## ANALYSIS OF UNSTEADY FLOW TO A WELL HAVING DELAYED YIELD

The differential equation which governs an axially symmetric radial unsteady ground water flow in unconfined aquifer with delayed yield is (Boulton, 1954)

$$T(\frac{\partial^2 s}{\partial r^2} + \frac{1}{r} \frac{\partial s}{\partial r}) = \oint \frac{\partial s}{\partial t} + \alpha \oint_y \int_0^\infty \frac{\partial s}{\partial c} e^{-\alpha(t-c)} dc \qquad \dots (2.2)$$

The solution of Eq.(2.2) for constant pumping rate given by Boulton (1963) is

 $\mathbf{s} = \frac{Q}{4\pi T} \int_{0}^{\infty} \frac{2}{x} \left[1 - e^{-\mu_{1}} (\cosh \mu_{2} + \frac{\alpha t_{1}(1-x^{2})}{2\mu_{2}} \sinh \mu_{2})\right] J_{0}(\frac{rx}{\gamma D}) dx$ ...(2.3)

Where

$$\eta = 1 + \frac{ry}{p}$$

- $\phi_y$  = total volume of delayed yield from storage per unit drawdown per unit horizontal area which is commonly referred as specific yield,
- Ø = volume of water instantaneously released from storage per unit drawdown per unit horizontal area which is the effective early time storage coefficient,

$$Y = Y\left(\frac{\eta-L}{\eta}\right),$$

 $\frac{1}{\alpha}$  = Boulton's delay index,

$$D = \sqrt{T/(\alpha \phi_y)},$$
  

$$\mu_1 = \frac{\alpha t \eta (1+x^2)}{2},$$
  

$$\mu_2 = \frac{\alpha t \sqrt{\eta^2 (1+x^2)^2 - 4\eta x^2}}{2},$$
  

$$J_0() = \text{Bessel function of first kind, zero order}$$

Lecture delivered by Dr.G.C.Mishra, Scientist F

The solution given at Eq.(2.3) has been obtained by Boulton with the assumption (besides other usual assumptions) that the drawdown is very small in comparison to the thickness of the aquifer. Eq.(2.2) being linear, method of superposition and proportionality are applicable. If Q = 1.0 and pumping continues indefinitely, Eq.(2.3) gives the response of a linear system due to unit step excitation. Designating K(m) as the unit step kernel (response due to an unit step excitation), which is the drawdown at the end of time step m due to continuous pumping at unit quantity per unit time period, the discrete kernel coefficients  $\partial(m)$  can be expressed as

$$\partial(m) = K(m) - K(m-1)$$

Substituting m for t in Eq.(2.3) and replacing Cosh  $\mu_2$ and Sinh  $\mu_2$  by  $(e^{\mu_2} + e^{-\mu_2})/2$  and  $(e^{\mu_2} - e^{-\mu_2})/2$  respectively and rearranging, the unit step kernel is written as

$$K(m) = \frac{1}{4\pi T} \int_{0}^{\infty} \frac{2}{x} \left[ 1 - \frac{1}{2} \left( e^{-(\mu_{1} - \mu_{2})} (1 + \frac{\alpha mn(1 - x^{2})}{2\mu_{2}}) + e^{-(\mu_{1} + \mu_{2})} (1 - \frac{\alpha mn(1 - x^{2})}{2\mu_{2}}) \right] J_{0}(\frac{rx}{\gamma D}) dx \qquad \dots (3.2)$$

The integral appearing in Eq.(3.2) is an improper integral as one of the limits of integration is infinite. For finite values of  $\eta$  the numerical integration of the improper integral takes considerable computer time to obtain results of reasonable accuracy. The following is

an efficient method for evaluation of K(m) for any value of  $\eta$ . For given values of aquifer parameters it is found that the limit of the term

$$[1 - \frac{1}{2} (e^{-(\mu_1 - \mu_2)} (1 + \frac{\alpha m \eta (1 - x^2)}{2\mu_2}) + e^{-(\mu_1 + \mu_2)} (1 - \frac{\alpha m \eta (1 - x^2)}{2\mu_2}))]$$
  
in Eq.(3.2) tends to 1 as the dummy variable x increases.

Let, beyond  $x=x_1$  this term has a value equal to 1- $\varepsilon$ , where  $\varepsilon$  is as small as .000001.

Eq.(3.2) can be written as

$$K(m) = \frac{1}{4\pi T} \int_{0}^{x_{1}} \frac{1}{2} \left[1 - \frac{1}{2} \left(e^{-(\mu_{1} - \mu_{2})} (1 + \frac{\alpha mn(1 - x^{2})}{2\mu_{2}}) + e^{-(\mu_{1} + \mu_{2})} (1 - \frac{\alpha mn(1 - x^{2})}{2\mu_{2}}))\right] J_{0}(\frac{r x}{\gamma D}) dx$$

$$+ \frac{1}{4\pi T} \int_{x_{1}}^{\infty} (1 - \epsilon) \frac{2}{x} J_{0}(\frac{rx}{\gamma D}) dx \qquad \dots (3.3)$$

$$= I_{1} + I_{2} \qquad \dots (3.4)$$

For evaluation of the proper integral  $I_1$ , numerical integration is carried out assuming dx = .001. This value of dx has been adopted after studying the effect of dx on the accuracy of the results.

The integration

 $I_{2} = \int_{x_{1}}^{\infty} \frac{2}{x} J_{0}(\frac{rx}{\gamma D}) dx \text{ is carried out as follows :}$ Let

$$y = \frac{r}{\gamma D} x$$

Then

$$L_2 = \int_{\frac{rx_1}{\gamma D}}^{\infty} \frac{2}{y} J_0(y) dy \qquad \dots (3.5)$$

Depending upon the numerical values of  $\frac{r}{\gamma D} x_1$  the following approximations can be used for evaluation of the improper integral I<sub>2</sub>.

For  $\frac{r}{\gamma D} x_1 < 2$  (Abramowitz and Stegun 1970, pp.481)  $\int_{\frac{r}{\gamma D}}^{\infty} \frac{J_0(y)}{y} dy = -0.5772156 - \log_e(\frac{rx_1}{2\gamma D}) - \sum_{p=1}^{\infty} \frac{(-1)^p (\frac{rx_1}{2\gamma D})^{2p}}{2p(p!)^2}$ ...(3.6)

The series appearing in Eq.(3.6) is a rapidly converging one.

For 
$$5 \leq \frac{r_{1}}{\gamma_{D}} \leq \infty$$
 (Abramowitz and Stegun 1970, pp. 432)  

$$\int_{\frac{r_{1}}{\gamma_{D}}}^{\infty} \frac{J_{0}(y)}{y} dy$$

$$= \frac{2g_{1}(\frac{r_{1}}{\gamma_{D}}) J_{0}(\frac{r_{1}}{\gamma_{D}})}{(\frac{r_{1}}{\gamma_{D}})^{2}} - \frac{g_{0}(\frac{r_{1}}{\gamma_{D}}) J_{1}(\frac{r_{1}}{\gamma_{D}})}{(\frac{r_{1}}{\gamma_{D}})} \dots (3)$$

.7)

Where  $J_0()$  and  $J_1()$  are Bessel functions of first kind of zero and first rder respectively;

$$g_{o}\left(\frac{rx_{1}}{\gamma D}\right) = \sum_{p=0}^{9} (-1)^{p} a_{p} \left(\frac{rx_{1}}{5\gamma D}\right)^{-2p} + \left(\frac{rx_{1}}{\gamma D}\right);$$

and

$$g_{1}\left(\frac{rx_{1}}{\gamma D}\right) = \sum_{p=0}^{9} (-1)^{p} b_{p} \left(\frac{rx_{1}}{5\gamma D}\right)^{-2p} + \left(\frac{rx_{1}}{\gamma D}\right).$$

 $\left| \left( \frac{\mathrm{rx}_{1}}{\mathrm{\gamma D}} \right) \right| \leq 2 \times 10^{-7}$ 

The values of a p and b p are as follows :

| g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e <sub>p</sub>                                                                                 | bp                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                                            | 1.0                                                                            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.159992815                                                                                    | C.319985629                                                                    |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.101619385                                                                                    | C.304858155                                                                    |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,130811585                                                                                    | 0.523246341                                                                    |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.207404022                                                                                    | 1.037020112                                                                    |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.283300508                                                                                    | 1.699803050                                                                    |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.279029488                                                                                    | 1.953206413                                                                    |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.178915710                                                                                    | 1.431325684                                                                    |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.065228328                                                                                    | 0.596054956                                                                    |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.010702234                                                                                    | 0.107022336                                                                    |
| the integration the integration the integration of the second sec | $ \sum_{x_{1}}^{\infty} \frac{2}{x} J_{o}(\frac{rx}{\gamma D}) dx $                            | is evaluated in the following                                                  |
| $\int_{x_{1}}^{\infty} \frac{2}{x} J_{0}(\frac{rx}{\gamma D})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-)dx = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{J_{o}(\frac{rx}{\gamma D})}{\frac{\pi}{2}}$ | $\int_{-\infty}^{\infty} \frac{2}{x} J_{\alpha}(\frac{rx}{\sqrt{n}}) dx$ (3.8) |
| Evaluation X.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cf                                                                                             |                                                                                |
| $\int_{x_1}^{2} \frac{2}{x} J_0(\frac{rx}{\gamma D})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )dx is done numeri                                                                             | cally and                                                                      |
| $\int_{x_2}^{\infty} \frac{2}{x} J_o(\frac{rx}{\gamma D})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dx is done using                                                                               | Eq.(3.7)                                                                       |
| because val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ue of x <sub>2</sub> is such t                                                                 | hat $\frac{r_{\chi}}{\gamma D} \geq 5$ .                                       |

## RESULTS AND DISCUSSION

Let,

TERM =  $[1 - \frac{1}{2}(e^{-(\mu_1 - \mu_2)}(1 + \frac{\alpha m \eta (1 - x^2)}{2\mu_2}))$ +  $e^{-(\mu_1 + \mu_2)}(1 - \frac{\alpha m \eta (1 - x^2)}{2 \mu_2}))].$ 

Discrete kernel coefficients are generated for the following sets of aquifer parameters

| T<br>m <sup>2</sup> /day | Ø     | øy   | α η<br>l/day |      |  |
|--------------------------|-------|------|--------------|------|--|
| 350 <b>.</b> 0           | 0.001 | .03  | 20.0         | 31.0 |  |
| 700.0                    | 0.001 | 0.03 | 20.0         | 31.0 |  |

Discrete kernel coefficients are generated when excitation and observation points are different. The generated discrete kernel coefficients are presented in Figs. 3.1 and 3.2. In Table (3.2) discrete kernel coefficients for drawdown in unconfined equifers without and with delayed yield characteristics having the following parameters:T = 700.0 m<sup>2</sup>/day,  $\emptyset = 0.031$ ; and T = 700.0 m<sup>2</sup>/day,  $\emptyset = 0.001$ ,  $\emptyset_y = .03$ ,  $\alpha = 20.0/day$ respectively have been presented for the purpose of comparison.

The procedure described here can also be extended to evaluate the discrete kernel coefficients when the excitation and response points are same. Fig. 3.3 shows a square grid from which unit quantity of water is withdrawn during the first unit time period (and pumping stopped). In order to find the response at the centre of the grid due to the pulse excitation the grid is divided into 36 equal units as shown. It is envisaged that 36 wells are operating one at a time at the centre of each unit. Using method of superposition the drawdown at the centre of grid when all the 36 wells are operating simultaneously is obtained. Sum of the drawdowns is divided by 36 to arrive at the response due to unit withdrawl from the grid. The discrete kernel coefficient generated is designated as  $\partial_{rr}(m)$ . The  $\partial_{rr}(m)$  values have been plotted in Fig. 3.4.

Using the present procedure the well function  $W(u_{ay}, \frac{r}{D}), [W(u_{ay}, \frac{r}{D})]$  is the well function of an

unconfined aquifer having delayed yield characteristics], has been evaluated for  $\eta = 10.0$ ,  $\frac{r}{D} = 2.0$  for different values of  $u_a$  and  $u_y$  ( $u_a = \frac{r^2 \phi}{4Tt}$ ,  $u_y = \frac{r^2 \phi y}{4Tt}$ ) and the same has been plotted in Fig.3.5. Also, the results obtained by Boulton (1964) for these aquifer paramters have been plotted in the same figure.

In order to compare the well function for finite and infinite values of  $\eta$ , the results obtained by Eculton (1963) for a large value of  $\eta$  ( $\eta > 100$ ) have also been presented in Fig.3.5. It may be seen that the type curve for  $\eta > 100$  deviates appreciably from the curve for  $\eta=10.0$ .

## CONCLUSIONS

- An efficient method to evaluate type curves for drawdown in an unconfined aquifer with delayed yield for finite value of η has been described.
- b) The discrete kernel coefficients for drawdown in an unconfined aquifer with delayed yield have been obtained.

Table 3.1 Values of 'TERM' for different values of x

| x                         | TERM      |
|---------------------------|-----------|
| .9900001x10 <sup>-1</sup> | .1267259  |
| .1990000                  | .4213664  |
| .2990000                  | .7086827  |
| .3989998                  | .8882457  |
| •4989996                  | .9671634  |
| .5989998                  | .9925374  |
| .6990000                  | .9986624  |
| .7990002                  | .9998023  |
| .8990004                  | .9999737  |
| .9990006                  | .9999961  |
| .1099001x10               | .9999992  |
| .1199001x10               | • 999997  |
| .1299001x10               | .9999999  |
| .1399001x10               | .9999999  |
| .1499002x10               | .9999999  |
| .1599002x10               | 1.0000000 |
| .1699002x10               | 1.0000000 |
|                           |           |

## Table 3.2 Discrete kernel coefficients for drawdown in an unconfined aquifer

| Time<br>in<br>days | ð <sub>rp</sub> (with do<br>yield)<br>* | elayed<br>m/(m³/day)   | drp (with out delayed<br>yield) m/(m)/day) |                        |  |
|--------------------|-----------------------------------------|------------------------|--------------------------------------------|------------------------|--|
| ,l                 | r = 300m                                | r = 600m               | +r = 300m                                  | r = 6000               |  |
| l                  | .2711x10-4                              | .8445x10 <sup>-6</sup> | .2510x10-4                                 | .4372x10-6             |  |
| 2                  | .3763x10-4                              | .5498x10-5             | .3879x10-4                                 | .5177x10-5             |  |
| З.                 | .3023x10 <sup>-4</sup>                  | .9030x10 <sup>-5</sup> | .3064x10-4                                 | .9120x10 <sup>-5</sup> |  |
| 4                  | .2434x10-4                              | .1022x10-4             | ,2451x10-4                                 | 1036x10-4              |  |
| 5                  | .2021x10-4                              | .1029x10 <sup>-4</sup> | .2029x10-4                                 | .1040x10-4             |  |
| 6                  | .1722x10 <sup>-4</sup>                  | .9925x10 <sup>-5</sup> | .1728x10-4                                 | .1001x10 <sup>-4</sup> |  |
| 7                  | .1500x10 <sup>-4</sup>                  | .9415x10 <sup>-5</sup> | .1502x10 <sup>-4</sup>                     | .9472x10 <sup>-5</sup> |  |
| 8                  | .1326x10-4                              | .8861x10 <sup>-5</sup> | .1329x10-4                                 | .8910x10 <sup>-5</sup> |  |
| 9                  | .1189x10-4                              | .8335x10 <sup>-5</sup> | .1191x10-4                                 | .8370x10 <sup>-5</sup> |  |
| 10                 | .1077x10-4                              | .7843x10 <sup>-5</sup> | .1078x10-4                                 | .7870x10 <sup>-5</sup> |  |
| 11                 | .9841x10 <sup>-5</sup>                  | .7385x10 <sup>-5</sup> | .9853x10 <sup>-5</sup>                     | .7409x10 <sup>-5</sup> |  |
| 12                 | .9062x10 <sup>-5</sup>                  | .6973x10 <sup>-5</sup> | .9070x10 <sup>-5</sup>                     | .6992x10 <sup>-5</sup> |  |

\* T = 700.0 m<sup>2</sup>/day,  $\emptyset = 0.001$ ,  $\emptyset_y = .03$ ,  $\alpha = 20.0/day$ \*\*T = 700.0 m<sup>2</sup>/day,  $\emptyset = .031$ .



Fig. 3.1 Discrete kernel coefficients for drawdown in an unconfined aquifer having delayed yield; excitation and response points are different.



| • 6 | •r2      | •16  | • 24  | •30   | • 36  |
|-----|----------|------|-------|-------|-------|
| • 5 | •1       | • -  | • 13  | • 19  | • = = |
| •4  | • 3      | •    | • 22- | • = 8 | ð     |
| •   | • •      | 3    | 3     |       |       |
| 8   | <b>.</b> | • •  | • ::  | • 2.2 | •     |
| •1  | •7       | • 13 | • 19  | • 25  | • 31  |

Fig. 3.3 Division of a grid into 36 units for evaluation of response when the excitation and observation points are same.



Fig. 3.4 Discrete kernel coefficients for drawdown in an unconfined aquifer having delayed yield; excitation and response points are same



