FINITE DIFFZRENCE TECHNI Wk

10 INTRODUCTION

In the modelling of complex physical systems, zll the
involved physical Processes are represented mathematically
by a set of eéquations. Thus, each physical process is
Treplaced by a set of itg governing equations. In most of
the cases the physics of the pToceésses involve the rate of
change with respect to two OT more independent variables
resulting in a partiagl differential equation (PDE) or a set

of such equations.

A partial differential e€quation may be given as a
function of independent variables Xy¥seseseeeand all the
derivatives of the function u of the independent variable,

e.q.,
F(x,y,......,ux,uy.....,uxx,uxy ...... Feg e i
; — QU = M
Here ux = 3% v uy >y
g 32 32
Bx™ ; : Uxy :
Ox* X By

Such a function u =l )t B enllad a solution
of the PDE(1l) and the highest derivative anpearing in the
PDE is termed as the order of the eguation.

If the number of independent variable isg only on. then
the FDE becomes an ordinary dif ferentisl equation.

The general form of the frequently encountered two

dimensional second order linear PDz is g3s given below
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a 08, 07U c—@—li+d——%u—+e§£~+fwg:0----(2)
&% dxdy ay? 5 4

Where a,b,c,d,e,f are the functions of x and y. The
above equztion is gaid to be elliptic, parabolic, or hy—
perbolic if the wvalue of the expression b“—4ac is negative,
Z2eIo or positive respectively. The above ¢juation is said
to be linezr in terms of principle of superposition of

differential OpeTration L, which is defined as

2 2 2
L =3 Q~2 o =R ~——%—~— + d ~%; & e ol e (.3)
X

2 dxdy 2y S
rewriting (2) in terms of L, we get

Lu + fu = —g wv b
The cperation L is linear if

L (a.ul+B.u2) = A.Luj+ B.Lu2 sk 5]

A lirear PDE is said to be homogeneous if in eugation(4)

‘g=4a, 1f UpsUpeenson U, are the independent solution of a

line ar homogeneous artial differential ¢é uation then
=dille ar . P gq ’

< SEE e 2re o i re the
2 UtasUnt. . au_ (wher a1,a, S t

arbitrary constants) will also be a solution of the

differentizal 2quation.

s | Boundary Condition and Initial Condition :

While Tepresenting a physical pProcess of a particular
System, one o7ten encounters a fixed SPace or region K, over
which the solution of partial differential ejuation is
sought, which means that the solution should satisfy the
differcntial €quation at every point in region K and certain
other conditiong a2t the boundiry of the region h, which are
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Culled boundary conditions. when thege conditions are speci-
fied at initial time (t=0), they are termed as initial
conditionsg, fherefore, the complete mathematical description
of any system Consists of a single or s system of partisl
differential ©quations together with initial conditions

2nd bound ary conditions.

24 ANALYTICAL AN NUMeA1CAL SULUTIONS

In order to solve 2 particular problem, a sct of
differential equations discussed above, along with their
boundary and initial conditinnsg must be solved for soecifie
data set of that problem. This can be dope by using analy—
tical or numerical techniques, In analytical method, z2-pro-
Priate method of Solution h2s to pe da2termined for each carti-
cular problem, For eXample, solving steady flow in twn
dimsnsion,method of complex variable is the obvious choice,
Various other methods include Fourier transform%tien,
Hankel transformation, infinite series of definite integrsals
eto,

The analytical method gives accurate solution and has
the advantage of immediate avzilability and gives a goxd
insite into the dependence of solution on various physical
PaTameters, Kut this gadvantage may partly or completely be
lost when the form of solution is Very complicated,

The main limitation of the analytical methods of soly-
tion is that they are available only for Telatively Simple
problems and Tequires the boundary of the System to be »f
Tegular geometric shape. ror most of tne problems of practi-
Cal interest, because >f the irregular shape of the baundaries,
the spatial Viriability of the coefficientg appearing in the
©equations and in the bound:ry conditions, the non uniformity
of the initial corditions, the analytical solution is not
feasible and virtually impossible except for very simple

Cases.
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With the advent o7 fast computers the nunerical methsds
have become Powerful tosl for Solving PDE's for complex
Problims with TCasonabl= degrez of dccuracy . In rractical
arplication we often meet the following arProaches of approxi-
mate numerica] methods

Ly Finite diff-_rence m2thad (FI&Q

2+ M=2thod 5f Chz2racteristicg

3, Finite element methd  (Fau)
4, Monte Carlg method

e Integral €juztion method

6. Perturbation method

Ta Bound _ry element method

8. Analytical €lement method,

In general these fumerical methodsg Teplace the partisl
differential'eqn. by an algebraic SqUation or 3 gat of
elgebraic €quations which Constitute 2 system -f linear
®quations, The fipga] solutiosn then Tequires the s,lutisp of
this system of €quations. f[he Virious numeric=1 methods
nentioned 3bove differ mairly in approach through which the
system of €quations is derived ard sometimes glsz in the
Pasic appIroach to the Problem. In this lecturs it is not
feasible to deal with 2311 the above mentionead methods, Rence,
wé shall be concentrating only on f inite difference method
which is g3 widely used mathod,

3.0 FINITE DIFFERENCE METHOD

The finite difference method js probably the oldest
numg{ig;é_ggibod to be used for systematic numerica] solu-
tion of partial differentia] ejquations, Although, the
fUEﬁE@%ﬁé}i:iﬂEas behind it haye been @stablished and uygeq
Dy methemaficians of 18th_§jﬂEE£Y such as lﬁ!iif.gni Lagrange
but its acplication té_zﬁl s>lution ef €ngincering ;rébiems
Started by the scientists g2 the 2oth century ( southwell, 194,

o e

Kantorovich ang NTylov, 19¢4),
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This method bisically consists of an approximation
of partiazl derivative by algebraic €Xpression involving the
finjte differenceg of the dependent variable at 2 limited
number of predefineq points. Thus, by the virtue of this
AfPToximation the partizl dif ferential €guzation defining
tre problem isg Teplaced by a2 sct of algebraic cyuations in
terins of the Values of Gependent variables at predefined
Points and then this set of ejuations are solved, The linear
partial differential ©juation will result in a set of iinear

equations,

4.0 APFROXIMATION OF JERIVATIVES BY FINIT= DIFFzraNCE:

The derivative of » function u(t) is definea 2s below

Q.

du _ e u(b+¢t)—u(t) el B)

T
Ay
A t=0 t
As an approximation the derivatives can be obtained

by simply neglecting the limiting process, o t—0. For
example consider a functian U = u(x,y) which is continuous
¢ndugh, i,e,., POseussas a3 sufficicent number of partiasl deri-

vatives,
(i-1,941) (i, 5+1) (i+1,j+1)
T T 7N
| il
s
| L : ]
(i-1,3) (1,3) [ (i+1,5)
| - ax
|
| |
| |
(_-{_'ly.j"l) iirJ—l)




Considering u be continuous, its value at the tws

Points, (i,j) and/i',j') can be SXpPressed by Taylsr serics

eXpansion. For example %
] 3
U:,. .= u + xJL— L_ﬂz 6%14-Laﬂ3 08 s nusn
N L T 31 2 31 3
dX . A X
..... (7)
. . 13 3
4p,pmupgmax B L20% of (8° %
i-1, 3 s Ox 21 éx2 31 N
wy we B
Considering the equaticns(?)and(B)separately, we get
du_- T 2 A
[éx Ji,j: e de BBy -, (9)
Forward difference
U, .-—u. i
- 519 T 7 e VT . 3
and [ax Ji,j_ Ax - +0( &%) eere.(10)

Backward dif ference

lbUbStIgCtlnu or 2dding &£g.(7) and (S), we get the

-

fa;~ow1ng cquatlons

. 3 e casld "
s G e i
(88—, j = =Ll h-lg s 5 252 i)
la”:,_‘ S o e kit e Céntral di fference T
2 R ] SR e .
P (ﬁbx)z 0 s ok 18]

tquation (12, can alsc e obtained from (9) and (l
can51dur1ng the fact thwt the derivative of first orda
derivative is the sacond ‘graar dLerJthC Similar formulae

5
can also> be obtained for ou/dy snd 3 u/ay For. wmixed
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derivatives, we have ( in same way)

2%, _ ¢ Yte1 e 0 gl ol g g g L 13)

Oxy — 4 8% (s y

The O['] terms are the estimates of the trumcation
error when f{x, &y —30. In other words they group the ter
of Taylor expansion composed with the KD derivative of the
functicn u multiplied by (ﬁsx)k, which are czlled higher order

terms.,

ms

Example : Let us consider simple differential eguation

W [E-1]. Subjected to the initizl
conditions u(0)=1.0.

deplacing the zbove differential equztion by finite

differences omitting the limit operation, we have

u( t+A* ) -u( t)

ﬂt = --Ll(_t)

or
u(t+at) = u(t)= o txu( t) (=-2]

_ the above equation forms the simple a2lgerithm from
which the values of u(t) czn be determined in successive
steps, starting from the initial value u(0)=1.0, If At is
taken 25 0.1 the series of values sbtainad upto t = 1.0 is

u(0.0) = 1.0000 u(0.6) = 0.5314
u(0.1) = 0.9000 u(0.7) = 0.4783
u(0.2) = 0.810 u(0.8) = 0.4305
u(0.4) = 0.6561 u(1l.0) = 0,3487

u(0.5) = 0.5905

The cxact solution of [c£-1] is u(t) = exz(-t), Therefore,
3t t=1.0. exact result is u(1.0)=0.3679. Thus we see th:t
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«I'Y gl0d but may te sufficient for
Fractical Purposes., The ACCuUracy can be increzged by taking
smallir timae Steps.
For different value of At, the value »f u(1.0) are

given below

Ged i.0) =

At = C. 3487
Nt = 0.01 u(1.0) = 0.3660
Lo o 0.001 W 1:0) = 0.38677

This shows that the degree of accuracy depends strongly
upon the magnitude of Time step taken. The zbove eXample
shows that the finite difference dPProximation of the deriva-
tives may lead to g Very simple numeriecsl algori thm,

in ejyuation [e-2], At was assumed to be Positive, in
otherwcrds forward Gifference sCheme wag adopted. Let ys take
the backwara Uifferdnce, then

u{t)-u(t—ﬁxt)
(1)

At
2T
u( t)—u( t- At)=ult)x At
oL ul £} = u(t-i}t)/(l+iﬁt) [&-3]

Starting frop u(0) =1.0 and tak ing £ t=0.1, one now
obtainsg Uil O 0.3855, This Tesult is as good op bad as in

Frevisus case, Again, the AtcUracy will bBe muck batter if Snalle

safmpls time steps are taken.

A third alternative algorithm can be obtzined when
the valuecs of the function y on the right hapd side of
Le<ll fe 2akon 2s the average of the values u(t) ang wW(trnt),
The formulatien of this algorithm ig as follows.

U(bTLAt)"U(t) [ u(t)+u(t+£}t)
t ] 2 J
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N N+
VT O SEu(e)=(1e B y(een )
T ultRa )= u(t)x(1- At/2) /(1 S —[ =4

Ihis algorithm gives ul1.0) = 0.3676 vhen BE=0,1. The
Iesult is very close to the ©Xact value. [hus, with = balanced
and carsful approximation of the verious terms, a2 V=Iy good
a2pproximation can be obtained,

e SCHEMES FOX SQLUTION

In order to deal with the schemes for solution for
time discretization, we shall take an examrle of unst2ad:

k\’1

flow in an aquifer to have Froblem orisnted idea of them. The
governing partial difference equation for unsteady flow in an
aquifer is given below,

2 2 ;
0“h d°h ~_0h

(&5, 0y L _ goh hs 1)
ax2 éYz dt

where g is the volumetric flux per unit area and repre-
sents sources and/or sinks of water,

T is the transmissivity
S is the storativity
h is the potentiometric head
X,Y are the Cartesian csordinates.

the initial conuitiosn 1s assumed to be t =0 h=h® and

some specified boundary condition is assumed,

In the absve problem fsr simplicity T has been consi—
dered constant and don not vary with x, y.

D L cXPLICIT M =THQOD
If spacial derivatives are annroximated considering
all values of th. head at the initial Valus »f time, then

substituting various rroximation in (14), wa get,




i 5) :
e o =2l . By oo am@h® ik,

-;[.__._Ar_l_—t._l“___%L_J___.;L—__lo_Jdr ey Il 1,12 1,J~1J + q

{ &) (Ay)

' Pl e 5 2
= .3 "‘_l""‘l‘_‘l—- ....(15)
At
t

Here h, 3 1s the value of head at (1,3) at the end of
the time SLC-.(15) €an be rewritten as

Lbht [hy . -S2H? ]+

S.lax)® Yliel, 370 gt i~1,3

I,48 o o o At ' )

—_— ; 3 =1 i B=

g (f\ ,)é[h 1,3+1 1,J+hl+ ,1+ S 1] 1,]

1 -

- =n® 4 9Bt 0 -2h9 . + hY |
Oz hy 4 = By s =iy a(h1+l,j 2hl,J - 1—1,3)

o) O /
hS ~ 2h; . B - «monik LG )
gl 1,J+1 igd 7 l?J“l)

where a« and B are the Constants defined asg

.5 Bo Lot
T egas  s(bay)?

Fere, px anday are the(csnstant) dis+ tances betwaen
the grids in x and y directisn re sspectively. Egn. (15) renre-
§27%s the now value of head at grid point (i yJ) in terms of
initial values st that node and at its immediate nzighbours,
all >f which are known, h.: ‘nce, the process ig called exrlicit,
For 11l interisr nodeés, esuation (18) specifies how to deter—
mine the new values of head. Ths Vilues of head along the
bourdary can be determined using the bound- Ty conditions.

5, IMPLICIT meTHOD

In the eXplicit method discussed above, the tine sterns
af2 restricted py Stability criteria (ulscussed in nextsection),
This shows thet in a transient prEockiss when the bebaviour is

7]

VLY siow, ¢.g., for large v.ilu:s of time when the nrocess s
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apvroaching the steady state, the magnitude of time step must

remain small, Thus, = large number of time stegs is required.
This can be-avsided by employing a more sophisticated pro— -

cedure, i.e., implicit method.

In the exrlicit method the spatizl derivatives have been
approximated at the begining of the time step (15). If we take
them at the end of ths time step or ir general a2t some inter-
mediate points, as an alternative approach w2 get

0 t

hi,j: . h i3 +(1-€t)h i3 ves(1B)

where € is an interpolation parameter having a value
between O and 1.

lf & =1, the value of hi,j reduces to initial volue
which leads to [15], i.e. explicit scheme. For & =0, the
v?lue of hi,j equals the value at the end of the time step,
h i,57 i.e., implicit scheme. If € is between O and 1 it will
Tesult in what is called semi-imclicit scheme.

Taking € =0 and substituting the approximations into

basic equation [24]

! 0 q‘ff—\kt (‘l Fd h,r )
", 47 1,007 e AR e By
! 7
+ ! Lo - - . e @
B(hi,j+l 2h 5 5+ hl,J_l) {L17)

The above equation is the basic eguation for fully
implicit method. In this method, it is obvious that the new
value¢s at node points (i,j) is calculated in terms of Inttizl
value at that node and new values at the no-e points surround-
ing that node. Since these values are also unknown the process
no longer remains explicit but all the unknown values must be
determined Simultaneously from a system of lincar ejuations
of the form [17]. Various numerical technigques are available
for solving such type of preblem and the detzails czan bz hsd

froin any standard text,



The implicit MtNod is stable for 2ll sizes of time step,
and hence zaia ty be unconditionally stable, Thus, larger
time steps Cen be tzken whén the varistion in the procesgs
becomesg slower, €.g., whéen steady state is agproached,

In [16] if we takec = *% » 1t scems to be lesst biased
el”her towards the initial value or towards the final value
in a time step. This will Tesult in 3 more accurate formulatinn

known as Crank - Nicholson sChemne,

Sed STABILITY

An apnroximate numerical methad can newsr yield exact
solution of 2 pProblem and its ACculacy also can not be precisely
¢vzluated because the exact solution js usuzally unknown. However,
some insite into the accuracy of a3 method can be obﬁained
which are being presented in the following FaTagraphs with a
special attenticn to the magnitude of time steps in an unsteady

process.

[he Teliability of a numerical method is usuzlly adjudged
by cartain condition, for example, condition of Consistency,

convergence and stability,

5 Consistency :

It is the Tequirement tha: when finite intervals approach
ZeIo, the numcrical €Jjuations should reduce to the exact
continuum egquations, This can be checked from the inspection
of the basic algebraic equations by letting the finite
differenceg approach zero,

94 35 2 Convergence

This condition states that the solution_cf the numerical
€quations should approach that of the oriainal partial diffe_
Tential equation if all finite intervals tend t> zers.

It is much more difficult to verify the conditionn e f
convergence, Therafore, it is usually considered sufficient
1f the numerical procedure has been verified against a3 variety

of zanalytical solutions,




9.8, 3

Stzbility

If the error due to Toundoff. do not incresse in
magnitude vith time, the process ig termed ssstable and this
condition is called stability condition. It is an imnerative
Conditinn which Iestrict the sigze cf time step in an exnlicit
mathod, A detailed discussion on stability is beyond the

s ope of this lecture, however, stability of exnlicit

method for unsteady flow problem described at [15]) will pe
considered here which 2prly to the most important Prpbl ems

of ground water flow. The ejuation [15) is

! o q- &t o o o -
i . - = 5 & ST ( - . — h- . + h- 5
gty B 'x(h1+l,J =B 3 i-1,3’

(o] ’ O 0] . \

+8 (hi,j+l—2hi,j +hi s ) i o 3 18)

whe Te @ =T.8t/[s.(4x)2 . . .(19)
F=T.0t/[s5.(by)2 s 2l 20D

If this pracess is stable, any Gistribution of SITOrs
should gradually dissipate in time anc shoulz not grow in
magnitude. In order to maximize the effectof all terms in
the right hand side of bd&]; 9t 4 s secumag that at a certain
time the €rrors are

ho .= KO

o 0 LBl =
1_1,:] l+l’j = hi - = h - -_6

o Joumll i,9¢1 =€:h iyq
sm e ([ 21)

‘From esuation [1e], with q = o we now obtain
: .

h i,j = (1-40-4p) ¢ s 3 ais [ 23)

In order that €ITors will not grow, it must bpe smaller
than £ and larger then —¢€ . with equation [19] and [20] this
leads to the following condition for the time sten & t.

_ D e
O <At < ——é- o= —LAX)z(A‘” 5 ceu f23)
(Ax)%(A y) -
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The above ejuation gives the criteria for magnitude of

the time step- far the problem considered.
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