	NORMAL	OBSERVED	D FORECASTED MONSOON RUNOFF IN MM ON THE BASIS OF TOTAL RUNOFF UPTO THE END OF			
			JUNE	JULY	AUGUST	SEPTEMBER
1966	476.3	258.9-	633.2+	422.1-	362.3-	276.0-
1967	465.9	468.8+	409.6-	395.2-	506.8+	490.5+
1968	466.0	302.2-	415.0-	365.3-	376.5-	309.1-
1969	458.9	297.7-	385.8-	368.1-	356.0-	309.8-
1970	452.2	535.5+	512.3*	578.9+	565.7+	552.2+
1971	455.5	565.7+	886.7*	675.8+	620.7+	575.1*
1972	459.8	276.0-	374,.7-	339.6-	277.0-	279.1-
1973	453.0	608.5+	366.9-	462.0+	454.7+	539.4+
1974	458.5	203.9-	390.2-	300.6-	280.3-	205.5-
1975	449.7	484.0+	396.1-	423.2	487.3+	466.4+
1976	450.9	375.8-	376.9-	370.9-	413.3-	401.5-
1977	448.5	448.8+	508.7+	493.9+	462.3+	460.3+
1978	448.5	420.4-	442.8-	399.0-	472.6+	439.4-
1979.	447.6	152.9-	379.1-	277.2-	213.5-	151.9-
1980	439.0	536.2+	560.6+	571.3+	443.3+	563.7+
1981	441.7	303.5-	380.7-	334.4-	309.4-	301.5-
1982	437.9	279.8-	374.2-	262.7-	315.4-	284.9-

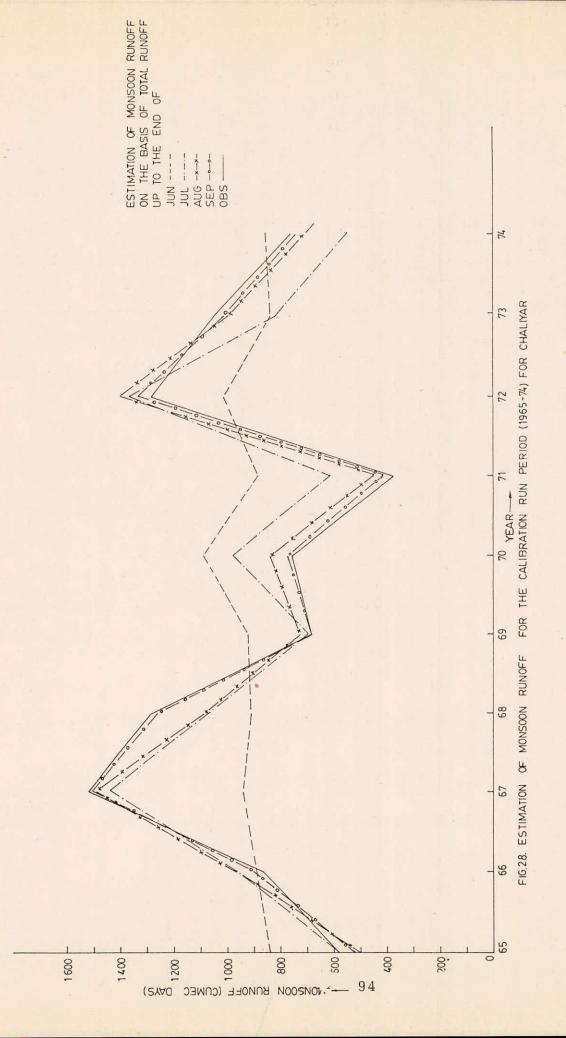
FORECASTING OF MONSOON RUNOFF (1966-82) FROM DROUGHT POINT OF VIEW FOR MAHANADI AT HIRAKUD

Note: IN CALCULATING MONSOON NORMAL RUNOFF FOR A YEAR ALL THE DATA PRIOR TO THAT YEAR STARTING FROM 1946 HAVE BEEN CONSIDERED

2. -VE SIGN SHOWS RUNOFF IS BELOW NORMAL

3. +VE SIGN SHOWS RUNOFF IS, ABOVE NORMAL

whether the current year is going to be below normal or above normal from runoff point of view.


6.11' Chaliyar river

a. Using equations 1-9 and 1965-74 runoff data the following relationships have been developed

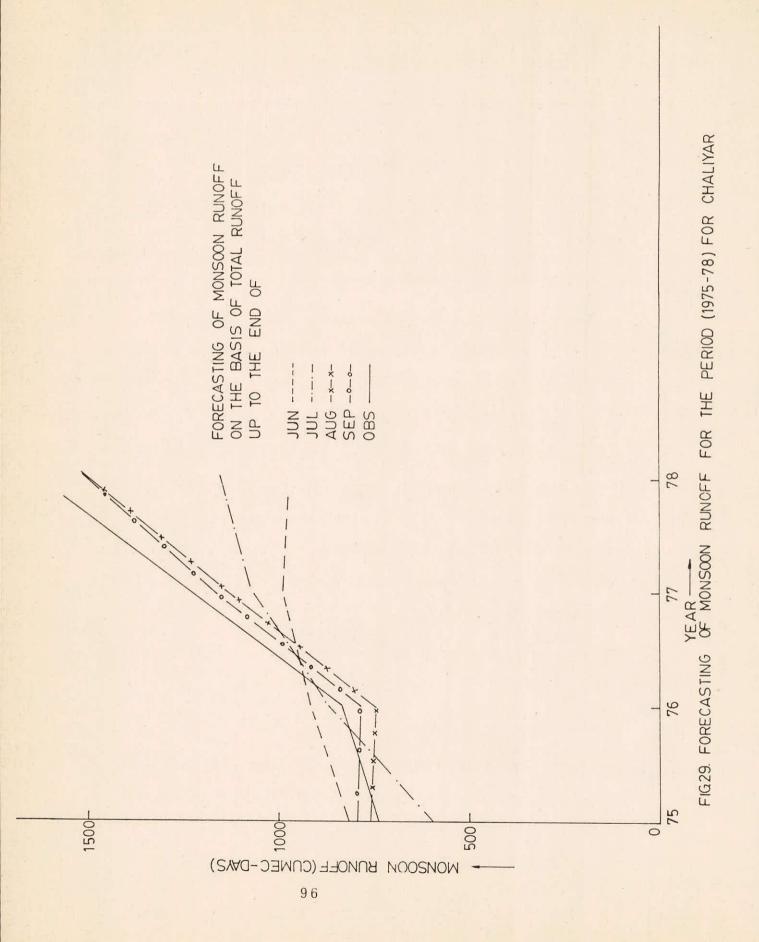
S. No.	Relationship	Initial variance		Efficiency
1.	Q _{mon= 820.26+0.729*}	0.116x10 ⁷	0.111x10 ⁷	4.8%
	Q_{June} $Q_{mon} = 212.35+1.507*$	0.116x10 ⁷	0.271x10 ⁶	76.7%
	Q _{June+July} Q _{mon = 88.28+1.154*}	0.116x10 ⁷	0.879×10^{5}	92.5%
	Q _{June+July+Aug} .			
4.	Q _{mon = 76.31+!.005*} Q _{June+July+Aug.+Sept.}	0.116x10 ⁷	0.923x10 ⁴	99.2%

b. The observed monsoon runoff and estimated monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and (iv) September for the period 1965-74 are plotted in Figure 28.

c. Monsoon runoffs for 1975-78 period have been forecasted after updating the parameters. The efficiency of the regression relationships are as given below.

	Forecast of monsoon runoff on the basis of total run- off upto the end of		fici-
1.	June	$0.564 \times 10^{6} 0.425 \times 10^{6} 24$.7%

	o uno	ten - ten ten ten ten ten ten		
2.	July	0.564x10 ⁶ 0	0.213x10 ⁶	62.2%
3.	, August	0.564×10^{6} C	0.169x10 ⁵	97.0%
4.	September	0.564×10^{6} C	0.105x10 ⁵	98.1%


d. The observed monsoon runoff and forecasted monsoon runoff on the basis of total runoff the end of (i) June, (ii) July, (iii) August and (iv) September for the period 1975-78 are plotted in Figure 29.

e. Out of 4 years (1975-78) runoff data used for verification of forecast the regression relationships are able to identify correctly whether the current year is going to be below normal or above normal for 3 yearas, 4 years, 4 years and 4 years at the end of June, July, August and September respectively.

The normal, observed and forecasted monsoon runoff from drought point of view are given in Table 31.

Comment on the Results:

The efficiency of regression relationships in calibration and forecasting are 4.8%, 76.7%, 92.5%, 99.2% and 24.7%, 62.2%, 97.7% and 98.1% respectively at the end of June, July, August and September. The results are very good

FORECASTING OF MONSCON RUN OFF (1975-78) FRCM DROUGHT POINT OF VIEW FOR CHALIYAR

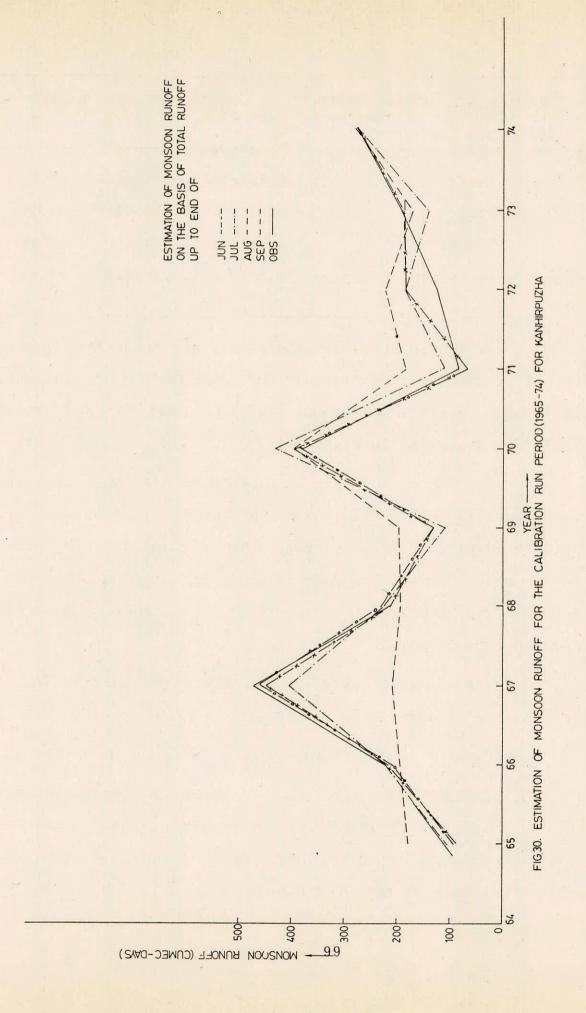
	, —, —, —, —, —, —, —, —, —, —, —, —, —,							
YEAR	NORMAL	OBSERVED	FORECASTE THE BASIS	D MONSOON RUI	NOFF IN CUM NOFF UPTO T	EC DAYS ON HE END OF		
			JUNE	JULY	AUGUST	SEPTEMBER		
1975	920.2	746.7-	827.3-	596.6-	760.1-	789.4-		
1976	904.4	833.9-	928.4+	874.9-	748.9-	782.5-		
1977	898.5	1213.2+	998.1+	1068.3+	1143.8+	1167.3+		
1978	922.7	1578.4+	976.0+	1168.5+	1510.1+	1515.7+		

NCLE :

1. In calculating monsoon normal runoff for a year all the data prior to that year have been considered.

- 2. -ve sign shows runoff is below normal.
- 3. +ve sign shows runoff is above normal.

inspite of the short sample length.


6.12 Kanhirpuzha River

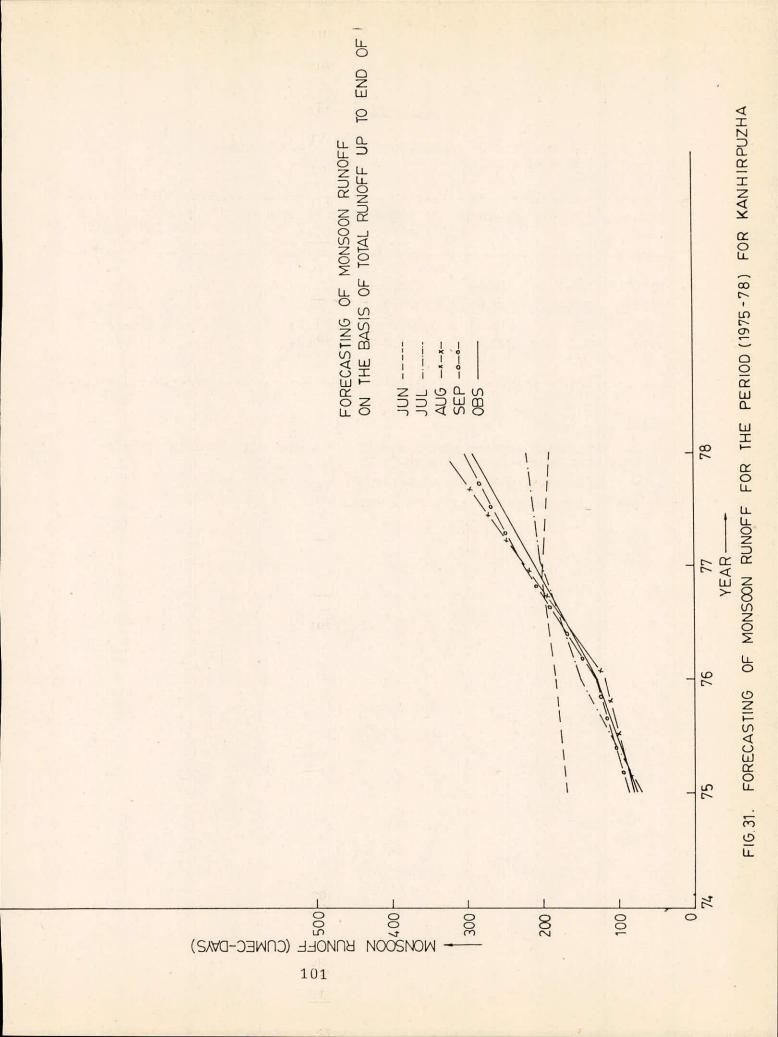
a. Using equations 1-9 and 1965-74 runoff data the following relationships have been developed.

S. No.	Relationship	Initial variance	Residual variance	Efficiency
1.	Q _{mon = 169.07+1.405*} Q _{June}	0.136x10 ⁶	0.947x10 ⁵	30.5%
2.	$Q_{mon} = 21.92+1.774*$ $Q_{June+July}$	0.136x10 ⁶	0.133x10 ⁵	90.2%
3.	$Q_{mon} = 0.11+1.299*$ $Q_{June+July+Aug.}$	0.136x10 ⁶	0.212x10 ⁴	98.4%
4.	Q _{mon = 10.17+1.059*} Q _{June+July+Aug.+Sept.}	0.136x10 ⁶	0.806x10 ³	99.4%

b.The observed monsoon runoff and estimated monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and (iv) September for the period 1965-74 are plotted in Figure 30.

c. Monsoon runoffs for 1975-78 period have been forecasted after updating the parameters. The efficiency of the regression relationships are as given below:

	Forecast of monsoon runoff on the basis of total run- off upto the end of	Initial variance	Residual variance	Efficiency
		5	5	
1.	June	0.351x10 ⁵	0.218x10°	37.8%
2.	July	0.351x10 ⁵	0.558×10^4	84.1%
3.	August	0.351x10 ⁵	0.277×10^4	92.1%
4.	September	0.351x10 ⁵	0.494×10^{3}	98.6%


d. The observed monsoon runoff and forecasted monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and (iv) September for the period 1975-78 are plotted in Figure 31.

e. Out of 4 years (1975-78) runoff data used for verification of forecast the regression relaationships are able to identify correctly whether the current year is going to be below normal or above normal for 3 years, 4 years, 4 years and 4 years at the end of June, July, August and September respectively.

The normal, observed and forecasted monsoon runoff from drought point of view are given in Table 32.

Comment on the Results

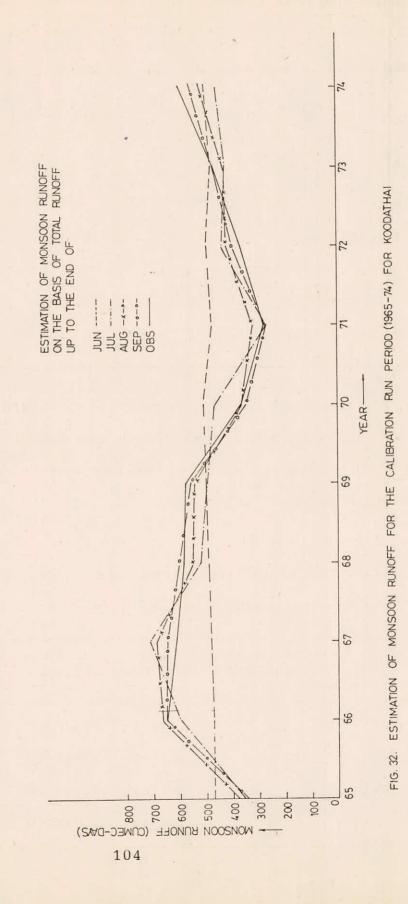
The efficiency of relationships in forecasting are 37.8%, 84.1%, 92.1% and 98.6% respectively. This indicates that Kanhirpuzha monsoon flows can be forecasted with good efficiency even at the end of July.

FORECASTING OF MONSOON RUN OFF (1975-78) FROM DROUGHT POINT OF VIEW FCR KANHIRPUZHA

YEAR	NORMAL	OBSERVED	FORECAS	STED MONSOON	RUNOFF IN C	UMEC DAYS ON THE END OF
			JUNE	JULY	AUGUST	SEPTEMBER
1975	220.2	75.6-	170.2-	72.8-	77.3-	85.4-
1976	207.0	128.4-	184.9-	152.6-	119.2-	128.7-
1977	200.5	210.3+	200.9+	204.1+	238.2+	224.1+
1978	201.2	290.0+	192.1-	219.7+	333.7+	304.4+

NOTE:

- 1. In calculating monsoon normal runoff for a year all the data prior to that year have been considered.
- 2. -ve sign shows runoff is below normal.
- 3. +ve sign shows runoff is above normal.


S. No.	Relationship	Initial variance	Residual variance	Efficiency
1.	Q _{mon = 465.47+0.230*} Q _{June}	0.169x10 ⁶	0.168x10 ⁶	0.6%
2.	$Q_{mon} = 210.10+1.020*$ $Q_{June+July}$	0.169x10 ⁶	0.629x10 ⁵	62.8%
3.	Q _{mon = 100.09+0.961*} Q _{June+July+Aug.+Septeml}		0.201x10 ⁵	88.1%
4.	Q _{mon = 42.05+0.995*} Q _{June+July+Aug.+Sept.}		0.399x10 ⁴	97.6%
		1.50 × X-1		

6.13 Koodathai River : a. Using equations 1-9 and 1965-74 runoff data the following relationships have been developed

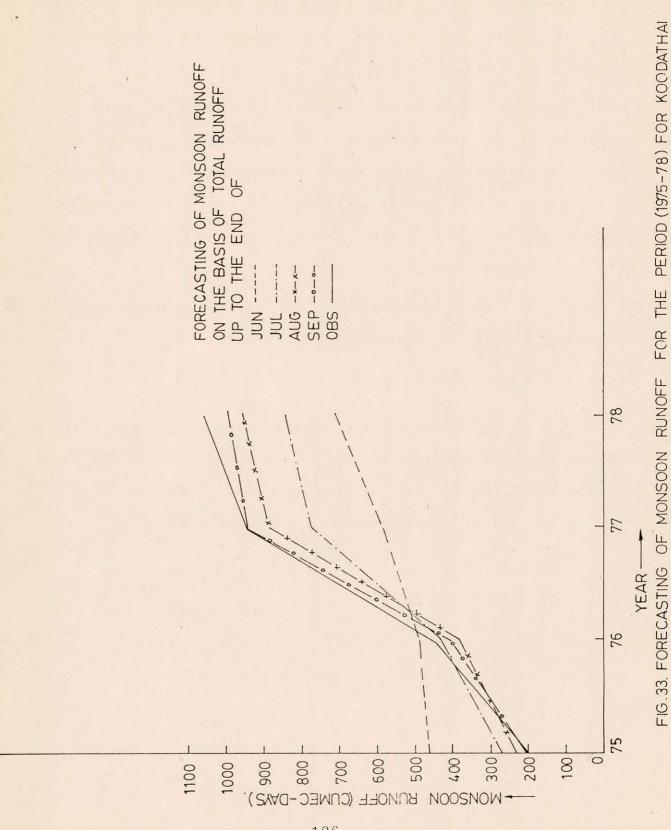
b. The observed monsoon runoff and estimated monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and (iv) September for the period 1965-74 are plotted in Figure 32.

c. Monsoon runoffs for 1975-78 period have been forecasted after updating the parameters. The efficiency of the regression relationships are as given below:

S. No.	Forecast of monsoon runoff on the basis of total run- off upto the end of	Initial variance	Residual variance	Efficiency
1.	June	0.646x10 ⁶	0.330x10 ⁶	48.8%
2.	July	0.646×10^{6}	0.840x10 ⁵	87.0%
3.	Augus t	0.646x10 ⁶	0.199x10 ⁵	96.9%
4.	September	0.646x10 ⁶	0.604×10^4	99.1%

d. The observed monsoon runoff and forecasted monsoon runoff of the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and (iv) September for the period 1975-78 are plotted in Figure 33.

e. Out of 4 years (1975-78) runoff data used for verification of forecast the regression relationships are able to identify correcatly whether the current year is going to be below normal or above normal for 3 years, 4 years, 4 years and 4 years at the end of June, July, August and September respectively.


The normal, observed and forecasted monsoon runoff from drought point of view are given in Table 33.

Comment on the Results:

The efficiency of regression relationships in calibration and forecasting are 0.6%, 62.8%, 88.1%, 97.6% and 48.8%, 87.0%, 96.9% and 99.1% respectively at the end of June, July, August and September. The results are good.

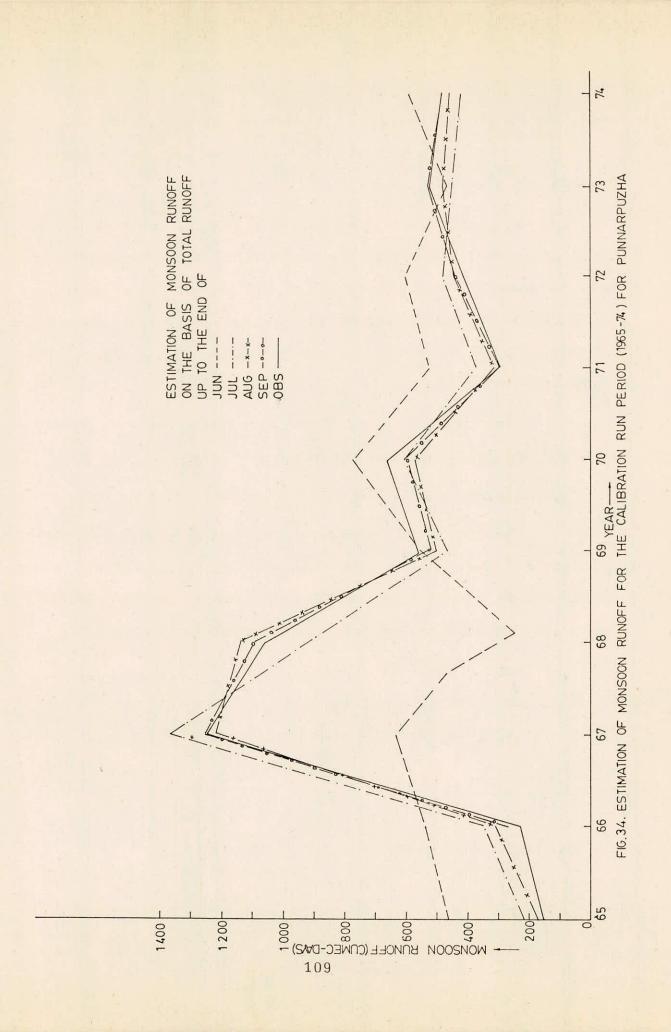
6.14 Punnarpuzha River

a. Using equations 1-9 and 1965-74 runoff data the following relationships have been developed.

FORECASTING OF MONSOON RUNOFF (1975-78) FROM DROUGHT POINT OF VIEW FOR KOODATHAI

YEAR	NORMAL	OBSERVED	FORECASTED MONSOON RUNOFF IN CUMEC DAYS ON THE BASIS OF TOTAL RUNOFF UPTO THE END OF			
			JUNE	JULY	AUGUST	SEPTEMBER
			• -• -• -• -• -• -•			
1975	479.8	196.4-	466.1-	274.6-	228.1-	210.6-
1976	454.0	446.7-	475.9+	436.0-	377.3-	410.0-
1977	453.4	944.4+	586.9+	770.9+	885.5+	944.9+
1978	491.2	1060.9+	701.6+	842.7+	957.9+	993.9+

NOTE :


- 1. In calculating monsoon normal runoff for a year all the data prior to that year have been considered.
- 2. -ve sign shows runoff is below normal.
- 3. +ve sign shows runoff is above normal.

S. No.	Relationship	Initial variance	Residual variance	Efficiency
1.	$Q_{mon} = 423.33 + 2.793 *$	0.111x10 ⁷	0.103x10 ⁷	7.3%
	Q _{June}			
2.	$Q_{mon} = 149.32 + 1.701*$	0.111x10 ⁷	0.851x10 ⁵	92.3%
	Q _{June+July}			
3.	$Q_{mon} = 96.24 + 1.146 *$	0.111x10 ⁷	0.313x10 ⁵	97.2%
	Q _{June+July+August}			
4.	$Q_{mon} = 56.63 + 1.047 *$	0.111x10 ⁷	0.966x10 ⁴	99.1%
	Q _{June+July+Aug.+Sept.}			

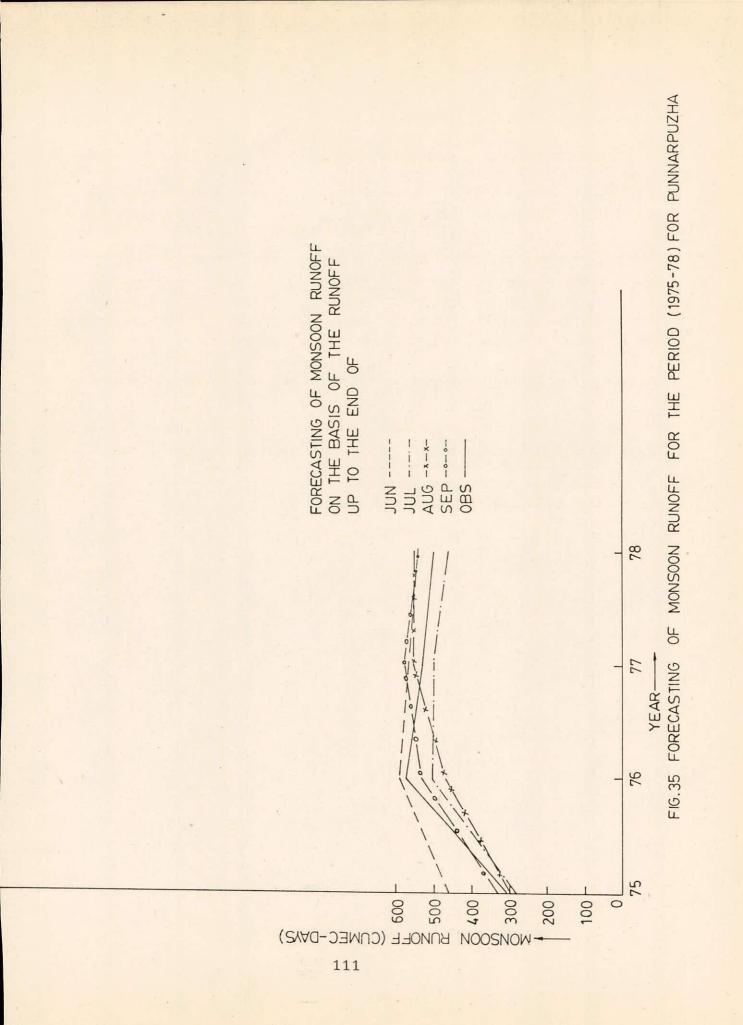
b. The observed monsoon runoff and estimated monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and (iv) September for the period 1965-74 are plotted in Figure 34.

c. Monsoon runoffs for 1975-78 period have been forecasted after updating the parameters. The efficiency of the regression relationships are as given below:

S. No.	Forecast of monsoon runoff on the basis of total run- off upto the end of	Initial Residual Effici- variance variance ency
1.	June	0.691x10 ⁵ 0.263x10 ⁵ 62.0%
2.	July	0.691x10 ⁵ 0.688x10 ⁴ 90.0%
3.	August	0.691x10 ⁵ 0.125x10 ⁵ 81.9%
4.	September	0.691x10 ⁵ 0.416x10 ⁴ 94.0%

d. The observed monsoon runoff and forecasted monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (August), and (September) for the period 1975-78 are plotted in Figure 35.

e. Out of 4 years (1975-78) runoff data used for verification of forecast the regression relationships are able to identify correctly whether the current year is going to be below normal or above normal for 3 years, 3 years, 1 years and 2 years at the end of June, July, August and September respectively.


The normal, observed and forecasted monsoon runoff from drought point of view are given in Table 34.

Comment on the Results:

The efficiency of regression relationships in calibration and forecasting are 7.3%, 92.3%, 97.2%, 99.1% and 62.0%, 90.0%, 81.9% and 94.0% respectively at the end of June, July, August and September. The results are good.

6.15 Gobing Sagar at Bhakra

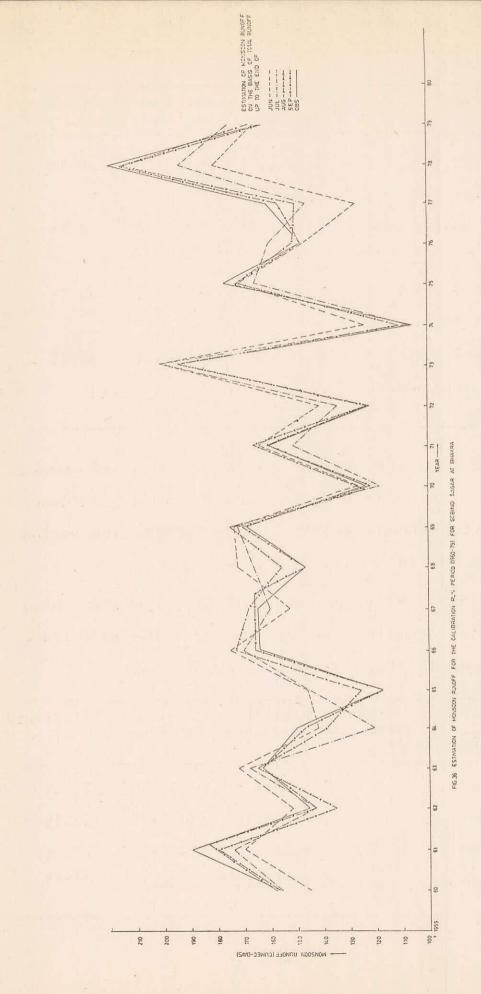
a. Using equations 1-9 and 1960-79 runoff data the following relationships have been developed:

FORECASTING OF MONSOON RUN OFF (1975-78) FROM DROUGHT POINT OF VIEW FOR PUNNARPUZHA

YEAR	NORMAL	OBSERVED	FORECASTED MONSOON RUN OFF IN CUMEC DAYS ON T BASIS OF TOTAL RUNOFF UPTO THE END OF			
			JUNE	JULY	AUGUST	SEPTEMBER
1975	564.2	306.1-	455.7-	278.8-	297.9-	333.8-
1976	540.7	567.8+	589.3+	506.2-	474.2-	533.0-
1977	543.0	531.8-	569.8+	501.6-	556.8+	558.1+
1978	542.1	502.8-	547.3-	464.4-	557.9+	541.5-

NOTE:

1. In calculating monsoon normal runoff for a year all the data prior to that year have been considered.


- 2. -ve sign shows runoff is below normal.
- 3. +ve sign shows runoff is above normal.

S. No.	Relationship	Initial variance	Residual Efficiency variance
1.	Q _{mon = 87278.3+2.149*} Q _{June}	0.141x10 ¹¹	0.618x10 ¹⁰ 56.3%
2.	$Q_{mon} = 44749.8+1.463*$ $Q_{June+July}$	0.141x10 ¹¹	0.420x10 ¹⁰ 70.3%
з.	$Q_{mon} = 10007.7 + 1.193 *$	0.141x10 ¹¹	0.696x10 ⁹ 93.1%
4.	Q _{June+July+Aug} . Q _{mon = 996.7+1.056*}	0.141×10^{11}	0.518x10 ⁸ 99.6%
	Q _{June+July+Aug.+Sept.}	0.141/10	0.010/10 99.04

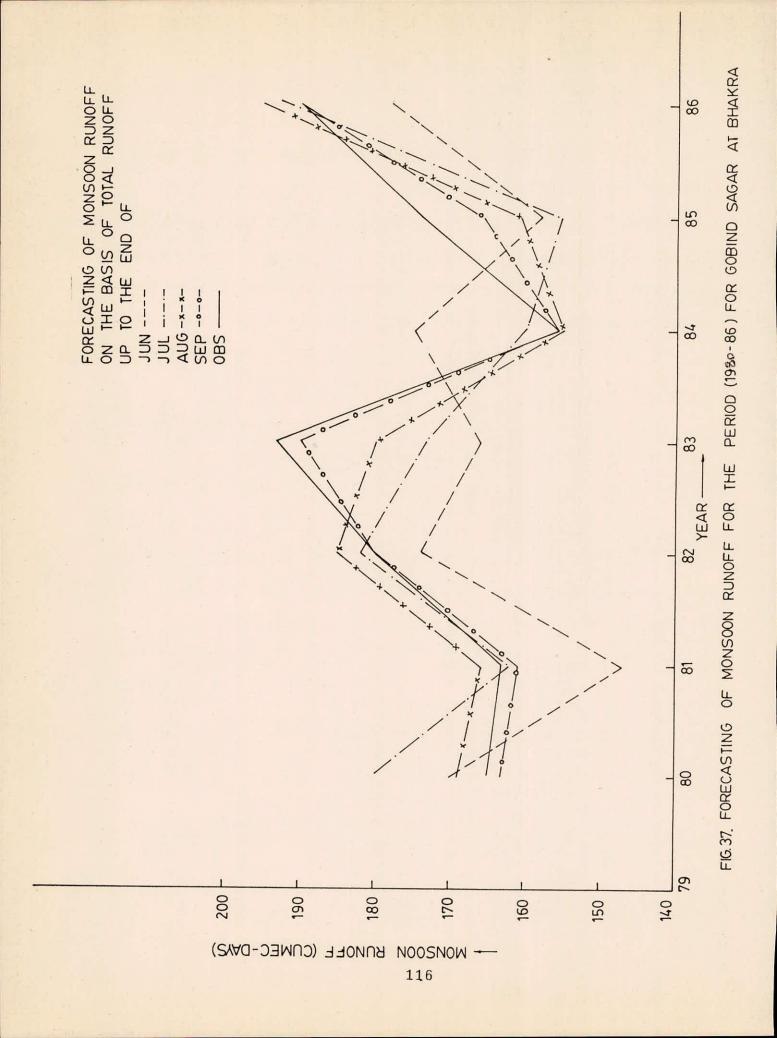
b. The observed monsoon runoff and estimated monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and (iv) September for the period 1960-79 are plotted in Figure 36.

c. Monsoon runoffs for 1980-87 period have been forecasted after updating the parameters. The efficiency of the regression relationships are as given below:

S. No.	Forecast of monsoon runoff on the basis of total run- off upto the end of	Initial variance	Residual variance	Efficiency
1.	June	0.289x10 ¹⁰	0.179×10^{10}	38.0%
2.	July	0.289×10^{10}	0.123x10 ¹⁰	57.3%
3.	August	0.289×10^{10}	0.400x10 ⁹	86.2%
4.	September	0.289×10^{10}	0.756x10 ⁸	97.4%

d. The observed monsoon runoff and forecasted monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and (iv) September for the period 1980-87 are plotted in Figure 37.

e. Out of a year (1980-87) runoff data used for verification of forecast the regression relationships are able to identify correctly whether the current year is going to be below normal or above normal for 4 years, 6 years, 7 years and 7 years at the end of June, July, August and September respectively.


The normal, observed and forecasted monsoon runoff from drought point of view are given in Table 35.

Comment on the Results:

The efficiency of regression relationships in calibration and forecasting are 56.3%, 70.3%, 93.1%, 99.6% and 38.0%, 57.3%, 86.2% and 97.4% respectively at the end of June, July, August and September. The results are good.

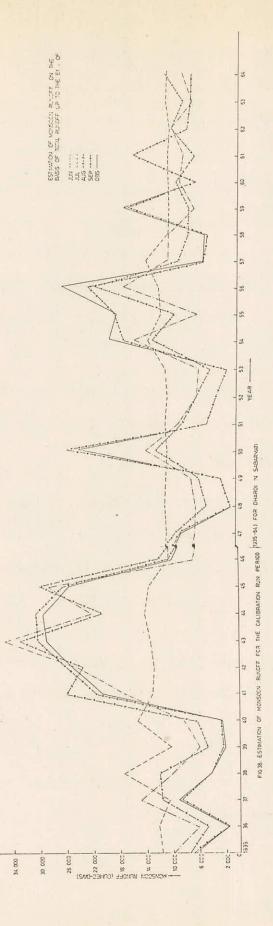
6.16 Sabarmati at Dharoi

a. Using equations 1-9 and 1935-64 runoff data the following relationships have been developed:

FORECASTING OF MONSOON RUN OFF (1980-86) FROM DROUGHT POINT OF VIEW FOR GOBIND SAGAR AT BHAKRA

YEAR	NORMAL	OBSERVED			RUN OFF IN CUS RUNOFF DATA TH	
			JUNE	JULY	AUGUST	SEPTEMBER
1980	157228.4	165209.0+	170562.8+	180346.5+	169329.3+	163610.1+
1981	157608.4	163186.0+	147919.2-	16 2086 . 3+	166630.8+	16 1807. 2+
1982	157861.9	180429.0+	174480.4+	182839.9+	185207.4+	180883.4+
1983	158843.1	193404.0+	166395.8+	168403.2+	180782.9+	190856.9+
1984	160 283.1	156999.0-	175880.3+	159971.2-	155188.6-	156872.3-
1985	160151.8	174519.0+	158338.4-	155610.6-	161889.5+	166490.8+
1986	160704.3	190291.0+	178164.6+	192671.8+	195404.2+	190142.2+

NOTE :


- 1. In calculating monsoon normal runoff for a year all the data prior to that year have been considered.
- 2. -ve sign shows runoff is below normal.
- 3. +ve sign shows runoff is above normal.

S. No.	Relationships	Initial variance	Residual variance	Efficiency
1.	Q _{mon = 10330.39++3.888*} Q _{June}	0.259x10 ¹⁰	0.250x10 ¹⁰	3.4%
2.	Q _{mon = 5401.89+1.549*}	0.259×10^{10}	0.100x10 ¹⁰	61.3%
	Q _{June+July}			
3.	$Q_{mon} = 3547.52 + 1.549 *$	0.259x10 ¹⁰	0.810x10 ⁹	68.7%
	Q _{June+July+Aug} .			
4.	$Q_{mon} = 113.6 + 1.046^*$	0.259x10 ¹⁰	0.245x10 ⁸	99.1%
	Q _{June+July+Aug.+Sept.}			

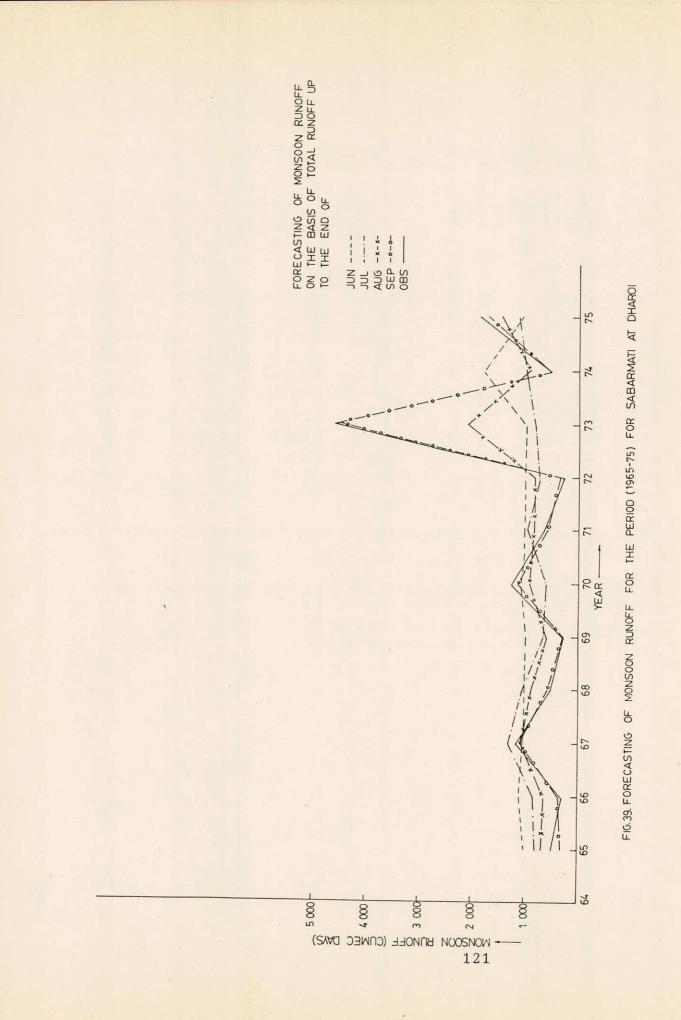
b. The observed monsoon runoff and estimated monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and (iv) September for the period 1935-64 are plotted in Figure 38.

c. Monsoon runoff for 1965-75 period have been forecasted after updating the parameters. The efficiency of the regression relationships are as given below:

S. No.	Forecast of monsoon runoff on the basis of total run- off upto the end of	Initial Residual Effici- variance variance ency
1.	June	$0.164 \times 10^{10} 0.178 \times 10^{10} - 8.7\%$
2.	July	$0.164 \times 10^{10} 0.167 \times 10^{10} - 2.1\%$
3.	August	0.164x10 ¹⁰ 0.703x10 ⁹ 57.1%
4.	September	0.164x10 ¹⁰ 0.774x10 ⁷ 99.5%

d. The observed monsoon runoff and forecasted monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and (iv) September for the period 1965-75 are plotted in Figure 39.

e. Out of 11 years (1965-75) runoff data used for verification of forecast the regression relationships are able to identify correctly whether the current year is going to be below normal or above normal for 6 years, 9 years, 10 years and 11 years at the end of June, July, August and September respectively.


The normal, observed and forecasted monsoon runoff from drought point of view are given in Table 36.

Comment on the Results

The efficiency of regression relationships in calibration and forecasting are 3.4%, 61.3%, 68.7%, 99.1% and -8.7%, -2.1%, 57.1%, and 99.5% respectively at the end of June, July, August and September. The results are poor. The flows for Sabarmati at Dharoi are highly variable. The reliability of the flow data could not be further investigated because of non-availability of the required data.

6.17 Pong Reservoir

a. Using equations 1-9 and 1974-83 runoff data the following relationships have been developed:

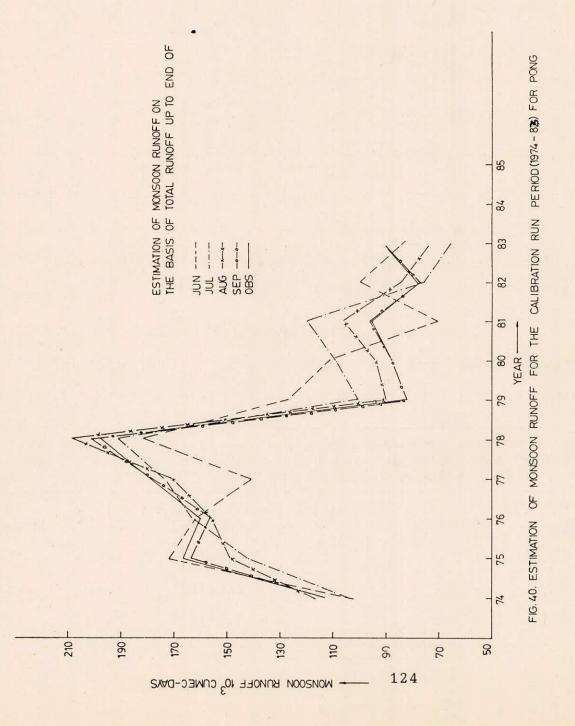
FORECASTING OF MONSOON RUNOFF (1965-75) FROM DROUGHT POINT OF VIEW FOR SABARMATI AT DHARDI

YEAR	NORMAL	OBSERVED	FORECASTE THE BASIS			SEC DAYS ON THE END OF
			JUNE	JULY	AUGUST	SEPTEMBER
1965	11693.0	5881.0-	10369.5-	8081.7-	6865.8-	3530.9-
1966	11505.5	3262.0-	12834.2+	8693.9-	6363.4-	3614.8-
1967	11247.9	11742.0+	10651.5-	13045.5+	12047.0+	11767.6+
1968	11262.9	5321.0-	10045.0-	10519.1-	8899.0-	5634.6-
1969	11088.1	2619.0-	10045.8-	6761.2-	5587.5-	2919.6-
1970	10846.2	12874.0+	12131.1+	6001.0-	9633.5-	12435.8+
1971	10902.5	6252.0-	9697.0-	9576.7-	8144.3-	6579.4-
1972	10776.8	2600.0-	10564.4-	7317.2-	5847.3-	2902.5-
1973	10561.6	45919.0+	9270.8-	7905.3-	20971.6+	45087.2+
1974	11468.2	5074.0-	16166.6+	9875.7-	8559.8-	5191.4-
1975	11308.4-	18004.0+	11126.3-	11438.5+	14635.5+	17107.3+

NOTE :

1. In calculating monsoon normal runoff for a year all the data prior to that year have been considered.

2. -ve sign shows runoff is below normal.

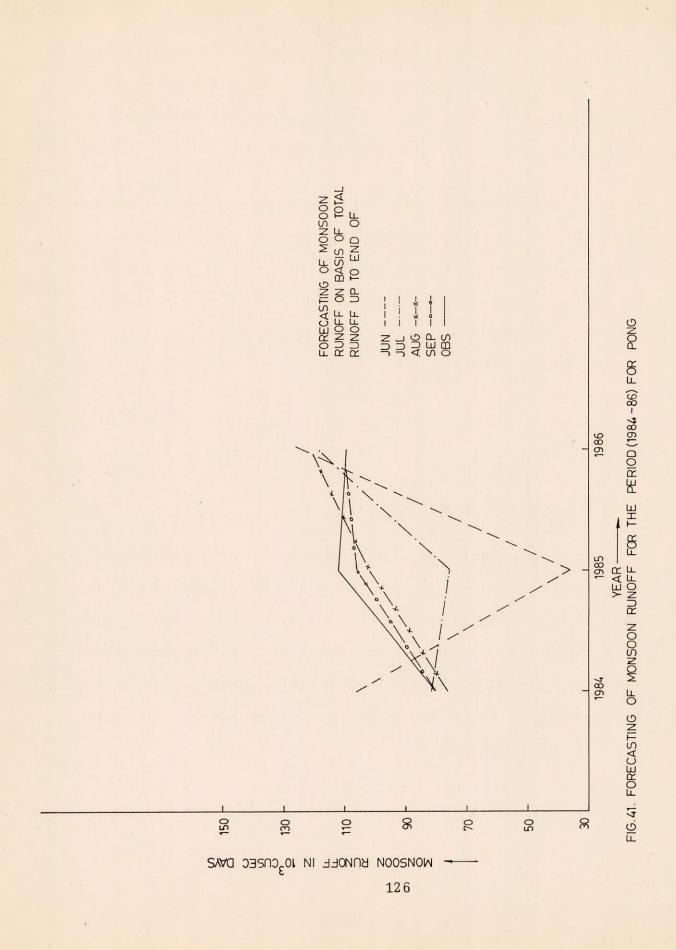

3. +ve sign shows runoff is above normal.

S./ No.	Relat	ionship	Initial Variance	Residual variance	Efficiency
1.	Q _{mon =}	7831.9+8.910*	0.188x10 ¹¹	0.564x10 ¹⁰	70.0%
	Q _{June}			10	
2.	1.2.10	14182,74+2.047*	0.188x10 ¹¹	0.307.10	83.7%
	Q _{June+J}	July			
3.	Q _{mon =}	3718.59+1.279*	0.188×10^{11}	0.115x10 ¹⁰	93.9%
	Q _{June+J}	July+Aug.			
4.	Q _{mon =}	-1786.7+1.063*	0.188x10 ¹¹	0.327x10 ⁸	99.8%
	Q _{June+J}	July+Aug.+Sept.			

b. The observed monsoon Funoff and estimated monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and (September) for the period 1974-83 are plotted in Figure 40.

c. Monsoon runoffs for 1984-86 period have been forecasted after updating the parameters. The efficiency of the regression relationships are as given below:

S. No.	Forecast of monsoon runoff on the basis of total run- off upto the end of	Initial variance	Residual variance	Effici- ency
1.	June	0.220x10 ¹⁰	0.654×10^{10}	-196.6%
2.	July	0.220x10 ¹⁰	0.143x10 ¹⁰	35.0%
3.	August	0.220x10 ¹⁰	0.252x10 ⁹	88.5%
4.	September	0.220×10^{10}	0.276x10 ⁸	98.7%


d. The observed monsoon runoff and forecasted mon soon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August and (iv) September for the period 1984-86 are plotted in Figure 41.

e. Out of 3 years (1984-86) runoff data used for verification of forecast the regression relationships are able to identify correctly whether the current year is going to be below normal or above normal for 2 years, 2 years and 3 years and 3 years at the end of June, July, August and September respectively.

The normal, observed and forecasted monsoon runoff from drought point of view are given in Table 37.

Comment on the Results:

The efficiency of regression relationships in calibraton and forecasting are 70.0%, 83.7%, 93.9%, 99.8% and 196.6%, 35.0%, 88.5%, 98.7% respectively at the end of June, July, August and September respectively. The monsoon runoff forecasts on the basis of June flows are highly unreliable. The forecasts based on total flow upto the end of August and September are good.

FORECASTING OF MONSCON RUNOFF (1984-1986) FROM DROUGHT POINT OF VIEW FOR PONG

FORECASTED MONSOON RUNOFF IN CUSEC DAYS ON YEAR NORMAL OBSERVED THE BASIS OF TOTAL RUNOFF UPTO THE END OF JUNE JULY AUGUST SEPTEMBER 1984 125121.6 80244.0-106349.8-80244.0- 76226.6-80596.9-1985 121041.8 112154.0-36971.1-112154.0- 102676.6-106929.8-124036.8+ 110229.8-1986 120301.1 109748.0-109748.0- 121852.4+

NOTE:

1. In calculating monsoon normal runoff for a year all the data prior to that year have been considered.

2. -ve sign shows runoff is below normal.

3. +ve sign shows runoff is above normal.

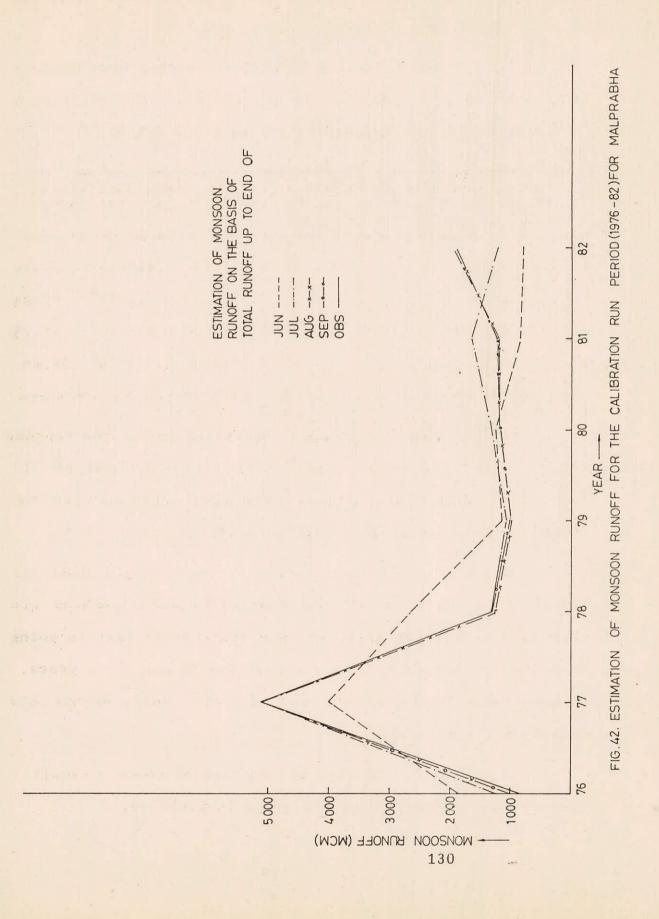
6.18 Malprabha Reseravoir

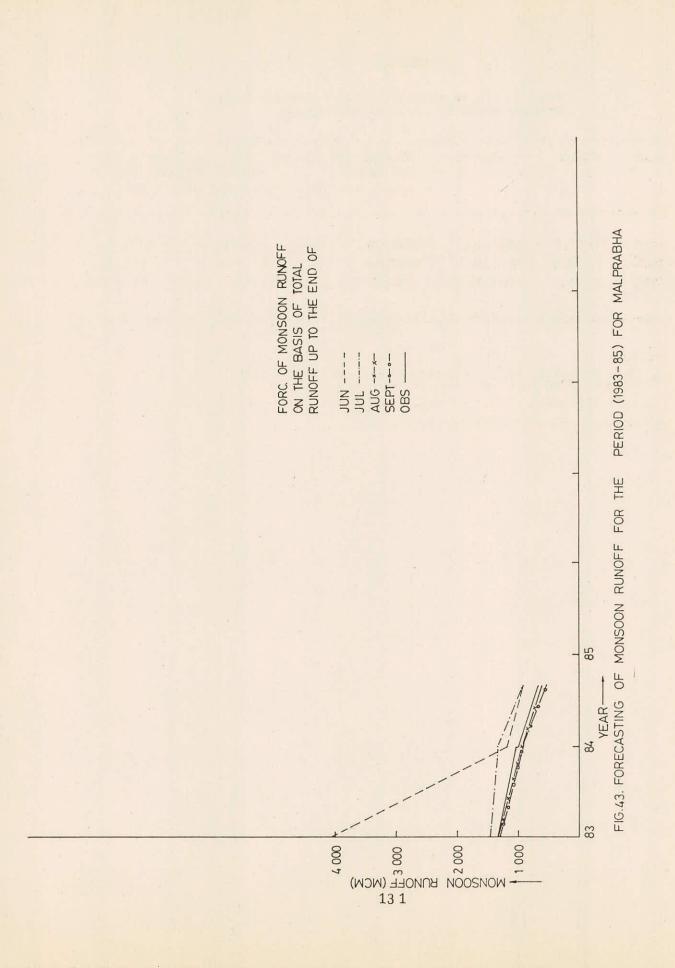
a. Using equations 1-9 and 1976-82 runoff data the following relationships have been developed:

WITH STREET	water and the second			
S. No.	Relationship	Initial variance	Residual variance	Efficiency
1.	Q _{mon=274.85+10.226*}	0.133x10 ⁸	0.520x10 ⁷	61.0%
	Q _{June}			
2.	Q _{mon=821.68+0.910*}	0.133x10 ⁸	0.610x10 ⁶	95.4%
	Q _{June+July}			
3.	Q _{mon=204.71+1.004*}	0.133x10 ⁸	0.123x10 ⁵	99.9%
	Q _{June+July+Aug} .			
4.	Q _{mon=42.98+1.008*}	0.133x10 ⁸	0.981x10 ³	99.99%
	Q _{June+July+Aug.+Septemb}	er		

b. The observed monsoon runoff and estimated monsoon runoff on the basis of total runoff upto the end of (i)

June, (ii) July, (iii) August, and (iv) September for the period 1976-82 are plotted in Figure 42.


c. Monsoon runoffs for 1983-85 period have been forecasted after updating the parameters. The efficiency of the regression relationships are as given below:


No. d	Forecast of monsoon runc on the basis of total ru upto the end of	
1.	June	$0.177 \times 10^7 0.810 \times 10^7 - 357.2\%$
2.	July	0.177x10 ⁷ 0.215x10 ⁶ 87.9%
з.	August	$0.177 \times 10^7 0.454 \times 10^4 99.7\%$
4.	September	0.177x10 ⁷ 0.431x10 ⁴ 99.8%

d. The observed monsoon runoff and forecasted monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and (iv) September for the period 1983-85 are plotted in Figure 43.

e. Out of 3 years (1983-85) runoff data used for verification of forecast the regression relationships are able to identify correctly whether the current year is going to be below normal or above normal for 2 years, 3 years, 3 years and 3years at the end of June, July, August and September respectively.

The normal, observed and forecasted monsoon runoff from drought point of view are given in Table 38.

FORECASTING OF MONSOON RUNOFF (1983-85) FROM DROUGHT POINT OF VIEW FOR MALPRABHA

			, -, -, -, -			
YEAR	NORMAL	OBSERVED		ED MONSOON S OF TOTAL	RUNOFF IN CU RUNOFF UPTO	
			JUNE	JULY	AUGUST	SEPTE/BER
				• - • - • - • - • - •		
1983	1797.7	1281.2-	4109.6+	1446.9-	1319.7-	1289.7-
1984	1733.2	1001.0-	1177.6-	1333.2-	991.7-	946.7-
1985	1651.8	667.4-	934.5-	945.3-	721.9-	631.5-

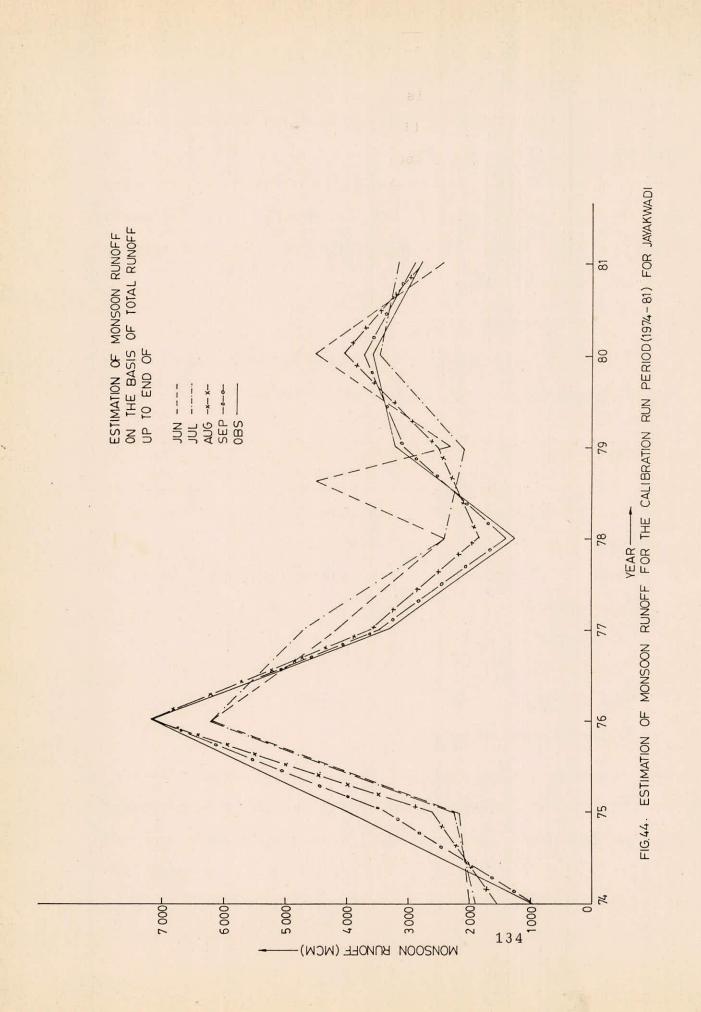
NOTE :

1. In calculating monsoon normal runoff for a year all the data prior to that year have been considered.

2. -ve sign shows runoff is below normal.

3. +ve sign shows runoff is above normal.

Comment on the Results:


The efficiency of regression relationships in calibration and forecasting are 61.0%, 95.4%, 99.7%, 99.99% and -357.2%, 87.9%, 99.7% and 99.8% respectively at the end of June, July, August and September. The forecasts based on July, August, and September are very good inspite of short sample length.

6.19 Jayakwadi Reservoir

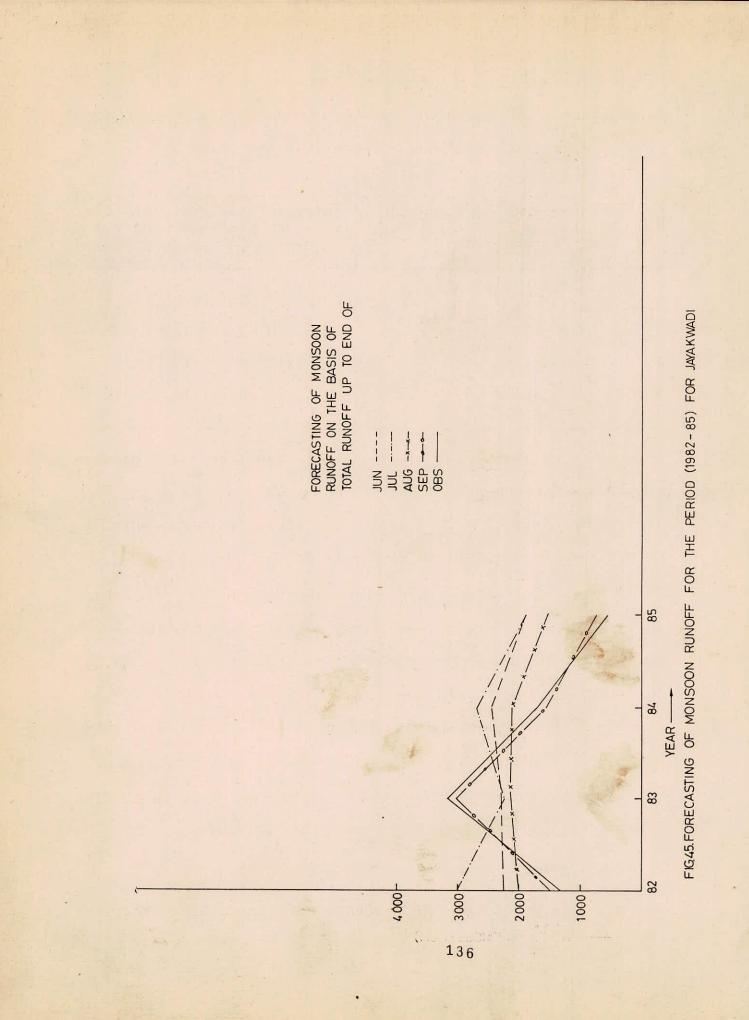
a. Using equations 1-9 and 1974-81 runoff data the following relationships have been developed.

		and the second se	and the second	
S. No.	Relationship	Initial variance	Residual variance	Effici- ency
1.	$Q_{mon} = 1726.26+6.419*$	0.254x10 ⁸	0.899x10 ⁷	64.7%
	Q _{June}			
2.	Q _{mon = 1779.9+1.483*}	0.254x10 ⁸	0.931x10 ⁷	63.4%
	Q _{June+July}			
з.	$Q_{mon} = 1247.97+0.926*$	0.254x10 ⁸	0.312x10 ⁷	87.7%
	Q _{June+July+Aug} .	*		
4.	$Q_{mon} = 326.57 + 0.976 *$	0.254x10 ⁸	0.310x10 ⁶	98.8%
	Q _{June+July+Aug.+Sept.}			

b. The observed monsoon runoff and estimated monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and September for the period 1974-81 are plotted in Figure 44.

c. Monsoon runoffs for 1982-85 period have been forecasted after updating the parameters. The efficiency of the regression relationships are as given below:

S. No.	Forecast of monsoon runoff on the basis of total run- off upto the end of	Initial variance	Residual variance	Effici- ency
1.	June	0.123×10^8	0.714x10 ⁷	42.1%
2.	July		0.420x10 ⁷	
3.	August		0.295x10 ⁷	
4.			0.711x10 ⁵	
4.	September	0.123X10	0./11X10	33.4%


d. The observed monsoon runoff and forecasted monsoon runoff on the basis of total runoff upto the end of (i) June, (ii) July, (iii) August, and (iv) September for the period 1982-85 are plotted in Figure 45.

e. Out of 4 years (1982-85) runoff data used for verification of forecast the regression relationships are able to identify correctly whether the current year is going to be below normal or above normal for 3 years, 3 years, 3 years and 3 years at the end of June, July, August and September respectively.

The normal, observed and forecasted monsoon runoff from drought point of view are given in Table 39.

Comment on the results:

The efficiency of regression relationships in cali-

FORECASTING OF MONSOON RUNOFF (1982-85) FROM DRCUGHT POINT OF VIEW FOR JAYAKWADI

YEAR	NORMAL	DBSERVED	FORECASTED MONSOON RUNOFF IN MCM ON THE BASIS OF TOTAL RUNOFF UPTO THE END CF				
			JUNE	JULY	AUGUST	SEPTEMBER	
	•-•-•-•						
1982	3291.7	1266.0-	3016.5-	2242.6-	2016.6-	1403.2-	
1983	3066.6	3170.0*	2255.9-	2295.3-	2146.6-	3039.3-	
1984	3077.0	1455.0-	2685.1-	2448.1-	2103.0-	1549.1-	
1985	29 29.5	565.0-	1880.8-	1788.5-	1522.1-	727.2-	

NOTE :

1. In calculating monsoon normal runoff for a year all the data prior to that year have been considered.

2. -ve sign shows runoff is below normal.

3. +ve sign shows runoff is above normal.

brition and forecasting are 64.7%, 63.4%, 87.7%,98.8% and 42.1%, 65.9%, 76.1% and 99.4% respectively at the end of June, July, August, September and October. The results are good.

The results of forecasting of monsoon flows for various rivers/reservoirs are summarized in Table 40.

Efficiency in % in forecasting of mencovirult of the basis of total runoff upto $\frac{1}{120}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ Not virgin Not virgin Not virgin 71.6 91.4 77.6 95.2 91.9 98.5 0*76 97.4 99.5 4.66 92.4 98.6 1.66 a. 06 98.4 6.72 98.1 98.6 98.7 58.0 24.0 50.5 96.9 86.2 88.5 20.4 92.8 97.0 92.1 81.9 57.1 76.1 85.4 75.1 35.1 84.7 81.4 1.50 42.6 54.4 -15.11 70.76 00.00 16.2 62.2 57.3 84.1 87.0 -2.1 3.6 17.8 21.0 9.2 57.9 9.7 -195.6 35.0 62.9 87.0 -2.5 62.0 -3.1 29.2 -9.9 31.7 24.7 37.8 48.84 -38.0 -8.7 42.1 1978-85 26.1 6.4--5.1 -357 1975-85 -118.9 Ycars Period 1982-85 1977-85 1976-83 1975-85 1977-85 1976-85 1973-83 1976-86 1966-82 1975-78 1975-78 1975-78 1965-75 1984-86 1983-85 1975-78 1980-87 Length of data FORECALTING OF MONSOON FLOWS FOR VARIOUS RIVERS/RESERVCINS ω F ÷ 6 ω σ ę Ξ 11 F 7 Efficiency in % in Estimation of monsoon runoff on the basis of total runoff upto the end of June July Aug. Sept. 66.99 ******66 74.3 98.3 76.4 99.2 98.8 98.5 99.2 91.6 99.1 9.66 99.1 99.8 98.8 96.0 91.2 93.4 75.6 84.2 78.5 52.5 94.3 92.5 88.1 97.2 93.1 2.99 87.7 58.9 64.3 43.3 92.7 78.4 84.2 98.4 68.7 93.9 9.50 63.4 57.0 27.2 39.1 35.8 51.0 33.5 25, 3 19.1 73.0 79.6 90.2 62.8 92.3 70.3 61.3 83.7 76.7 TABLE-40 28.2 61.0 67.9 33.0 14.1 21.3 62.7 70.07 3.8 7.4 0.3 0.2 4.8 30.4 0.6 7.3 56.3 3.4 1974-1981 64.7 1976-82 1966-75 1966-75 1963-72 1961-75 1946-65 1965-74 1965-74 1965-74 1965-74 1960-79 1935-64 1974-83 1965-74 1967-76 1965-74 1967-76 1968-77 Years Period Length of data 2 10 15 20 10 10 10 20 8 10 8 9 9 P 2 9 2 40 ~ 12,092 22,856 33,916 69,863 14,582 23,500 895 23,140 83,400 448.15 121.25 11,660 71.77 468.9 56876 5540 12562 21750 C. 42) (Km²) 2176 Tungbhadra at Haralhall1 Gandhi Sagar Reservoir Gobindsagar at Bhakra Mahanadi at Hirakud Sabarmati at Dharoi Bhima at Narsingpur Bhima at wodakabal Bhima at Takali Bhima at Yadgir Koyna Reservoir Pong Reservoir Name of River / Bhima at Dhond Tungbhadra at Tramapuram Punnarpuzha Kanhirpuzha Kooda Thai Reservoir Malprabha Jayakwad1 Ghal Iyar 14. 11. 12. 15. 10. 13. 16. 17. 19. sl. 18. ÷ 2. ň ...6 4. ŝ .9 7. 8.

7.0 SUGGESTIONS FOR FURTHER WORKS

Keeping in view the comments received from the members of the working group, on the report, the methodology developed for monsoon flow forecasting may further be refined along the following lines by future workers.

- i) The 95% confidence limits for the regression relationships can also be estimated. Haan (1977) gives details for the computation of confidence limits on regression line and individual estimates.
- ii) Statistical distribution and significance of fitted parameters should also be tested in order to make the analysis more sound. Hann (1977) is a good reference for the same.
- iii) Suitability of multiple regression relationships correlating monsoon flows with flow, rainfall and catchment characteristics etc. should be explored and comparison between simple and multiple regression relationships be made.
- iv) Criteria may be developed to test the consistency between parameters of successive relationships.
- v) The gradation of the efficiency of regression relationships in estimation and forecasting, as very good, good satisfactory or poor is a somewhat subjective criteria. A more quantitative criteria could be developed for this purpose.

vi) Suitable methodology should be developed to deal with non-virgin flows, as in some cases, there will be diversion schemes upstream of the gaugedischarge site which will vitiate the flow conditions at G-D site. As the catchment area increases the flow conditions will get affected more due to further additions in diversion. In such cases it may be desirable to forecast the monsoon rainfall first and from the rainfall corresponding runoff may be obtained with suitable corrections for upstream diversion schemes. This needs further investigation using appropriate field data.

8.0 CONCLUSIONS

The technique for monsoon flow forecasting based on regression relationships has been applied to the data of 19 reservoirs/river sites. The catchment areas for these reservoirs/river sties-varied from 71.77 km² to 83400 km². The length of data also varies from 10 years to 41 years. Based on the analysis of these data following conclusions can be drawn.

- 1. The technique for monsoon flow forecasting based on regression relationships is a simple approach and gives quite accurate forecast of monsoon flows at the end of August and September.
- For application of the technique the flows should be virgin.
- 3. For better application of the technique the data length should be adequate preferably more than 30 years. The parameters of the regression relationships obtained from the small samples are generally not stable.
- 4. The efficiency of forecast should increase with the increase in drainage area of the river basin as the flows will be more stable. This is not appearing from the analysis of the data. This may be because of (i) possible diversions in the basin as the drainage area increases.(ii)short sample length.

The results and conclusions are based on the analysis of data of only 19 sites. Out of 19 sites only two cites are having data for more than 30 years. In order to a live at definite conclusion the data of other river basics and reservoirs should be analysed on the similar lines.

9.0 ACKNOWLEDGEMENTS

The author extends his heartiest thanks to Dr. Satish Chandra, Direcator, National Institute of Hydrology for providing guidance and constant encouragement in carrying out the study. The author is thankful to Dr. S M Seth for providing useful suggestions to improve the work. The assistance provided by Shri Pankaj Garg, R.A. and Shri Digamber Singh, RA. in tabulation and plotti of the results is thankfully acknowledged.

REFERENCES:

- 1. Das, P.K. (1986), 'Short and Long Range Monsoon Prediction in India', Chapter in 'Monsoons' edited by Fein, J.S. and Stephens, P.L., John Wiley and Sons, pp. 549-578.
- 2. Goel, N.K., (1986), 'Simple Technique for Forecasting of monsoon Rainfall and Runoff and Application to Mahanadi River at Hirakud', Technical Report, TR-17, National Institute of Hydrology, Roorkee.
- Haan, C.T. (1977), 'Statistical Method in Hydrology' ihe Iowa State University Press, Ames, Iowa 50010, U.S.A.
- 4. Gagannathan, P. (1960), 'Seasonal Forecasting in India - A Review', IMD, Scientific Publication No. DG 082/650, New Delhi.
- 5. Rao, K.L. (1979), 'India's Water Wealth', Orient Longman Limited, New Delhi, 207 pp.
- 6. Rao, K.N. (1964), 'Seasonal Forecasting in India, Tech. Report No. 66, W.M.O. Geneva, pp. 17-30.
- 7. Rao, K.N. (1972), 'Agroclimatic Classification of India', IMD, Monograph on Agroclimatology, No.4, New Delhi, 51 pp.