
FINITE DIFFERa\ICE TECHNI4JE 

1.0 INTAODUCTION 

In the modelling of complex physical systems, all the 
involved physical processes are represented mathematically 

by a set of equations. Thus, each physical process is 

replaced by a set of its governing equations. In most of 

the cases the physics of the processes involve the rate of 

change with respect to two or more independent variables 
resulting in a partial differential equation (PDE) or a set of such equations. 

A 
partial differential equation may be given as a 

function of independent variables x,y, 
and all the 

derivatives of the function u of the independent variable, 
e.g., 

F(x l y, . 
I , ,ux ,uy 
 uxx 11  xy 

Here ux — au u _ ax ' Y by 
and 

) 0 ....(1) 

2 

6x OY 

Such a function u .u(x,y....) is called a solution 

of the PDE(1) and the highest derivative appearing in the 
PDE is termed as the order of the equation. 

If the number of independent variable is only on, then 
the PD d becomes an ordinary differential equation. 

The general form of the frequently encountered two 
'dimensional second order linear PD d is as given below 
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Whra a,b,c,d,e,f are the functions of x and y. The 
above equation iS said to be elliptic, parabolic, or hy—
perbolic if the value of the expression b2-4ac is negative, 
zero or positive resocctively. The above equation is said 

to be linear in terms of principle of superposition of 

differential operation L, which is defined as 

2 2 
62 e  

axdy ey2 d 6x2 ax Oy 

hewriting (2) in terms of L, we get 

Lu + fu = —g 
....(4) 

The operation L is linear if 

L (A.u1+B.u2) = A.Lui+ B.Lu2 44(5) 

A linear PIDth' is said to be homogeneous if in eugation(4,) 
(g= 0. If u15 u2 un are the independent solution of a 
linear homogeneous partial differential equation then, 

alui+a2u2+...".....anun  (where a1,a2  .".an  are the 

arbitrary constants) will also be a solution of the 
differential equation. 

1.1 
Boundary Condition and Initial Condition : 

While representing a physical process of a particular 
system, one often encounters a fixed space or region h, over 

which the solution of partial differential equation is 

sought, which means that the solution should satisfy the 

differential equation at every point in region Ft and certain 

other conditions at the boundary of the region h, which are 

3 (a) -2 
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the advent of fast computers the numericl methods 

powerful to:1 for solving PDE's• for complex 
th reasonable degree of accuracy . In practical 

we often meet the following anproaches of approxi—
Cal methods : 

Finite diff,rence method (FDM) 
mAhod of characteristics 

Finite element met pd (FM) 

Monte Carlo method 

Integral eiciation method 

Perturbation method 

Bound_ry element method 
B. 

Analytical Clement method. 

In general these numerical methods replace the partial 
differential tin. 

by an algebraic equation or a set of 
algebraic equations which constitute a system af linear 

equations. The final solution then requires the s,lution of 

this system of equations. The various numerical methods 

mentioned above differ mainly in approach through which the 
system of equations is derived =al sometimes also in the 
basic approach to the problem. In this lecture it is not 

feasible to deal with all the above mentioned methods, hence, 
we shall be c

oncentrating only on finite difference method 
which is a widely used method. 

3.0 
FINITE DIFFERENCE METHOD 

The finite difference method is probably the oldest
.  numericll method to be used for systematic numerical solu— 

tion of partial differential equations. Although, the _ 
fundamental ideas behind it have been established and used 

by mathematicians of 18th cantury such as Taylor and Lagrange 

but its application to the solution of engineering problems 

started by thu scientists of the 20th century (Southwel1,1940, 
Kantorovich and Krylov, 1964). 
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(i+1,j+1) 

This method basically consists of an approximation 

of partial derivative by algebraic expression involving the 
finite differences 

 of the dependent variable at a limited 
number of predefineu points. Thus, by the virtue of this 
approximation 

the partial differential equation defining 
the problem is replaced by a set of algebraic equations in 
terms of the

.  values of dependent variables at predefined 

Points and then this set of equations are solved. The linear 

partial differential equation will result in a set of linear 
equations. 

4.0 
APPHOXIMATION OF D6kIVA-ITIVS BY FINITE DIFFzit&ICE: 

The derivative of a function u(t) is defined as below 

by simply neglecting the limiting process, a t —o. For example consider a function u 
u(x,y) which is continuous - 

posiesses a sufficient number of partial deri— 

L 

du u t+ a )—u(tj  dt = linn --L----- 
t ot.o 

As an approximation the 
derivatives can be obtained 

enough, 

vatives. 



Considering u be continuous, its value at the two 
points, ( j) and(i', j ) can be expryssed by Taylor seric:, s 
exponsion. For example 

02u ( x)  3  
ax2 - 31 

ax3 

....(8) 

Considering the equations(7) and(8) separately, we get 

U2.+1 
• 
,5 
.= U. • 

1,3 
+ au• -+ (Lx)2  

ex 21 • 

u u . au x) 2 j 1,3 ax 21 

0 2u (I:1)03   453U 

ax2 31 0x3 

( 7 ) 

and 

r u. aiL 11 
ax j

_ +, rut, j 
x 

u. -u 
_  

L  x x  

+ O(Ax) (9) 

Forwarddiffesn.  

ax) (io) 

backward difference 

.SubStracting or adding q.(7)t _arid ( , we get the 
following— equations. 

[
e
0F__

x 
 

2  -+ o( 

• 
Ceilfr -al di fferenc-e  

14_) 

nd [4
2 

ax 1,3  

-2u. •+. ui+1, j 1,1 u  1-1,1
+ 0( ( x) 2 x) 2 

dquation ( 12) can also Sc obtained from (q) and ( 10) 
considering..  the fact thnt the derivative of first order 
derivative is the second °roar derivotive. Similar formulae 
can also be obtained for au/ay and 4.2u/&y:2.  . For, mixed 

3(5:9-6 



derivativc,s, we have ( in same way) 

1+1,1+1 i-1,1+1 1+1,3-1  1-1,1-1 
4Ax a y 

The 0['] terms are the estimates of the trumcation 
error when e\ xl  ty )0. In other words they group the terms 
of Taylor expansion composed with the K derivative of the 
function u multiplied by (6 x)k, which are called higher order 
terms. 

txample : Let us consider simple differential equation 
au 

—u (E—I]. Subjected to the initial at 
conditions u(0).1.0. 

fteplacing the above differential equation by finite 
differences omitting the limit operation, we have 

t+M: )—u( 
= - u( t) 

or 

u( t+lyt) = u( t)— atxu(t) (t-2) 

The above equation forms the simple algorithm from 

which the values of u( t) can be determined in successive 

steps, starting from the initial value u(0).1.0. If t t 
taken as 0.1 the series of values obtained upto t = 1.0 is 

u(0.0) = 1.0000 u(0.6) . 0.5314 
u(0.1) = 0.9000 u(0.7) . 0.4783 
u(0.2) . 0.8100 u(0.8) . 0.4305 
u(0.4) = 0.6561 u(1.0) . 0.3487 
u(0.5) = 0.5905 

The ..:xact solution of [C-1] is u( t)= exp(-0. Therefore, 
at t=1.0. exact result is u(1.0).0.3679. Thus we see th:t 
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the approximation is not very good but may 
be sufficient for 

practical purposes. The accuracy can be incre sed by taking 
smallar time steps. 

For different value of At, the value of u(1.0) 
given below 

. 0.1 
u(1.0) = 0.3487 tlt = 0.01 

.u(1.0) = 0.3660 
t 0.O01 

u(1.0) = 0.3677 

This shows that the degree of accuracy depends strongly 
upon the magnitude of time step taken. The above example 

shows that the finite difference approximation of the deriva-
tives may lead to a very simple numerical algorithm 

In equation [4-2j, 6.t was assumed to be positive, in 
otherwcrds forward difference scheme was adopted. Let us take 
the backward difference, then 

t)-u( t- A t) 
- -u (t) 

r 

u( t)-u( t- t)=-u( t)x At 

or u( t) = 
H-3j 

Starting from u(0) =1.0 and taking Llt=0.1, one nDwr 
obtains u(1.0) = 0.3855, This result is as good or bad as in 

previous case. Again, the accuracy will be much better if syn.ctAke-r-
s5aapla time steps are taken. 

A third altdrnative algorithm can be obtained when 

[
the values of the function u on the right hand side of 

c-0 is taken as the average of the values u(t) and 
 The formulation of this algorithm is as follows. 

u( t)+u( t) 

2 
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Or u(t+Lt)-u(t) _ u(t)xt  t 
2 

u( t+ t)x t 
2 

UT Ot 
2 ) u(t+Lt) 

Or u( t+ t). u( t) x( 1- -f-t/2)/( 1+ t) 2 

 

[ c-4j 

 

This algorithm gives u(1.0) . 0.3676 when LA..0.1. The 

result is very close to the exact value. fhus, with a balanced 

and careful approximation of the venous terms, a very good 
approximation can be obtained. 

5.0 SCHEMES FOR SOLUTION 

In order to deal with the schemes for solution for 
time discretization, we shall take an examrle of unstaady 

flow in an aquifer to have problem oriented idea of them. The 

governing partial difference equation for unsteady flow in an 
aquifer is given below. 

2h  
T(' + =-1-22-} + q 

ox 2  ay2 at ....(14) 

-where q is the volumetric flux per unit area and repre-
sents sources and/or sinks of water. 

T is the transmissivity 

S is the storativity 

h is the potentiometric head 

x,y are the Cartesian coordinates. 

ihe initial condition is assumed  .to be t .0, 11=h°  and 
some specified boundary condition is assumed. 

In the Above problem f)r simplicity T has been consi-
dered constant and do not vilry with x, y. 

5.1 EXPLICIT MiTHOD 

If spacial derivatives are annroximated considering 

all values of thJ, head at the initial value of time, then 
substituting various no-roximation in (14), vua. get. 

L 



h? . —2h? .+h. • h? . —2h. .+h. 
+ 

....(15) t 
Here h. 

is the value of head at (i,j) at the end of 1,3 
the Lime ster..,(15) can be rewritten 

35 

 
2 [h? —2h? . + S.( P, x) 1+1,3 1.+h 

,j 1-1,j 

T. At 
. —2h.0 

 .+119 '3+ . At 
h. .—h. . 2 1,3+1 3 i+a,•4  S 1,3 1,3 

h. . h? -•
r 

+ a(h?
+1, 

—2h? 
, 

-f• h ? 17j lfj 1 j 1 j j 

+ 13 (hi, j+1  - 2h7
t 
 + 

 

where a and p are th Constants defined as 

_ j q y
) 2 

(Ay)2  

M .—h? 
S 

S.( L\ y) 

a 
P — 

s. ( y) 2 
T. Lt 

Here, Lx andy an the( c)nstant) distances between 
the grids in x -.nd y direction respectively. Eqn. (15) repre—
sents the now value of head at

.  grid point ( i,j) in terms bf 
initial values at that node and at its immediate neighbour's, 

all of which are known, hence, the process is called explicit. 
For Ul interior nodes, e. rwation (15) specifies how to deter—
mine the new values of head. fh v,ilues of head along the 

boundary can be determined using the boundE.ry conditions. 

Jo_ ImPLICIF maTHOD : 

In the wxplicit method discussed above, th.2. time steps 
are restricted by stability criteria (uiscussed in next section). 

This shows that in a transient process when the behavi.:ur is 
very sl3w 7  e.g. • for large v...lu‘s of time when tht prz•cess is 

L 3(a)-10 



approaching the steady state, the magnitude of time step must. 

remain small, Thus, a large number of time s:eps is required. 

This can be .avoided by employing a more sophisticated pro-

cedure, i.e., implicit method. 

In the explicit method the spatial derivatives have been 

approximated at the bagining of the time step (15). If we take 

them at the end of the time step or in general at some inter-

mediate points, as an alternative approach we get 

h. f h° 4-(1-f)h . 1,j 1,3 

Where 6 is an interpolation parameter having a value 
between 0 and 1. 

Ife.1,thalidue ofil.reduces to initial value 1,3 
which leads to [15j, i.e. explicit scheme. For e =0, the 
value of h equals the value at the end of the time step, I - 1,3 
h 191, i.e., implicit scheme. If G- is between 0 and 1 it will 

result in what is called semi-implicit scheme. 

Taking & .0 and substituting the approximations into 
basic equation [24j 

q. t 
+  + a (h - 2h. + hi .) 1,j 1,3 i+1,j 1,j  

/ • 
P i- 2h . + hi,j-1) 1,3  

The above equation is the basic equation for fully 

implicit method. In this method, it is obvious that the new 

values at node points (i,j) is calculated in terms of initial 

value at that node and new values at the node points surround-

ing that node. Since these values are also unknown the process 

no longer remains explicit but all the unknown values must be 

determined simultaneously from a system of linear equations 

of the form [17j. Various numerical techniques are available 

for solving such type of problem anJ the details can be had 
from any standard text. 

L S(3)-11 



The implicit mdthod is stable for J11 sizes of time step, 

anu hence said to be unconditionally stable. Thus, larger 

time steps cen be taken when the variation in the process 

becomes slower, e.g., when steady state is approached. 

In [16] if we takee= 1  , it seems to be least biased 
either towards the initial value or towards the final value 

in a time step. This will result in a more accurate formulation 
known as Crank — Nicholson scheme. 

5.3 STABILITY 

An approximate numerical method can newer yield exact 
solution of a problem and its accuracy also can not be precisely 

evaluated because the exact solution is usually unknown. However, 
some insite into the accuracy of a method can be obtained 

which are being presented in the following paragraphs with a 

special attention to the magnitude of time steps in an unsteady 
process. 

The reliability of a numerical method is usually adjudged 

by certain condition, for example, condition of consistency, 
convergence and stability. 

5.3.1 Consistency : 

It is the requirement thac when finite intervals approach 

zero, the numerical equations should reduce to the exact 

continuum equations. This can be checked from the inspection 

Of the basic algebraic equations by letting the finite 
differences approach zero. 

5.3.2 Convergence : 

This condition states that the solution of the numerical 

equations should approach that of the original partial diffe—

rential equation if all finite intervals tend to zero. 

It is much more difficult to verify the condition of 

convergence. Therefore, it is usually considered sufficient 

if the numerical procedure has been verified against a variety 
of analytical solutions. 

L 3(59-12 
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5.3.3 Stability : 

If the error due to roundoff Jo not increase in 

magnitude with time, the Process is termed as stable and this 

condition is called stability condition. It is an imperative 

condition which restrict the size of time step in an explicit 
method. it detailed discussion on stability is beyond the 
sl;ope of this lecture, however, stability of ex-licit 

method for unsteady flow problem described at [15] will be 

considered here which apply to the most important problems 
of ground water flow. The e.rucation [15j is 

q. pt 
o 

j1( 81 ) 

hi. h
i + (hii - 2h  'j + a 

i 
+ ) pj 

+13 (h , +1-2h7 + 
) 

 

where a . T. 6 t/[ S.( A x)2j 

= 11 Y) 2i 

If this process is stable, any oistribution of errors 
should gradually dissipate in time and shoula not grow in 

magnitude. In order to maximize the effectof all terms in 

the right hand side of [18], it is assumed thot at a cert.in 
 time the errors are 

h 0i+irj  = .--€ ;h 0
i,  

....(21) 

From equation [18], with q = o we now obtain 

h= (1-4a-413) t:-. 
....(22) 

In order that errors will not grow, it must be smaller than and larger then 
. With equation [19] and [20] this 

leads to the fallowing condition for the time step t\ t. 
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The above equation gives the criteria for magnitude of 
the time step— for the problem considered. 
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