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CALIBRATION AND VALIDATION IN HYDROLOGIC MODELING 

INTRODUCTION 

Once one or more models have been chosen for consideration in a project, it is necessary 
to address the problem of parameter calibration. In general, it is not possible to measure 
the values of model parameters or estimate them a priori. Studies that have attempted this 
have generally found that, even after intensive of measurements of parameter values, the 
results have not been entirely satisfactory. Prior estimation of feasible ranges of 
parameters also often results in ranges of predictions that are wide and may still not 
encompass the measured responses all of the time. 

There are two major reasons for these difficulties in calibration. The first is that 
the scale of the measurement techniques available is generally much less than the scale at 
which parameter values are required. For example, hydraulic conductivity is a parameter 
which is frequently found in hydrologic models. Techniques to measure hydraulic 
conductivities of the soil generally integrate over areas of less than 1 m2. However, even 

the most finely distributed models require values that effectively represent the response of 

an element with an area of 100 m2  or, in many cases, a much larger area. For saturated 

flow, there have been some theoretical developments that suggest how such effective 
values might change with scale, given some underlying knowledge of the fine-scale 
structure of the conductivity values. In general, however, carrying out the experimental 
measurements required to use such a theory at the hillslope or catchment scale would be 
very time-consuming and expensive, and would result in a large number of holes in the 
hillslopes. Thus it may be necessary to accept that the small-scale values that it is possible 
to measure and the effective values required at the model element scale are different 
quantities, or they are incommensurate — even though the hydrologist has traditionally 
given them the same name. The effective parameter values for a particular model 
structure will then still need to be calibrated in some way. 

Most past calibration studies have involved some form of optimization of the 
parameter values by comparing the results of repeated simulations with whatever 
observations of the catchment response are available. The parameter values are adjusted 
between each run of the model either manually or by some computerized optimization 
algorithm until some 'best fit' parameter set has been found. There have been many 
studies of different optimization algorithms and measures of goodness of fit or objective 
functions in hydrological modelling. The essence of the problem is to find the highest 
peak in the response surface in the parameter space defined by one or more objective 
functions. An example of such a response surface is shown in Figure 1. The two axes are 
two different parameter values, varied between specified maximum and minimum values. 
The vertical axis is the value of an objective function, based on the sum of squared 
differences between observed and predicted discharges that has the value 1 for a perfect 
fit. It is easy to see from this example why optimization algorithms are sometimes called 
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'hill climbing' algorithms, since the highest point on the surface will represent the 
optimum values of the two parameters. Such a response surface is easy to visualize in 
two-parameter space. It is much more difficult to visualize the response surface in an N-
dimensional parameter hyperspace. Such surfaces can often be very complex and much of 
the research on optimization algorithms has been concerned with finding algorithms that 
are robust with respect to the complexity of the surface in an N-dimensional space and 
will find the global optimum set of parameter values. 

For most hydrological modeling problems, the optimization problem is ill-posed 
in that if the optimization is based on the comparison of observed and simulated 
discharges alone, there may not be enough information in the data to support the robust 
optimization of the parameter values. Experience suggests that even a single model with 
only four or five parameter values to be estimated may require at least 15 to 20 
hydrographs for a reasonably robust calibration, and if there is strong seasonal variability 
in the storm responses hydrographs for a longer period will be needed. For more complex 
parameter sets, many more data and different types of data may be required for a robust 
optimization unless it might be possible to fix many of the parameters beforehand by 
independent measurement. This has proven to be very difficult to achieve in practice. 
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Fig. I. Response surface for two parameters of model in an application to modeling the 
stream discharge of a small catchment. The objective function is the Nash-Sutcliffe 
efficiency which has a value of 1 for a perfect fit of the observed discharges. 

These are not the only problems with finding an optimum parameter set. 
Optimization generally assumes that the observations with which the simulations are 
compared are error-free and that the model is a true representation of that data. We know, 
however, at least for hydrological models, that both the model structure and the 
observations are not error-free. Thus the optimum parameter set found for a particular 
model structure may be sensitive both to small changes in the observations, or the period 
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of observations considered in the calibration, and possibly to changes in the model 
structure such as a change in the element discretization for a distributed model. 

A number of important implications follow from these considerations: 
The parameter values determined by calibration are effectively valid only inside 
the model structure used in the calibration. It may not be appropriate to use those 
values in different models (even though the parameter may have the same name) 
or in different catchments. 
The concept of an optimum parameter set may be ill-founded in hydrological 
modeling. While one optimum parameter set can often be found there will usually 
be many other parameter sets that are very nearly as good, perhaps from very 
different parts of the parameter space. It is most unlikely that, given a number of 
parameter sets that give reasonable fits to the data, the ranking of those sets in 
terms of the objective function will be the same for different periods of calibration 
data. Thus to decide that one set of parameter values is the optimum is a 
somewhat arbitrary choice. 
If the concept of an optimum parameter set must be superseded by the idea that 
many possible parameter sets (and perhaps models) may provide acceptable 
simulations of the response of a particular catchment, then if follows that 
validation Of those models may be equally difficult. In fact, rejection of some of 
the acceptable models given additional data may be a much more practical 
methodology than suggesting that models might be validated. 

EQUIFINALITY OF PARAMETERS 

The concept of equifinality of parameters suggests that, given the limitations of both our 
model structures and observed data, there may be many representations of a catchment 
that may be equally valid in terms of their ability to produce acceptable simulations of the 
available data. In essence then, different model structures and sets used within a model 
structure are competing to be considered acceptable as simulators. Some may be rejected 
in the process of different model structures, but even if only one model is retained then 
the evaluation of the performance of different parameter sets against the observed data 
will usually result in many parameter sets that produce acceptable simulations. 

The results with different parameter sets will not, of course, be identical either in 
simulation or in the predictions required by the modeling project. An optimum parameter 
set will give only a single prediction. Multiple acceptable parameter sets will give a range 
of predictions. This may actually be an advantage since it allows the possibility of 
assessing the uncertainty in predictions, as conditions on the calibration data, and then 
using that uncertainty as part of the decision — making process arising from a modeling 
project. 

The starting point in the modeling process is to assume, g priori, all the available 
modeling strategies and all feasible parameter sets within those modeling strategies are 
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potential models of a catchment for a particular project. The aims of the given project, the 
budget available for the project, and the data available for calibrating the different models 
will all limit the potential range of simulators. The important point is that choices 
between models and between parameter sets must be made in a logical and scientifically 
defensible way. At the end of this process, there will not be a single model of the 
catchment but a number of acceptable models (even if only different parameter sets 
within one chosen model structure) to provide predictions. 

There are clearly implications for other studies that depend on models of rainfall-
runoff processes. Predictions of catchment hydrogeochemistry, sediment production and 
transport, the dispersion of contaminants, hydroecology, and, in general, integrated 
catchment decision support systems depend crucially on good predictions of water flow 
processes. Each additional component that is added to a modeling system will add 
additional choices in terms of the conceptual representation of the processes and the 
values of the parameters required. In that all these components will depend on the 
prediction of water flows, they will be subject to the types of uncertainties in predictive 
capability. This is not only a research issue. Uncertainties in model predictions have 
already played a major role in decisions made at public inquiries into proposed 
developments. 

PARAMETER ESTIMATION AND PREDICTIVE UNCERTAINTY 

Limitations of both model structures and the data available on parameter values, initial 
conditions and boundary conditions, will generally make it difficult to apply a 
hydrological model (of whatever type) without some form of calibration. In very few 
cases reported in the literature have models been applied using only parameter values 
measured or estimated a priori. In the vast majority of cases the parameter values are 
adjusted to get a better fit to some observed data. This is the model calibration problem. 
The question of how to assess whether one model or set of parameter values is better than 
another is open to a variety of approaches, from a visual inspection of plots of observed 
and predicted variables, to a number of different quantitative measures of goodness of fit, 
known variously as objective functions, performance measures, fitness (or misfit) 
measures, likelihood measures or possibility measures. 

All model calibrations and subsequent predictions will be subject to uncertainty. 
This uncertainty arises in that no rainfall-runoff model is a true reflection of the processes 
involved, that it is impossible to specify the initial and boundary conditions required by 
the model with complete accuracy, and that the observational data available for model 
calibration are not error-free. A good discussion of these sources of uncertainty may be 
found in Melching (1995). There is a rapidly growing literature on model calibration and 
the estimation of predictive uncertainty for hydrological models. For the purposes of this 
discussion, we will differentiate three major themes as follows: 

Methods of model calibratibn that assume an optimum parameter set and that 
ignore the estimation of predictive uncertainty can be found. These methods range 
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from simple trial and error, with parameter value adjusted by the user, to the 
variety of automatic optimization methods. 
Methods of model calibration that assume an optimum parameter set, but which 
make certain assumptions about the response surface around that optimum to 
estimate the predictive uncertainty, can be found. These methods are grouped 
under the name reliability analysis. 
Methods of model calibration that reject the idea that there is an optimum 
parameter set in favour of the idea of equifinality of models. Equifinality is the 
basis of the GLUE methodlogy. In this context it is perhaps more appropriate to 
use model conditioning rather than model parameter sets that give acceptable 
simulations. As a result, the predictions will be necessarily associated with some 

uncertainty. 

In approaching the problem of model calibration or conditioning, there are a 
number of very basic points to keep in mind. These may be summarized as follows: 

It is most unlikely that there will be one right answer. Many different models and 
parameter sets may give good fits to the data and it may be very difficult to decide 
whether one is better than another. In particular, having chosen a model structure, 
the optimum parameter set from one period of observations may not be the 
optimum set for another period. 
Calibrated parameter values may only be valid inside the particular model 
structure used. It may not be appropriate to use those values on different models 
(even though the parameters may have the same name) or in different catchments. 
The model results will be much more sensitive to changes in the values of some 
parameters than to changes in others. A basic sensitivity analysis should be carried 
out early on in a study. 
Different performance measures will usually give different results in terms of both 
the 'optimum' values of parameters and the relative sensitivity of different 
parameters. 
Sensitivity may also depend on the period of data use, and especially whether a 
particular component of the model is being 'exercised' in a particular period. If it 
is not (e.g., if an infiltration excess runoff production component only gets to be 
used under extreme rainfalls), then the parameters associated with these 
components will generally appear insensitive. 
Model calibration has many of the features of a simple regression analysis in that 
an optimum parameter set will be one that, in some sense, minimizes the overall 
error or residuals. There are still residuals, however, and this implies uncertainty 
in the predictions of a calibrated model. As in regression, these uncertainties will 
normally get larger as the model predicts the response for more and more extreme 
conditions relative to the data used in calibration. 
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PARAMETER RESPONSE SURFACES AND SENSITIVITY ANALYSIS 

Consider, for simplicity, a model with only two parameters. Some initial values of the 
parameters are chosen and the model is run with a calibration data set. The resulting 
predictions are compared with some observed variables and a measure of goodness of fit 
is calculated and scaled so that if the model was a perfect fit the goodness of fit would 
have a value of 1.0, and if the fit was very poor it would have a value of 0. Assume that 
the first run resulted in a goodness of fit of 0.72, i.e. we would hope that the model could 
do better (get closer to a value of 1). It is a relatively simple matter to set up the model to 
change the values of the parameters, make another run, and recalculate the goodness of 
fit. However, how to decide which parameter values to change in order to improve the fit? 

One way is by simple trial and error, plotting the results on screen, thinking about 
the role of each parameter in the model, and changing the values to make the hydrograph 
peaks higher, or the recessions longer, or whatever is needed. This can be very 
instructive, but as the number of parameters gets larger it becomes more and more 
difficult to sort out all the different interactions of different parameters in the model and 
decide what to change next. 

Mother way is to make enough model runs to evaluate the model performance in 
the whole of the parameter space. In the simple two-parameter example, one could decide 
on a range of values for each parameter, use 10 discrete increments on each parameter 
range, and run the model for every combination of parameter values. The ranges of the 
parameters define the parameter space. Plotting the resulting values of goodness of fit 
defines a parameter response surface such as that shown as contours in Figure 2. In this 
example, 10 discrete increments would require 102  = 100 runs of the model. For simple 
models this should not take too long. The same strategy for three parameters is a bit more 
demanding: 103  runs would be required. For six parameters, 106  or a million runs (about 
two weeks of computing for a simple model on a PC, and very much more for more 
complex models) would be required, and 10 increments per parameter is not a very fine 
discretization of the parameter space. Not all those runs, of course, would result in models 
giving good fits to the data. A lot of computer time could therefore be saved by avoiding 
model runs that give poor fits. This is a major reason why there has been so much 
research into automatic optimization techniques, which aim to minimize the number of 
runs necessary to find an optimum parameter set. 

The form of the response surface may also become more and more complex as the 
number of parameters increases, and it is also more and more difficult to visualize the 
response surface in three or more parameter dimensions. Some of the problems likely to 
be encountered, however, can be illustrated with simple two-parameter example. The 
form of the response surface is not always the type of simple hill shown in Figure I. If it 
was, then finding an optimum parameter set would not be difficult; any of the so-called 
hill-climbing automatic optimization techniques should do a good job in finding the way 
from any arbitrtky starting point to the optimum. 
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Parameter 2 

Figure 2 Response surface for two parameter dimensions with goodness of fit represented 

as contours 

One of the problems commonly encountered is parameter insensitivity. This will 
occur if a parameter has very little effect on the model result in part of the range. This 
may result from the component of the model associated with that parameter not being 
activated during a run (perhaps the parameter is the maximum capacity of a store in the 
model and the store never gets filled). In this case part of the parameter response space 
will be 'flat' with respect to changes in one or more parameters (e.g. Parameter 1 in 
(Figure 3(a)). Changes in that parameter in that area have very little effect on the results. 
Hill-climbing techniques may find it difficult to find a way off the plateau and towards 
higher goodness of fit functions if they get onto such a plateau in the response surface. 
Different starting points may then lead to different final sets of parameter values. 

Another problem is parameter interactions. This can lead to multiple optima 
(Figure 3(b)) or 'ridges' in the response surface (Figure 3(c)), with different pairs of 
parameter values giving a very similar goodness of fit. In these latter cases a hill-climbing 
technique may find the ridge very easily but may find it difficult to converge on a single 
set of values giving the best fit. Again, different starting values may give different final 

sets of parameter values. 
The problem of multiple local optima can make hill-climbing optimization 

particularly difficult. One of these local peaks will be the global optimum, but there may 
be a number of local optima that give a similar goodness of fit. The response surface may 
also be very irregular or jagged for a good two-parameter example. Again, different 
starting points for a hill-climbing algorithm might lead to very different final values. Most 
such algorithms will find the nearest local optimum, which may not be the global 

optimum. 
This is not just an example of mathematical complexity; there may be good 

physical reasons why this might be so. If a model has components for infiltration excess 
runoff production, saturation excess runoff production or subsurface stormflow (we might 
expect more than two parameters in this case), then there will likely be sets of parameters 
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that give a good fit to the hydrograph using the infiltration excess mechanism; sets giving 
good fits using a saturation excess mechanism; sets giving good fits by a subsurface 
stormflow mechanism; and even more sets giving good fits by a mixture of all three 
processes. The different local optima may then be in very different parts of the parameter 
space. 

Figure 3 More complex response surfaces in two parameter dimensions. (a) Flat areas of 
the response surface revealing insensitivity of fit to variations in parameter values. (b) 
Multiple peaks in the response surface indicating multiple local optima. (c) Ridges in the 
response surface revealing parameter interactions 

The types of behavior shown in Figure 3 can make finding the global optimum 
difficult, to say the least. Most parameter optimization problems involve more than two 
parameters. To get an impression of the difficulties faced, try to imagine what a number 
of local optima would look like on a three-parameter response surface; then on a four — 
parameter response surface, and so on. Some advances have been made in computer 
visualization of higher dimensional response surfaces but trying to picture such a surface 
soon becomes rather taxing for bears of very little brain (or even expert hydrological the 
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changing gradients for the simple cases in Figure 3). Because of this, sensitivities are 
normally evaluated in the immediate region of a best estimate parameter set or an 
identified optimum parameter set after a model calibration exercise. 

This is, however, a very local estimate of sensitivity in the parameter space. A 
more global estimate might give a more generally useful estimate of the importance of a 
parameter within the model structure. There are a number of global sensitivity analysis 
techniques available, but one that makes minimal assumptions about the shapes of the 
response surface is variously known as generalized sensitivity analysis (GSA), 
regionalized sensitivity analysis (RSA) or the Homberger — Spear — Yong (HSY) method 
(Seven 2001). The HSY method is based on Monte Carlo simulation. Monte Carlo 
simulation makes use of many different runs of a model, with each run using a randomly 
chosen parameter set. In the HSY method the parameter values are chosen from uniform 
distributions spanning specified ranges of each parameter. The ranges should reflect the 
feasible parameter values in a particular application. The idea is to obtain a sample of 
model simulations from throughout the feasible parameter space Those simulations are 
classified in some way into those that are considered behavioural and those that are 
considered non-behavioural in respect of the system being studied. Behavioural 

simulations might be those with a high value of a certain variable or performance 
measure; non-behavioural simulations might be those with a low value. The HSY 
approach is essentially a nonparametric method of sensitivity analysis in that it makes no 
prior assumptions about the various or covariation of different parameter values, but only 
evaluates sets of parameter values in terms of their performance. 

PERFORMANCE MEASURES AND LIKELIHOOD MEASURES 

The definition of a parameter response surface as outlined above and shown in Figures 2 
and 3 requires a quantitative measure of performance or goodness of fit. It is not too 
difficult to define the requirements of a rainfall-runoff model in words: we want a model 
to predict the hydrograph peaks correctly (at least to within the magnitude of the errors 
associated with the observations), to predict the timing of the hydrograph peaks correctly, 

and to give a good representation of the form of the recession curve to set up the initial 
conditions prior to the next event. We may also require that, over a long simulation 
period, the relative magnitudes of the different elements of the water balance should be 
predicted accurately. The requirements might be somewhat different for different 
projects, so there may not be any universal measure of performance that will serve all 

purposes. 
Most measures of goodness of fit used in hydrograph simulation in the past have 

been based on the sum of squared errors, or error variance. Taking the squares of the 
residuals results in a positive contribution of both overpredictions and underpredictions to 
the final sum over all the time steps. The error variance, o-,2, is defined as 

n.2 r  1  T 
Et.---1(Yr Yt)2  (I) 

N) 
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where ); is the predicted value of variable y at time step t = 1.2 ..... T. Usually the 
predicted variable is discharge, Q (as shown in Figure 7.4), but it may be possible to 
evaluate the model performance with respect to other predicted variables so we will use 
the general variable y in what follows. A widely used goodness of fit measure based on 
the error variance is the modeling efficiency of Nash and Sutcliffe (1970), defined as 

E=E = [1 —H 
ag (2) 

where 0-1, is the variance of the observations. The efficiency is like a statistical coefficient 
of determination. It has the value of 1 for a perfect fit when 01 = o;  it has the value of 0 
when 4 = 4 which is equivalent to saying that the hydrological model is no better than 
a one-parameter 'no-knowledge' model that gives a prediction of the mean of the 
observations for all time steps. Negative values of efficiency are indicating that the model 
is performing worse than this 'no-knowledge' model. 

The sum of squared errors and modeling efficiency are not ideal measures of 
goodness of fit for rainfall-runoff modeling for three main reasons. The first is that the 
largest residuals will tend to be found near the hydrograph peaks. Since the errors are 
squared this can result in the predictions of peak discharge being given greater weight 
than the prediction of low flows (although this may clearly be a desirable characteristic 
for some flood forecasting purposes). Secondly, even if the peak magnitudes were to be 
predicted perfectly, this measure may be sensitive to timing errors in the predictions. This 
is illustrated for the second hydrograph in Figure 4 which is well predicted in shape and 
peak magnitude but the slight difference in time results in significant residuals on both 
rising and falling limbs. 

Figure 4 also illustrates the third effect, i.e. that the residuals at successive time 
steps may not be independent but may be autocorrelated in time. The use of the simple 
sum of squared errors as a goodness of fit measure has a strong theoretical basis in 
statistical inference, but for cases where the samples (here the predictions at each time 
step) can be considered as independent and of constant variance. In many hydrograph 
simulations there is also a suggestion that the variance of the residuals may change in a 
consistent way over time, with a tendency to be higher for higher flows. This has led to 
the use of measures borrowed from the theory of maximum likelihood in statistics, which 
attempt to take account of the correlation and changing variance of the errors 
(heteroscedastic errors). 

Maximum likelihood aims to maximize the probability of predicting an 
observation, given the model. These probabilities are specified on the basis of a 
likelihood function, which is a goodness of fit measure that has the advantage that it can 
be interpreted directly in terms of such prediction probabilities. However, the likelihood 
function that is appropriate will depend on defining an appropriate structure for the 
modeling errors. 
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Fig. 4 Comparing observed and simulated hydrographs 

Underlying the development of the likelihood functions used in maximum 
likelihood approaches is the idea that there is a correct model, focusing attention on the 
nature of the errors associated with that model. Ideally, we would hope to find a model 
with zero bias, and purely random errors with minimum variance and no autocorrelation. 
For the relatively simple case of an additive error with a Gaussian distribution and single 
time step autocorrelation, the likelihood function is easy to develop. More complex error 
models will result in more complex likelihood functions. In principle, the structure of the 
errors should be checked to ensure that an appropriate error model is being used. In 
practice, this must be an iterative process since, under the assumption that there is a 
correct model, it is the structure of the errors of that optimum model that must be 
checked, but finding the optimum depends on defining a likelihood function for an error 
structure. 

Experience suggests that hydrological models do not, in general, conform well to 
the requirements of the classical techniques of statistical inference and that a more 
flexible and application oriented approach to model calibration is required. There are 
certainly many other performance measures that could be used. It may also be necessary 
to combine goodness of fit measures for more than one variable, e.g. both discharge and 
one or more predictions of observed water table level. Again, a number of different ways 
of combining information are available. Some of the more interesting recent 
developments are based on a set theoretical approach to model calibration. 

All these measures are aimed at providing a relative measure of model 
performance. That measure should reflect that aims of a particular application in an 
appropriate way. There is no universal performance measure and whatever choice is 
made, there will be an effect on the relative goodness of fit estimates for different models 
and parameter sets, particularly if an optimum parameter set is sought. 

CALIBRATION AND VALIDATION OF DISTRIBUTED MODELS 

Validation of distributed models has received a great deal of attention. Some of the 
discussion has, in fact, suggested that validation is riot an appropriate term to use in this 
context, since no model approximation can be expected to be a valid representation of a 
complex reality. Model evaluation has been suggested as a better term. Because 
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distributed models make distributed predictions, there is a lot of potential for evaluating 
not only the predictions of discharge at a catchment outlet, but also the internal state 
variables such as water table levels, soil moisture levels, channel flows at different points 
on the network, etc. It appears that there have still been relatively few studies of 
distributed models that have attempted such an elevation. Most models are evaluated only 
on the basis of predicted discharge, which leaves plenty of scope for the runoff to be 
simulated by a variety of different mechanisms. 

The lack of evaluation with respect to internal state variables is clearly partly due 
to the expense of collecting widespread measurements of such internal state variables. 
There are also some difficulties in measuring quantities that can truly be compared with 
model predictions since the scale of the measurements may be significantly different from 
the model element scale at which the predictions of the model are made. In addition, even 
in the very first application of this type of model to a field site, because of uncertainties in 
the boundary conditions, initial conditions and parameter values of a distributed model, it 
is unlikely that a true model validation will ever be possible since the errors in 
representing the system and specifying the inputs will surely induce unavoidable errors in 
the simulations, however well a model appears to have been calibrated. 

There is a further interesting interaction with the problem of model calibration for 
the case of distributed models. Suppose that the parameters of a distributed model have 
initially been calibrated only on the basis of prior information about soil and vegetation 
type, with some adjustment of values being made to improve the simulation of measured 
discharges. The model might well do a very good job of simulating the catchment 
discharge but we would have little idea of how well it was doing in predicting the internal 
state variables such as water table levels. In fact, because of the lack of information about 
the internal responses of the catchment, the model user would probably use effective 
values of model parameters such as hydraulic conductivity over wide regions of the flow 
domain. 

Assume that after this initial calibration, a decision is made to collect more 
spatially distributed information about the catchment response. Measurements might be 
made of water table heights and soil moisture storage, and some internal stream gauging 
sites might be installed. We would expect that the predictions of the calibrated distributed 
model turn out to be wrong in many places, since the calibration has taken little account 
of local heterogeneities in the catchment characteristics (other than the broad 
classification of soil and vegetation types). There is now the potential to use the new 
internal measurements not to evaluate the model, but to improve the local calibration, a 
process that will not necessarily improve the prediction of catchment discharge which 
was the subject of the original calibration. It will generally mean a much greater 
improvement in the prediction of the internal state variables for which measurements 
have now been available. But if the new data are being used to improve the local 
calibration, more data will be needed for model evaluation. 
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