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DP AND ITS APPLICATIONS TO WRS 

1.0 INTRODUCTION 
Dynamic programming (DP) is an enumerative technique developed by Richard Bel!man in 

1953. This technique is used to get the optimum solution to a problem which can be represented as 
a multistage decision process. The entire formulation of dynamic programming is based upon the 
Beilman's principle of optimality. According to this principle, an optimal policy has the property that 
whatever the initial state and decisions are, the remaining decisions must constitute an optimal policy 
with respect to the state resulting from the first decision. In the Fig. 1, if the optimal path for going 
from A to D is ABCD then the optimal path from B to D will be BCD and not BED. 

A 

Fig. 1 Illustration of the Principle of Optimality 

Dynamic programming is not a class of optimization technique, but as an algorithm it is a 
very powerful procedure developed to solve sequential decision problems. Many problems in water 
resources, such as reservoir operation, involve a sequence of decisions from period to period and can 

be solved by dynamic programming. 

In a Dynamic Programming problem formulation, the dynamic behavior of the system is 
expressed by using three types of variables, as described below: 

State Variables - which define the condition of the system. For example, in studies dealing with 
reservoirs, the amount of water stored in the reservoir may represent its state. 

Stage Variables - which define the order in which events occur in the system. Most commonly, time 

is taken to be the stage variable. There must be a finite number of possible states at each stage. 

Control Variables - which represent the controls applied at a particular stage and transform the state 
of the system. For the reservoir operation problem, the release of water from the reservoir is a typical 

decision variable. 

The dynamic behavior of the system is expressed by an equation known as the system 

equation. It can be written in discrete form as : 
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s(t+ 1) = fils(t), u(t),t] t = 1,2 N ...(I) 

where s(t) is the state variable at time t, u(t) is the control applied at time instant t, which last for 

a duration t and f() is the given functional form. 

The state of the system at any stage should lie in the domain of admissible states at that stage. 

The controls at stage t should also lie in the admissible domain at that stage: 

S(t) E S(0, E U(t) 

where S(t) and U(t) are the domains of admissible states and controls at stage t. 

With each state transformation, a return is associated which may either represent benefits or 

costs. Typically the benefits are maximized and the costs are minimized. The optimal decision made 

at a particular stage is independent of decisions made at previous stage given the current state of the 

system. A set of decisions for each time period is called a policy. The policy which optimize the 

objective function is called the optimal policy. The set of states which result from the application of 

a policy is called the state trajectory. As an example, the volume of water stored in a reservoir can 

be considered to be its state. The state of a reservoir is transformed due to inflows and can be 

controlled by releasing water from the storage. This water can be used for some useful purpose 

(irrigation for example) to yield monetary returns or it may also cause flood damages downstream and 

a cost is associated with these damages. The problem is to find the releases (controls) which optimize 

the returns. 

2.0 THE SOLUTION ALGORITHM 

Let R[s(t), u(t), t] be the return obtained if the system is at state s(t) at stage t and the control 

u(t) is applied at instant t lasting for a duration t. Further, let F[s(N),N] be the sum of returns from 

application of controls from some initial stage at t = 0 to final stage at t = N. The objective of 

maximizing the sum of returns from the system can be expressed as 

Max F[s(N), N] ...(2) 

Let the state of system at t = 0, s(0) E S(0) is known and the returns F[s(0),0] are also 

known. Let F[s(0),0] be the optimum value of these returns. Now consider the first stage (of duration 

t). The optimal return for this period is given by 

F[s(1),1] = Max R[s(0),u(0),0] + F[s(0),0] 

u(t-1) E U(t-1) 

This equation is solved for each discrete level of state at t= 1 as a function of control variables 

u(0). To do this, the state is discretized into a number of discrete levels. Now a particular lattice point 
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is chosen and all the admissible levels of decision variables which lead to this state are chosen. For 
each of these decision variables, the return F[s(1),1] is calculated. The maximum among these returns 
given the value of F[s(1),1]. This computation is repeated for each discrete value of s(1) and the 

results are stored. 

The computations are performed in similar fashion for stage 2,3....N. The recursive equation 

for any stage t can be written as: 

F[s(t),t] = Max R[s(t-1),u(t-1),t-1] + F[s(t-1),t-1] ...(4) 

u(t-1) 6 U(t-1) 

Thus at the end of N stage, the values of F[s(t),t1, t =1,2...N are available. The optimal value 
of control variables or the optimal policy is obtained by tracing back the values of returns, 
corresponding to those states which satisfy the initial and final values and the constraints. The optimal 
state trajectory can be determined by using the system equation once the optimal policy is known. 

The above computational scheme of dynamic programming is known as the forward algorithm 
since the computations start at the initial value of the state variable at stage 1 and move forward. In 
contrast to this, the computations can also commence at the final value of state variable at the last 
stage and can move backwards. The optimal policy is retrieved by tracing forward from the returns. 

This algorithm is called the backward algorithm. 

The constraints which restrict only the state or decision space are advantageous in DP because 
they reduce the amount of computation. In contrast, state and decision space constraints can cause 
considerable procedural difficulties for other optimization techniques. However, when DP is applied 
to a multiple reservoir system, the usefulness of the technique is limited by the so-called curse of 
dimensionality which is a strong function of the number of the state variables. For computational 
efficiency, the problems should have few state variables at a time. All the methods of dimensionality 
reduction involve decomposition of the system into subsystems and use of iterative procedures. 

Example: The algorithm is illustrated through an example. A person has 3 Rupees which he plans 
to spend over a period of 3 days such that all the money should be spent at the end of day 3. We 
limit our analysis to integer increments of rupee only. The benefit that the person gets by spending 
various amounts of money on each day is given in the following table : 

Return function R(u) values for various stages and decisions 
Stage 

1 2 3 

0 
Decision 1 

2 
3 

0 0 0 
3 1 4 
7 2 6 

10 4 8 

Training Course on Reservoir Operation 10 - 3 NIH, Roorkee 



DP AND ITS APPUCATIONS TO WRS 

Note that in this example, the returns are a function of decision (u) only. In general, they 

can be a function of both decision (u) and the state of the system (x). Also note that the returns for 
spending money are not linear or continuous functions. It is very convenient to visualize the problem 

in a rectangular network consisting of nodes at the grid points and arcs connecting them. Each node 

can be assigned the state attained by the system and all the feasible states attained by the system at 

a particular time can be arranged on one vertical line. Each such vertical line represents a stage. 
Any movement from any node at one stage to any other node at the next stage along the 

corresponding arc represents a state transition and thereby dictate the return resulting from such a 

decision. Consider the network shown below. The return function is also shown for various discrete 

decisions 0, 1, 2, 3. 

State-3 

State-2 

State-1 

State-0 
t Stage 1 t Stage 2 t Stage 3 t 

time 0 time 1 time 2 time 3 Dummy 

For understanding purposes, let x represent the money on hand, u the money spent on any 

day, each stage represents a day and the return function is the enjoyment expressed in numerical units 

derived by spending money on any day. The objective is 

Max Z: R1(u1) + R2(u2) + R3(u3) 

Let f1(x1) represent the objective function value at the ith  stage where the system state is xi. 

The sequential process is illustrated in the figure below: 

Let us start the analysis for day 3. Now, f4(x4) = 0, i.e. the total return expected in the 

remaining time after day 3 being at state zero is zero 

f3(x3) = Max (12.3(u3) + f4(x4)] 

This computation for stage 3 can be organized in the following table. 
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X3  _3 X R3(_11 3) f4(14) f3(X3) 

0 0 0 0 0 0 
1 0 1 0 0 0 infeasible 

1 0 4 0 4 optimal policy. 
2 2 0 6 0 6 
3 3 0 8 0 8 

The value of u3  represents each possible action on day 3 and as illustrated for x3  = 1, the best 

possible action at stage 3 is to set u3  = x3. 

For Dav-2: The return for days 2 and 3 is f2(x2) = Max [R2(u2) + f3(x3)] 

and x3  = x2  - u2. The computations for this stage are given below 

X2 U2  X3  R2(U2) f3(X3) f2(x2) 

0 0 0 0 0 0 
1 0 1 0 4 4* 

1 0 1 0 1 
2 0 2 0 6 6* 

1 1 1 4 5 
2 0 2 0 2 

3 0 3 0 8 8* 
1 2 1 6 7 
2 1 2 4 6 
3 0 4 0 4 

* indicates the optimum policy 

For Day-1: The return for day 1, 2 and 3 is 11(x1) = Max [Ram) + 12(x2)] 

and x2  = xi  - u1. The computations for stage 1 are given below 

x1  ui x2  121(u1) f2(x2) 11(x1) 

0 0 0 0 0 0 
1 0 1 0 4 4* 

I 0 3 0 3 
2 0 2 0 6 6 

1 1 3 4 7* 
2 0 7 0 7* 

3 0 3 0 8 8 
1 2 3 6 9 
2 1 7 4 11* 
3 0 10 0 10 

* indicates the optimum policy. 
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Now we can trace back the optimum policy for any level of x at the beginning of day I. For 
example if x = 3 at time = 0, then max return = 11. 

From table for day 1 : u1  = 2, = 1  
From table for day 2 : u2  = 0, X3 = 1 
From table for day 3 : u3  = 1. 

Observe that this computation was carried out in a reverse direction to that of time and so it 
is referred to as backward computation. We could also solve the problem starting from day 1. The • 
backward computation is used when there are known end conditions and we need solutions for every 
starting condition. This was the situation in the example and that is why we used backward dynamic 
programming. The forward computation is used when there is a starting condition and we need 
solutions for every ending condition. Where there is no special reason for choosing either backward 
or forward formulation, the backward recurrence is normally used. The procedure of making first a 
backward and then a forward pass is convenient especially in problem involving time as it gives the 
optimal policy in the chronological order. 

3.0 APPLICATION OF DP TO RESERVOIR OPERATION 
Let us consider the problem of determination of optimum release from a reservoir. If DP is 

applied for the determination of reservoir release, the state variable is the storage and the decision 
variable is the release. The stage is represented by the time period i. The stage-to-stage transformation 
is characterized by the continuity equation 

Si+1  = Si  + - ...(6) 
subject to: 

S • Si S 

Suppose an objective function J(S. R) has been chosen for maximization. Note that J, in 
general, is a function of release as well as storage. A typical forward DP recursive equation can be 
written as: 

fi+I(Si+1) = max [ J (Ri, S) + fi(S) ], i = 0, 1, 2,  T •—(7) 

given initial storage So. The state variable (storage) is discretized into a number of feasible states. 
Suppose that the inflow sequence is given and the evaporation term is temporarily ignored, the 
continuity equation becomes 

Si+1  = Si  + - 

If Si+i  and Si  are chosen, fti  can be directly computed from the above continuity equation. 
The optimization is over the proper choices of R 's. The problem of interpolation is avoided, since 
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the R values are computed by fixing the states Si  and Si+  Solutions are imbedded in the.discretized 

states. The infeasible transitions are discarded in the solution process. The inclusion of the 

evaporation term poses no difficulty, since evaporation is a function of the average storage S which 

is equal to ( Si  + Si+i  )/2. The recursive equation is carried out until the final stage T is reached. 

The optimal solutions can then be traced back to determine the consequent release and storage. 

In summary, the use of dynamic programming for analysis of reservoir design and operation, 

has three important advantages compared to linear programming; first and most important is the 

ability of dynamic programming to easily handle non linear objective functions and constraints. The 

second advantage is that it is relatively easy to solve the dynamic programming problem for many 
months or periods. The third advantage is that constraints decrease the computational burden of 

dynamic programming. 

4.0 SCREENING OF RESERVOIRS IN A RIVER BASIN USING DP 

In the planning of storage projects in a river basin, one of the major problems is to find out 

which reservoirs and of what sizes are to be selected from an inventory of reservoir sites. This 

information may be required for a given level of development, in terms of any indicator like the 

amount of yield to be obtained or area to be irrigated from the set of reservoirs considered. 

It is evident that several combinations of reservoirs of various size may exist in a river basin 

that may provide the same total yield of the system. A crude method would be to estimate the costs 

of all these possible alternatives and to retain the alternative with the least cost. As the number of 

possible alternatives can be extremely large, such a procedure would necessitate a great amount of 

computation which may be expensive. The dynamic programming is a method by which the number 

of investigated alternatives can be considerably reduced, without omitting any relevant alternative. 

Though the yield of a reservoir or of the entire system is a continuous variable from 0 to any 

value, the value of the yield is discretised. This implies selection of an increment of yield for 

discretising the function. For example, if the increment is one cubic meter, then discretised value of 

yield can be 0, 1, 2 , 3 ....n cubic meter. If 10 cubic meter is the increment, then discretised values 

becomes 0, 10, 20, .... n cubic meter etc. Only these discretised values are used in the optimization 

process. The discretised values of the system yield are referred to as the states of the system. 

For the optimization process, various reservoirs are presented in a sequence and an order 
number is assigned to each reservoir. The dynamic programming sequentially add one reservoir at 

a time into the system, in the order of numbers assigned to the various reservoirs of the system. 

Thus, successively optimal combinations of each additional reservoir with the previously combined 

system are investigated. A combination of each additional reservoir with the previously combined 
system is referred to as a stage of the analysis. This is illustrated by an example in this section. 

The decision to be taken at each stage is how much yield is to be derived from the reservoir 
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Reservoir 1 Reservoir 2 Reservoir 3 
Yield Cost Yield Cost Yield Cost 

0 0 0 0 0 0 

20 15 20 10 20 20 

40 30 40 35 40 40 

DP AND ITS APPUCATIONS TO WRS 

to be added now. Thus the decision variable is the yield from the presently considered reservoir. The 
objective of the problem can be to minimize the cost of providing the required yield. Constraints of 
the formulation are also to be incorporated in the analysis. One can be that for each stage, the yield 
from all individual reservoirs should add up to the desired yield. Mother can be that the yield from 
any reservoir can not exceed the maximum possible yield. State transition function is derived from 
the fact that the yield from previous stage plus the yield from the additional reservoir should add up 
to the yield required from the system. Illustration of the Dynamic Programming procedure, as given 

below, will enable better understanding of the problem: 

Example: A system of three reservoirs is considered with following data. It is required to find the 
optimum yield combination from each reservoir for getting a total system yield of 60. 

At stage I, only reservoir 1 is considered. The costs of providing various yields (in the range 

0 to 40) will be equal to the cost of yields provided by reservoir 1. At stage 2, any combination of 
reservoirs I and 2 giving the required yield would be feasible. The optimum yield configuration table 
from reservoir I and reservoir 2 for all range of yield from 0 to 80 is given in the following: 

Total 
Yield 

Yield from 
Reser. 1 Reser. 2 Reser. 

Cost of 
1 Reser. 2 

Total 
Cost 

0 0 0 0 0 0 

20 20 0 10 0 10 

40 20 20 15 10 25 

60 40 20 30 10 40 

80 40 40 30 35 65 

Now, for a total system yield of 60, the possible combinations and corresponding costs are 

given in following table: 

 

Yield from Total 
Yield 

Cost of Total 
Cost 

  

   

Reser. 3 Stage 2 Reser. 3 Stage 2 

0 60 60 0 40 40 

20 40 60 20 25 45 

40 20 60 40 10 50 
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Hence for a total system yield of 60, yield of 40 from reservoir 1 and yield of 20 must be 

obtained from reservoir 2. There is no need to construct reservoir 3 in this case. Similarly, for a total 
system yield of 80, yield of 40 must be planned from reservoir 1, yield of 20 from reservoir 2 and 

yield of 20 must be planned from reservoir 3. 

5.0 ADVANTAGES AND DISADVANTAGES OF DYNAMIC PROGRAMMING 
Dynamic programming is essentially an enumerative technique which is specially suited to 

multistage decision problems. There are a number of advantages in using this technique for analysis 

of a water resources system. Some of the advantages are : 

The dynamic programming fonnulation is same for linear as well as nonlinear problems. Thus, no 

extra effort is required for nonlinear problems. This property is very useful in case of water resources 

systems since many related problems can not be realistically linearized. 

The incorporation of constraints in linear and nonlinear programming problems is more difficult 

than in dynamic programming problems. In case of dynamic programming, the constraints serve a 

useful purpose. They do limit the feasible region and thus many lead to reduction in computational 

time requirement. 

The stochastic nature of a problem can be easily considered in the dynamic programming 

formulation. The algorithm developed for a deterministic problem does not have to be significantly 

changed to incorporate stochasticity. This is in contrast with other techniques where incorporation of 

stochasticity requires too much change in the algorithm and significant increase in computational time. 

Along with the above advantages, there are some disadvantages also : 

The dynamic programming is not basically tailored in such a fashion that generalized programs 

can be written using it. Thus a new computer program has to be developed or an existing program 

has to be significantly modified and tested for each new application of the technique. On the other 

hand standard computer programs are widely available for the linear programming. 

It was stated above that to solve a particular problem, the state and control variables are 

discretized at each stage and these discretized values are then used. This approach is known as the 
Discrete Dynamic Programming(DDP) technique in which the state and control spaces are discretized 

by finite sets of vectors. For each stage and state, the continuous variables are replaced by the discrete 

node points and these values have to be stored in the computer memory from where they can be 
drawn as and when required. The number of discretized values goes on increasing with the fineness 

of the discretization. For large problems, the memory requirement becomes a major limitation. This 
requires judicious choice to be made for the accuracy requirement, computer memory available and 

computational time available. 
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Several techniques have been proposed by different investigators to reduce the dimensionality 
problem associated with analysis of water resources systems using dynamic programming technique. 
These include the Incremental DP (1DP) and the Discrete Differential Dynamic Programming 
(DDDP). The basic approach in these techniques is the same and their are only minor differences 
regarding the increments in state and stage variables. It may be noted that these schemes are some 

sort of successive approximation schemes. An initial estimate of the policy is made and this is used 

to construct an improved estimate. This improved estimate becomes the input to the next stage and 
so on until some convergence criterion is satisfied. The scheme can not assure the global optimum 
and may converge to a local optima. However, by starting from different initial solutions, the 

possibility of finding the global optimum is increased. 

The technique of dynamic programming has been described in a number of excellent texts, 
some of these are given in references. Yakowitz(1982) has reviewed the applications of DP to water 
resources. Yeh(1985) provides an excellent review of applications of DP to reservoir operation. 
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