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ABSTRACT

A variable parameter simplified hydraulic method
based on the approximation of the St.Venant's equations which
describe the one dimensional flow in a channel or river has
been developed for routing floods in channels having uniform
trapezoidal cross section and constant bed slope. The gover-
ning equations of this method are same as that of Muskingum-
flood routing method and it has been demonstrated that these
equations can directly account for flood wave attenuation
without attributing to it the numerical property of the method
as stated by some researchers. The parameters © and K viz.,
the weighting parameter and the travel time respectively, have
been related to the channel and flow characteristics. Using
this method the nonlinear behaviour of flood wave movement may
be modelled by varying the parameters © and K at every routing
time level, but still adopting the linear form of solution

equation.

The developed method has been applied for routing
floods in four different channels having prismatic trapezoidal
cross-section with different constant bed slopes and Manning's
roughness coefficients, and the results were compared with the
corresponding St.Venant's solutions. Three different solution
approaches have been used for routing floods in each channel
corresponding to a reach length of 40 km. These approaches
consists of considering the entire 40 km. length as a single

reach and obtaining the solution by varying 6 and K; considering
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the entire 40 Kn. length as a single reach but obtaining the
solution by varying K and keeping 6 constant; and considering
the 40 Km. reach consists of 8 equal sub-reaches and obtain-
ing the solution by successively routing through these reaches
by varying both © and K. It has been found from this study
in general, the last solution approach is able to reproduce
more closely the St.Venant's solution for both stage and dis-
charge hydrographs, when compared with the other two approa-
ches.

The theoretical reason for the reduced outflow in the
beginning of the Muskingum solution has been brought out and
the needed remedial measure to avoid it is suggested. Also
it has been brought out from theoretical considerations that
for Muskingum method, the maximum value of © is 0.5 and its

negative value is admissible.
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1.0 INTRODUCTION

Flood routing is the process of tracking a flood wave
as it propagates down a channel or a river. A great many di-
fferent methods and procedures for solving flood routing pro-
blems have been described in engineering literature. In gen-—
eral, those methods that attempt a strict mathematical treat-
ment of the many complex factors affecting flood wave movement
are not easily adaptable to the practical solution of problems
of routing floods as they demand on high computer resources
as well as quantity and quality of input data. In order to
keep the amount of computation within practical limits and to
confirm to limits ordinarily imposed by the type and amount
of basic data available, it is generally necessary to use
approximate flood routing methods that either ignore some of
the factors affecting flood wave movement or are based on
simplifying assumptions in regard to such factors. Approxi-
mate methods produce results at considerably less expense but
are limited in generality and accuracy which is the penalty

~one has to pay for their simplicity and low cost of usage.

Methods of flood routing are broadly classified as em-
pirical, hydrological, simplified hydraulics and hydraulics.
Empirical methods were generally developed from intuitive pro-
cesses rather than from mathematical formulation of the pro-
blem. Their application is limited in practice for situations
in which sufficient observations of inflows and outflows are

available to calibrate the needed>coefficients (Fread,1981).



Hydrological methods are based on some mathematical formula-
tion of continuity equation in lumped form and, generally, a
storage equation. The parameters involved in the mathematical
formulation of the hydrological method are evaluated using
past observations. Simplified hydraulic methods may use con-
tinuity equation either in lumped form (Hyami, 1951; Harley,
1967; Cunge, 1969 and Dooge et al., 1982) or in distributed
form (Thomas and Wormleaton, 1970 and NERC, 1975) in addition
to simplified form of the momentum equation of St. Venants'
equations. The said simplification may be obtained either by
curtailing certain terms based on the consideration of order
of magnitude analysis of these terms with that of bed slope,
So (Hyami, 1951; and Lighthill and Whitam, 1955) or by curtail-

ing and replacing the terms by some appropriate approximation

(Apollov et al.,1964).

It is possible to classify certain flood routing
techniques under the Category of both hydrological and simpli-
fied methods depending on the parameter estimation procedure.
The typical example being the Muskingum method. The conven-
tional Muskingum method introduced by McCarthy (1938) may be
classified as ga hydrological method wherein the parameters K
and O, respectively the travel time and the weighting coeffi-
Cient are estimated based on the past observations. But the
variations of the Muskingum method introduced by Cunge (1969),
Dooge (1973), Koussis (1978) and Dooge et al.(1982) may fall
under the category of simplified hydraulic method, wherein the

Jarameters K and © are related to the channel and flow




vnaracteristics.

In practice hydrologic models are in vogue for many
years. Well known among them are the Muskingum method (McCar-
thy, 1938),lag and route method (Meyer, 1941)and Nash Model
(Dooge, 1973). These methods use the parameters calibrated
from the past flood records for routing floods for the purpose
of forecasting or simulation. Since the flood characteristics
are likely to vary from one flood to another, it would be rash
to assume that the parameters determined from one set of flooc
observations could be used to predict the behaviour of an al-
together different flood. This, in effect, limits the predic
tive capability of the hydrological methods to floods similar
to that used in the calibration, and any attempt at extrapola-
tion is unwarrented. This necessitates the use of simplified
hydraulic models in practice which enables oneto determine the
parameters in terms of physical system characteristics. Such
methods enables either flood analyses to be performed in area
where data are not available in sufficient quantity and/or
quality or do not exist at all or for studying the future be-
haviour of the system subject to land use change including
channel improvement. Well known examples of the simplified
hydraulic models are the linear convection-diffusion method
introduced by Hyami(1951), Kalinin-Milyukov method (Apsllov
et al.,1964), the complete linearized model (Harley, 1967),

Muskingum-Cunge method (Cunge, 1969) etc.

The adoption of constant parameters simplified hyd-

raulic models for routing a flood wave is based on the
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assumption of linearity and this is in contradiction with the
nonlinear propefty of flood waves. The wide use of constant
parameter simplified hydraulic models such as Kalinin-Milyukov
and Muskingum-Cunge methods in practice demonstrate that the
accuracy of routing results is not severely affected. However,
this aspect has not been conclusively proved. The constant
parameters of these models are estimated based on the assump-
tion that the flow variation takes place around a reference
discharge. This limitation produces distortion in the predic-
ted outflow when wide variation 1in the flow variable are con-
sidered. Keefer and McQuivey (1974) state that if the model
is linearized about a high discharge, the low flows arrived
too soon and are over damped and if it is linearized around

a low discharge the peaks arrive late and are underdamped.

This has led to the development of variable parameter
diffusion modél (NERC,1975), variable parameter Muskingum-
Cunge model (Ponce and Yevjevich, 1978), variable parameter
Muskingum-Koussis model (Kousis,1978) etc. The most desirable way
the nonlinearity in the flood routing process may be taken in-
to account is to use such a model that remains linear at one
time level, but the linear characteristics may change from one
time level to another time level. Thus the parameters involved
in the modelling vary from time to time just as the flow vari-
able involved in the phenomena. This concept has been adopted
by Ponce and Yevjevich (1978), and Koussis (1978) while

they applied the Muskingum method based on



the diffusion analogy principle. Whereas Ponce and Yevjevich
(1978) considered the variation of both K and @, the travel
time and weighting parameter respectively of the Muskingum

method from one time step to another, Koussis considered the

variation of K onlykeeping © constant.

In an earlier report(Perumal, 1986-87), the author
presented a variable parameter simplified hydraulic model for
routing floods, without considering lateral inflow, in uniform
rectangular channels having constant bed slope, by considering
the variation of flow characteristics at each time level and

by adopting linear solution approach.

In this report a variable parameter simplified hyd-
raulic flood routing model without considering lateral inflow
is developed for routing floods in uniform trapezoidal channels
having constant bed slope, using the same solution approach
as adopted in the earlier étudy. It is also shown that the
solution equations developed for routing floods in uniform
rectangular channel with constant bed slope is a particular
case of the solution developed for trapezoidal channel. Also
the inference arrived from this study regarding Muskingum

method is same as inferred in the earlier study.



2.0 REVIEW

In this section, only those flood routing models
which take into account the nonlinearity of the routing pro-
cess by remaining in the linear solution domain at any time
level, but varying the linear characteristics from one time
level to another time level have been reviewed It is, well
known that the routing process is nonlinear in nature and
therefore flood routing models with variable coefficients can
be expected to perform better. It has been shown by Keefer
and McQuivey (1974) that if the inflow hydrograph into a
channel reach is considered in several blocks with each block
having its own reference or linearizing discharge then the
convolution of these inflow blocks with the corresponding unit
hydrographs of the channel reach developed based on the refer-
ence discharge of each block yield routed hydrographs compar-
able well with the observed hydrograph than that routed hydro-
graph obtained based on the convolution of the inflow hydro-
graph with the unit hydrograph corresponding to a single refer-
ence discharge for the entire inflow hydrograph. This envi-

sages the need for adopting variable parameter routing models.

Koussis (1978) developed a variable parameter Musk-
ingum method based on the diffusion analogy principle, using
the same concept as adopted by Cunge (1969), with constant
weighting parameter © and varying travel time K. Koussis (1978
has found from his experience that © is not varying consider-

ably with discharge, when compared with K. Koussis varied the




value of K at each time step by averaging the travel speed of
the flood wave estimated at the upstream and downstream sec-
tions of the reach by introducing the correction in the rating
curve at the respective sections using " Jones formula"

(Henderson, 1966) as given below:

all L
Q" = Q1 + &= 8L)2 o)

Q = the discharge at a section during unsteady flow

Q,= the normal discharge at the same section corres-
ponding to the flow depth y observed during un-
steady flow

¢ = the travel speed corresponding to discharge Q at
a section

t = notation denoting time

rBy iteratively solving equation (1), the travel speeds at the
upstream and downstream sections may be obtained corresponding
to each time level of the Muskingum method solution. Koussis

(1978) estimated the outflow discharge Q, using the following
expression obtained by assuming linear variation of inflow

over the routing time interval A t:

Qp = I, + CyI; + €y, (129

Wherein the coefficients 01,62 and C3 are given as:

S —K —
Gy = i e =R
€, m S e g d s 13
2 At an AT
Cy = B
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Following the same approach of Cunge (1969), Koussis
estimated the parameters © and K in terms of Channel and flow
characteristics by relating the numerical diffusion with the
physical diffusion. The form of the parameters so estimated

are given as:

e At/K
s R (4)
A+1-At /K g
Where
A= %
B%ﬁ A X
Q0 = Reference discharge.
and
K = Ax/c Lo o 3
The symbols B and Ax represents respectively, the
channel width and reach length. The estimation of discharge

at the outflow section requires one more iteration procedure

using equation (2) besides the iteration required for the

correction of rating curve at downstream section for the esti-

mation of travel speed based on the loop rating curve. There-
fore it can be realized that although the Koussis procedure
is physically based, it involves tedious iterative computa -
Cions.

Ponce and Yevjevich (1978) suggested a simple vari-
able parameter method based on the Muskingum-Cunge procedure.
Usually the routing time intervai being fixed, and Ax and S

are specified for each computational cell constituting of four




grid points, as shown in figure (1), their method involves the

determination of flood wave celerity and the unit width dis-

charge,

q for each computational cell. The values of ¢ and

q at grid point (j,n) are defined by

in.which

dQ ‘
c = 4Q .. (6)
i jsn
q = % l. (7)
J.n
Q = discharge

A = flow area

The following ways of determining c and q were inves-

tigated by Ponce and Yevjevich for the computation of varia-

bles © and K of Cunge (1969) for each time level:

(1)

directly by using a two point average of the values
at grid points (j,n) and (j+1,n):

directly by using a three point average of the values
at grid points (j,n), (j+1,n) and (Jyn+1); and

by iteration, using a four point average calculation.
They concluded that three point and four point itera-
tive schemes of varying ¢ and q yield better results
and both are comparable. In view of iterations in-
volved in four point scheme,it may be considered that
three point average procedure is desirable for use
in practice. Besides, this method is also much
simpler than the method suggeted by Koussis (1978).
However both Ponce and Yevjevich's (1978), and Kouss-

is '(1978) approaches for varying the parameters of




n+1 n+1
Q; Q41
At
n n
Qj A% Qj+1

FIG.1. SPACE TIME DISCRETIZATION OF MUSKINGUM ‘
METHOD
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the Muskingum method at each routing time level are
arbitrary and not based on the mathematics of the

Muskingum method solution.

In an earlier study(Perumal, 1986-87) the author pre-
sented a variable parameter simplified hydraulic method based
on the approximation of the St. Venant s equations for routing
floods, without considering lateral inflow, in channels having
" uniform rectangular cross-section and constant bed slope. The
method was developed assuming that the friction slope S;is
constant at any instant of time over the channel routing reach
and by adopting the concept that during unsteady flow there
exists a one to one relationship, at any instant of time, bet-
ween the stage at the middle of the routing reach and the dis-
charge downstream of it. The form of the governing equation
for obtaining the solution is same as that Muskingum method

which is given as:

(a B

I =@ = dc K[Q + & (I-Q)] o s (180
in which
B Ax (9)
K =
5 4 y
[_3——3- (B+§y3)]v3
and

11



where,

2y
10 = e L =
9 B+2y
@ ! s 7 m g_Q ce.(11)
m
SOB [ ? - ym X

§W] il

The symbols Y3 sV3 and Q3 respectively denote the flow depth,
velocity and discharge at section downstream of the mid-
section of the reach where the discharge during unsteady flow
is uniquely related with the flow depth at mid-section of the
reach, and ¥, and Vim Tepresent the flow depth and velocity at
mid-section of the reach during unsteady flow. F is the proude
number corresponding to flow at the mid-section of the reach.

For wide rectangular channels equations (9) and (10) reduce

to

¥ g 5“ el 12

3 V3
3nd 38 s L.k L
L Blz=1) 2(==1)(5-2) _4
o =3 - 00 Pt Gt R quigen
z Sls
SoB (T;V )AX

when neglecting the terms Gm’ G; s «+..€Cc., O reduces to

o g F2)
g =L - — 1 = ... (14)

ZSOB (?Vm) il 5

It was shown that when the variables are fixed corresponding

to a reference discharge value Qo’

B = A x sas B1L5)

5
3V
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5
ZSOB( = Vo) AX

The above expression for K and © were obtained by Dooge et.
al. (1982) based on linearized St. Venant's solution approach,

for the case of constant parameters Muskingum flood routing

method. When the rectangular channel is not wide and after
eliminating Gm s G; s, .. etc. K and © reduce to:
Ax s
K - : 5% 7 sl 1/)
i ST B+ 7y, )]v3
y Q[1-¢F2(1 - Yy )2 ]
m BTy
e=l/2_ m --.(18)
5 4
25g L 7 ~ 3 1 . +yg ) 1Q_Ax
Ym

The developed method employed equation (17) and (18)
for routing floods in foui different channels having prismatic
ractangular cross-section with different constant bed slopes
and Manning's roughness coefficients, and the results were
compared with the corresponding st. Venant's solutions. Three
different solution approaches were used for routing floods
in each channel corresponding to a reach length of 40 Km.

These approaches consist of considering the entire 40 km.

length as a single reach and obtaining the solution by varying

® and K; considering the entire 40 Km length as a single reach

but obtaining the solution by varying K and keeping © constant;

13



and considering che 40 km. reach consists of 8 equal sub-

reaches and obtaining the solution by successively routing
through these reaches by varying both © and K. It was found
that the last solution approach was able to reproduce more
closely the St. Venant's solution of both stage and discharge

hydrographs when compared with the other two approaches.

The study also brought out the theoretical reason for
the reduced outflow in the beginning of the Muskingum solution
and suggested the needed remedial measure to avoid it. Also
it was shown usingthe developed theory that for Muskingum
method the maximum value of © is 0.5 and its negative value

is admissible.

14



3.0 PROBLEM DEFINITION

It is required to develop a simplified hydraulic
flood routing method for tracking flood wave movement in pri-
smatic channels having uniform trapezoidal cross section and
constant bed slope. The routing procedure may adopt a linear
form of solution equation with the relevant parameters varying
from one time level to another time level of solution and thus

taking care of approximately the non-linear behaviour of the

flood wave movement.
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4.0 METHODOLOGY

The method developed herein is similar to that deve-
loped in the earlier study(Perumal, 1986-87) by the author for
routing floods in uniform rectangular channels having constant
bed slope and roughness coefficient. For the purpose of be-
tter understanding of the method developed herein, the physi-
cal basis of the proposed theory and the assumptions involved
in the development of the method are once again described

without referring it to the report quoted above.
4.1 Physical Basis of the Proposed Theory

During steady flow in a river reach there exists a
unique relationship between stage and discharge at any cross
‘section. This situation is altered during unsteady flow, with
the discharge appearing first in a cross-section and at the
same time the stage which corresponds to that discharge during
steady flow appears at a section upstream of it. This concept
has been adopted by Kalinin and Milyukov (as quoted by Miller
and Cunge, 1975) to determine the unit léngth of reach' re-
quired for flood routing in river reaches. However, Kalinin-
Milyukov method is less flexible since the 'unit reach length'
of the channel is fixed for a given flood wave and the end
section of the unit reach length may not coincide with the
downstream section where the stage-discharge information is
required, thus necessitating interpolation of the routed hy-
drographs. Besides, the adoption of constant unit reach leng-
th implies that the unique relationship between discharge at

the outflow section and the depth at the middle of the reach

16




always exists during unsteady flow phenomena. This is in con-
tradiction to the characteristics of unsteady flow phenomena
in channels. In this report, it is shown that the modifica-
tion of the concept of Kalinin-Milyukov method leads to a
.flood routing method which is devoid of such limitations men-
tioned above.

The concept adopted in the Kalinin-Milyukov method
is that during unsteady flow in a uniform rectangular channel
with linearly varying water stage along the river reach, the
channel storage S in the routing reach of length Ax is uni-
quely related to the mean water stage of the reach which in
turn is uniquely related with the discharge observed at the
outlet of the reach. Here the distance Ax corresponds to

the unit reach length.

The constant parameters of the Muskingum method have
been evaluated by extending this concept that the mean water
stage of the routing reach of length Ax is uniquely related
to the discharge at a section located 'g' units of length down-
stream of the midsection of the reach (Apollov et al, 1964) .
However, here Ax need not correspond to the unit reach length
as in the case of Kalinin-Milyukov method.

The above concept has been used to evaluate the varia-
ble parameters of the proposed method. The mathematical des-
cription of the method which is different from that of Kalinin-
Milyukov method is given in the following pages with the assu-

mptions involved.

17




4.2 Assumptions
The following assumptions have been made in develop-

ing this method:

e The channel reach is having uniform trapezoidal cross
section.
2 The channel bottom slope is constant over the routing

reach length.

3. There is no lateral inflow or outflow from the reach.

4. The friction slope S; is constant at any instant of
time over the channel routing reach.

S During unsteady flow, there exists a one-to-one rela-
tionship at any instant of time between the stage at
the middle of the routing reach and the dischatge

passing through a section downstream of it.

4.3 Development of the Model

Figure (2) depicts a river reach having uniform trape-
zoidal cross-section with upstream and downstream sections,
where the inflow and outflow hydrographs are observed have been
denoted respectively as sections (1) and (2). Let the distance
between these sections be Ax. Let the side slope of the tra-
pezoidal section be Z (Z Horizontal:1l vertical). The defini-
tion sketch of the trapezoidal section is also shown in fig.2.

Based on assumption (5), the water depth observed at
the middle of the reach corresponds to the normal depth of that
discharge which is observed, at the same instant of time, '&'

units of distance downstream from the middle of the reach. Let

18




SECTION (D)-(1) : CORRESPONDS TO THE INFLOW PONT
SECTION (9)-(2) : CORRESPONDS TO THE OUTFLOW POINT

secTioN (3)-(3) : CORRESPONDS TO THE POINT WHERE
THE DISCHARGE Qe IS UNIQUELY RELATED

WITH THE STAGE AT THE MIDSECTION
OF THE REACH

@/Iiil//(zrr,,',,,,,,,’© @
o Lo
. AxH —_ﬁ

FIG.2(a) DEFINITION SKETCH OF THE REACH UNDER
CONSIDERATION

\ . /
Y
zﬁ ] %z

B
FIG.2(b) DEFINITION SKETCH OF THE CROSS-SECTION
OF THE REACH UNDER CONSIDERATION
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this discharge be denoted as Qn and the section where this
discharge is observed be marked as section (3). The discharge

at the middle of the reach may be expressed as:
QU i= i N (3191

where, Am and v oare the area and velocity during unsteady flow
at this section. Equation (19) may be re-written in terms of
width and side slope of channel section, depth of flow at the
mid-section and Chezy's or Mannings roughness coefficient.
First the mathematical formulation of the problem in terms of
Chezy's friction law is presented followed by the formulation
using Manning's friction law.

4.3.1 Mathematical formulation involving Chezy's law

Before proceeding with further mathematical operation
on equation (19) using assumption (5), it is necessary to use
assumption (4) in order to simplify the expression for fric-
tion slope which would be used in modifying equation (19).

Let the expression for discharge Q at any section of
the reach during unsteady flow condition in the reach, as
depicted by figure (2),may be expressed as:

Q = Av (20)

where, A is the channel cross section and v is the velocity

of flow. The discharge using Chezy's friction law is given
as:

Q = AC YRS¢ (21)
where

C = Chezy's constant

20
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"A/P, the hydraulic radius

2

the wetted perimeter, and

S¢ the friction slope

The area of cross section of the trapezoidal section is exp-
ressed as:

A =(B + yZ)y oo oi22)

where

B

the bottom width, and

Z the side slope (Z horizontal : 1 vertical)
The wetted perimeter of the trapezoidal section is expressed

as.

Po="AB o+ 2y i L) Laatid B
y

The hydraulic radius of the trapezoidal section is expressed as:

R = (B + yZ)y/(B + 2y V1 « 2%) .. (24)

Equation (21) is re-written in terms of channel width, side

slope and depth of flow as:

3 /2
Cl(B + yZ)yl /
[B + 2y41+22]%

The friction slope Sccan be expressed as (Henderson, 1966):

o wie (325

Q =

v « oo i26)

Where,
S, = the bed slope
%% = the water surface slope

2%



g- g; = convective acceleration slope

1 3v :

s 3t local acceleration slope

X = mnotation denoting distance

g = the acceleration due to gravity(9.81 m/sec?).

Differentiating Q as given by equation (21) w.r.t. x:

(%]
O

|

= e
X CA%?BX

HY o

d
(A /R) + CAV/R T (5¢) b n )

Q2

Based on assumption (4) that Sg remains constant at any instant

of time, the above equation reduces to:

89 _ -
‘ C/b_,'fa_i(A /R) s 128)

On further manipulation the above equation reduces as:

3Q /_ P 3R 3A

e v [ Soa e L ] v os (29)
The differential %% can be expressed as:

aR _ (B+2YZ) - gy _ 2(B+yZ) y JA+Z% 3y (30)

ax (B+2y/A+ 22 x  (B+2y /1+Z7) ax .

The differential %% can be expressed as

(o]
s

- (B+2y2)g—-§ i EEL)

Q
X
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Substituting eqns. (30) and (31) in eqn.(29) yields

9Q

(B +2YZ)

|

=V if

(B+yZ)y V1+722 ] 8y s el32)
(B+2y Jrrge)® ax

Q2
x
N Lo

The above equation can also be expressed as

3Q 3 A 3
..a;zv[?.-g—)_]—R 1+Z]—X .--(33)

WhenSf remainsconstant at any instant of time over the
; ; v av 1 3v dy
reach under consideration, the terms 2. 5% 2 3t and 3%
of eqn. (26) also remains constant. This implies during un-
steady flow, the water surface is linearly varying at any ins-

tant of time over the routing reach.

Defferentiating eqn. (32) yields:

2
Q. . 3 - _8 (B+yZ)y /T+ZZ; 3
%;7 =vl 3 g% (B+2vZ) ® (BrZy JI+Z7) 5%

vl 3(Br2yz) - BtyZ) y/IFZZ", 52

(B+2y /i+Z? 3%
3 (B+yZ)y Y1+722, a3y 3 o 38)
f U g(B2y2) - et & iy

Assuming the terms i . (3 )2 and VY 3Y are negligible in
& 3 x 9 X 3% S

magnitude when compared with the magnitude of g% » egn. (34)

can be approximated to

[oF)
)
O

=@ o ote L350

:

Eqn.(35) implies that Q is also varying linearly over
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the reacn where Sf is considered constant, at any instant

of time.

Evaluation of terms 3.V and é i!‘in terms of %% S -

b/
g I x at
Using equation (20) and (33) one can arrive at the

Qo

expression for g %% at any section in the reach in terms of

hydraulic radius, top width of flow section and Froude number

as:
vy - pL . RYITZR 0. 3y ... (36)
g 3x 2 3 A7yy X

Similarly using the hydraulic continuity equation which is

given as

>

3Q ) "
a—x+a_ = 0 sz a3

and eqns. (20) and (33), the expressioin for é—%% at any sec-

tion of the reach is given as:

R \2
& 5y 3y

Therefore the friction slope expressed by equation (26) can be
modified for the routing reach under consideration, using equa-
tions(39) and (36) as:

R 2
3 A7z29%]) ... (40)

o=

- 13 R
S« =8 (1 2 §§[1 e

|

(=%
<

The discharge at the middle of the reach is expressed as:
Q = A v . ---(19)

m m m

Equation (19) is re-written in terms of area and wetted peri-

meter as:

Q, = A C/—"—S cos G40
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Where P is the wetted perimeter at the mid-section of the

reach and other symbols are as defined earlier. Qm may be re

written after substitutingfor S¢ from equation (40) into equa-
tion (41) as:

Am {1-1 ay E2 Rm %} %
= e —a - e 2
Qm_Amc Pm S 1 So X m[l Z_(l 235|A+Z ) voul(d2)
oy 'm

where
Rm = the hydraulic radius at mid section of the
reach
§X| ) h
ax'm = the water surface slope at the mid-section of

the reach

24

vim = the top width of flow section at the middle

of the reach
Based on assumption (5), the flow depth observed at
the mid section of the reach corresponds to the normal depth
of discharge anhich is occuring somewhere downstream of the

mid-section of the reach. Therefore the ternm AmngE SO co-

m
rresponds to the discharge Qn
Thus equation (42)is modified as:
R 1
e L 3y S ST S e S 8
Q=R 1 ax|m(1 (1 255 1+22)7)] sz (B3)
o |
gy m
Based on the typical value of So’ %% experienced in natural

rivers (Henderson,1966) it may be considered that the absolute

value of the term

R
1 3 LEE o i e
ay'm

Under such situation the Binomial series expansion of eqn.(43)
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is convergent, and it is given as

Fz ZI_QL 2
[1- z—(1- B&, /A+Z7) ]
ay 'm

1
Q = Qn{ ke 7§-%§|m

(0]

~Nm
~~N
=
|
{5

L(L_
+ 2(2 1) [ é__a_zl (1_
o gXx'm

... (44)

R
1 Fi2 e
Let the term 35 %§|m[l—z~(1—2 —%Jl+22)2] = G o 5o £4.50)

ay"'m

Eqn. (44) is written in terms of G as

1 1 1 2 5 3 ik ]

Qm - Qn h Qn[ 2T gG i TEG 178 G

1= Epaes “n 1+22)2 ]3|
& aA gx'm ... (46)

Iy

S
o

Eqn. (46) is modified by replacing %% by %% using eqn. (33)

as:

Since the discharge is varying linearly %%'m: %%|3 ess(48)
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where,

%ng = the rate of change of discharge at section (3)

Therefore eqn. (47) is modified as:

= G- Lol . 1 2
Qm - Qn Qn [ + 8G # TEG2+ Tnga Fraiis ereis ]
R
L e m
k3 z—(l 2 EEI 1=Hz=]) =] A
gy m Al (49)
A 3 _ Rnm ax!3
O INEE
ay'm

Therefore the distance ' %' between the mid-section and that

downstream section at which the normal discharge corresponding

to the depth observed at mid section is given as:

L g Al g 5
{4 Qn[2+B'G+1—6—G2+1—2'gG3+ ...... J

L
y 'm o o LB
R
3A i . e
Vmso W Im [ Vi E 1+22]

Since the discharge is varying linearly within the reach of

length A x, the discharge Q, at section (3) is computed in terms

of inflow I and outflow Q as:

Q = Q@+ (% - &) (1-0q sh52]

Now applying the continuity equation

|
%S
+
|
3
|
(&)




between sections (1) and (3) of figure (2), one arrives at

1
aQ o 3Q
LR R el aEs
But using equatian (33), %Q may be written as:
R
R " 5 S 2
§|3 = vy [ 3 ﬁl 1+.Z2° | (53)
9y '3
where,
vy = velocity of flow at section (3)

Therefore substituting eqn. (53) in eqgn. (52) yields:

9Q 1 )
a_x I3 = — 3 R3 _rt(QB) ---(54)
] 2
V3[7 _aé | \1+Z ]
ay '3
Since %%|3 = %%|2 as inferred from egn. (35), eqn(54)

is modified and written in numerical difference form as

I ~Q = 4 x A (9, ) ... (55)
R t ‘Y3
P [ e 9
Yok 7 T gy MOE
ay '3

But Q3 is same as Qn and it is given by eqn. (51)

Therefore Egn.(55) is modified as:

= ()= — AX o e P = NG < 20 2(56)
v3[7 - EEI 1+2z2 ]
ay '3

Since I and Q varies only w.r.t. t, the partial derivative of
eqn.(56) is changed to full derivative and the eqn.(56) is modi-

fied as:
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£ 1is given by eqn. (50) and

. A ﬂ’k . (58)
R e
vil 5 EE\ ik
ay 3

Eqn(57) is of the same form as that of well known Muskingum
method.
Parameter © is approximated by neglecting the terms G, G2,G3...

in eqn. (50) as:

R
‘ - 2 - m
Qn ! E_(l 2 EE’ VI+Z2)2 ]
6 =% - 3y 'm v w9
R
A 3 _ om R
% So maylm[i EEI Pl i
dy'm

Eqn.(59) is more suitable for use 1in practice:
Expressing equations (58) and (59) in terms of channel width

and flow depth as:

Ax
K = s 0o K ORL)
LG T AECY o R

v3ly - (B+2y3/I+Z%) (B+2y,Z)

where,
y3 = flow depth at section (3), and
2(B + Zy ) yI1+Z2 )
Q[ 1-T1{1- n 7m )21
TR B+ 29 Ar22y B2y 7)
5= % - ’m Y (61)

" (B+y_ Z)y /1+Z°
2S v_(B+2y Z7) - ] bx
v 078 o 2 (B+2yﬁ’1+22J(B+2ymZ)
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when the flow variables are fixed at reference values, then K

and & reduce to

X
v [ 2 (B+y Z) Yo }1+22 ] s (1629
2
B+2y 51+22 B+2y 7))

and :
Pz 2(B+y 2)y_[1+22 g
Qpl 1o~ (1 B2y J1+22)(B+2y 73
5 (B+y Z)y, ik el
7 (B+2y NIEYAD (B+2y_2)

e = 12 - .(63)

2 s v, (B+2y Z)[5

Reducing K and 6 for rectangular cross-section channel case:

For rectangular cross section Z = O.

When Z = O, eguations (60) and (61) reduce to:

K - Ax oo 0 62)
s o
32 B+?y3
F2 B 2
and Q3[1 Vo e =
4 L (65)
@~ =3 3 Ym
ZBSOVm(‘—rZ' = W} A X

4.3.2 Mathematical formulation involving Manning's friction
law:

Proceeding in the similar manner as in the case of anal-

yis based on Chezy's friction law, the expression for %% using
Manning's friction law is given as:
0Q 5 _ 4 (B+yz)y N1+72 oy +0:(66)
x - VL 3B 22 - 3 (Eey e ek
The equation can also be expressed as:
3Q _ 2 A _ 4 \1+z22]3Y
ax—V['B'ay —§R1+Z ]ax ---(67)
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It can be proved, as it has been done earlier for the

unsteady flow governed by Chezy's law, that %% is also varying

linearly at any routing time level over the reach where the

friction slope Sg is assumed constant.

[
[<

in terms of aX :

and 2 X

Evaluation of the terms

e
oo | —
+

L4
g 9 9

Using equations: (20) and (67) the expression for g %%
at any section in the reach is given in terms of hydraulic

radius, top width of flow section and Froude number as:

Ji+z2] 72 82 ... (68)
X

1>

Q2
«

where,

F denotes the Froude number of flow.

iy at any section of the reach

Similarly the expression for—g— 5

is given as:

R R?
1 dv 10 28 2 16 2. 0V s 163
e = [ = ; HA\i1+Z - =5(3A)2(1+22) ]F H
B IS iy 73y ;

The addition of equatioms (68) and (69) yield:
] 2
L LU ST ... (70)

ax

L PRl iy

* 3y

3

<
Q
<

+

(a5]
x
oo |-
(-5}
=t

il
g

Therefore the friction slope expressed by equation (26) can be
modified for the routing reach under consideration as:

2R

= 1 8y b2, = 2
Sg= So{l é;ax [1§F 1 g_% 1+z2)%] 3 A o

Based on similar analysis as carried out for the case
of unsteady flow following chezy's friction law, it can be

shown that the distance '&' between the mid-section and that
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downstream section at which the normal discharge corresponding

to the flow depth of mid-section is experienced, is given as

n m 16°m 178 n:;
R
B m 2 vl
[ 1 - %7212 vy J1+22)2
ayg cuad 120
3 A 9 L m ] 2
nSogyInl 373 g V127
oy 'm
where, 4 9 Rm J——TT 5
g l—gF (1 = 2 A 1+Z)
Gm g §“’m 30
! R e xcs (73)
R
9A 5 0 4 m 2
VnSo E\_)}.'m[ 3 5__1 \)1+ZJ
3 m
and Rm' 86

3y I m V, are as detined earlier for the derivation us-

ing Chezy's friction law.

Similar analysis as carried out earlier for the flow
following Chezy's friction law, leads to the governing unsteady

flow equation as:

I—Q:%[K(Q+9(I-Q)] o5

K - Ax -l74)
R
5 . 4 By 2
bor o Ty, $HE L vy
ay'3
and
1 il 5 3
B =% - . [%* a6+ Te% & qog G ks as }
R
— 2
= %FZ( 1-2 BA, 1+2%)4
: 48y m (=753
. 0A N Rm
Vmso_§|m[§ 7 EE] 1+27] A x
gy m



Where,
Ry = hydraulic radius at section (3)
%%|§ top width of flow at section (3)
vy = velocity of flow at section (3)
N = velocity of flow at mid section of the routing reach
R, = hydraulic radius at mid-section of the routing reach
g%%; top width of flow at midsection of the routing reach
Qn = Q3 the flow at section (3)
Expressing K and © in terms of flow variable and negle-
cting Gm,G;, G; ..... etc.
g = Y = ?32) 5 I ] > wio hi7H)
3= 3 3 (B+2y3JT¥ZZ)(B+2y3Z)
oA 4 2LB + ymZ) Y 1+Z%4 )2]

Q3[1—§F2(1-(B+2ym JI7Z7) (B +2y_Z)

(B +y Z)y, J1+z°

wl &

5
2S v_(B+2y Z)[= - ;
e S (B+2y_[1+2%) (B+2y _2)
K and © expressed by Equations(76) and (77) have been used in
this study.

Reducing K and © for rectangular cross-section channel case:

For rectangular cross section Z = O
when,

Z = 0, equations (76) and (77) reduce to:

o 9l 78
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and

Equations (78) and (79) were obtained in the earlier study
(Perumal, 1986-87) of simplified hydraulic method for routing

floods in uniform rectangular channels with constant bed slope.
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5.0 APPLICATION

The methodology described above was verified by applying
it for routing floods in trapezoidal channels assuming that the
flow follows Manning's friction law. It was assumed that the
routing parameters K and 6 can be represented in terms of chann-

el and flow parameters by equation (76) and (77) respectively.

It was considered that the approximation involved in com-
puting © using approximate '%' the distance between the mid-
section and the section downstream of it where the normal dis-
charge corresponding to the observed depth at mid-section is
realized at the same instant of time, would not affect the

accuracy of routing solution based on this procedure.
o S | Test Series

The best approach for verifying the suggested methodolo-
gy is to use hypothetical inflow-outflow hydrographs. Accor-
dingly a hydrograph defined by a mathematical function is rout-
ed through the given channel for a specified distance using
‘St.Venant's equations, which govern the one-dimensional flow
in open channels, and thus the "observed" outflow hydrograph
at the end of the specified distance 1is established. Now the
same inflow hydrograph is routed in the same channel using the
suggested procedure for the same specified distance and the
resulting routed hydrograph is compared with the corresponding
St. Venant's solution. The criteria for comparison based on
various characteristics of outflow hydrograph are defined at

section 5.3. The logic behind the use of hypothetical inflow-
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outflow hydrographs for verifying such methodologies has been
already established (Kundzewicz,1986).
5.1.1  Inflow hydrographs

In order to get a better understanding of the suggested
procedure and for the purpose of effective comparison of wvari-
Ous outputs obtained based on this procedure, it was decided
touse the same inflow hydrograph in all the test runs. The
hypothetical inflow hydrograph defined by a four parameter Pe-
arson type-III distribution which is expressed by the follow-
ing equation was adopted in this study:

1

e
Q(t) = @ + (Q-Q )(E )”’ = U peppdstit) ... (80)
ph kB tp e

where,
Qb = base flow = 100 m?/S
Qp = peak flow = 1000 m®/S
tP = time to peak - 10 hours
Y = skewness factor = 4515

This hydrograph was addopted by Weinmann (1977) based on the
consideration of steepness of hydrograph and magnitude of ini-
tial flow. The hydrograph based on equation (80) is shown in
all the discharge hydrograph plots presented in this report.
The same hydrograph was also used in the earlier study(Perumal
1986-97) for verifying the simplified routing method developed

for routing floods in rectangular channels.
5.1.2 Channel geometry and flow resistance properties.

The trapezoidal channel with the bottom width of 50 m

b &) SN s e T P (]
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and the side slope of Z=1.5(Z horizontal: 1 vertical) was used
for all the test runs, and the routing computations were carri-
ed out for a maximum reach length of 40 km. The methodology
was tested on four different channel configurations which are
characterised by the following bed slope and friction wvalues
as given in Table - 1.

TABLE 1

CHANNEL CONFIGURATIONS

Channel type bed slope n - Value
l 0.0002 0.04
2 0.0002 0.02
3 0.002 0.04
4 0.002 0.02

These configurations were earlier adopted by Weinmann(1977)

possibly due to the reason that the first two configurations
represent worst cases for which the approximate routing proce-
dures is expected to perform poorly, and the last two configur-

ations represent the best cases for which it is expected to

perform well.
5: 2 Solution Procedure

The initial parameter values for K, and 60 were evalua-
ted using equations (76) and (77) respectively. Using these
parameter values, the coefficients of the conventional Musk-

ingum method were evaluated as:

K8 + At/2
C _ 0
1 K(I—GO) HNt/2
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Keo FOANE
2 R(1-6_)+ A €/2

K(l—eo) - At/2
3 K(1—eo) + AC/2

Then the discharge Q, at the outflow section corresponding to
inflow I,, where 12 corresponds to inflow ordinate at t = At,
was evaluated as:

Q = CI, + C,I, + C,Qq v v B2))
Knowing I, and Q), the discharge at section (3) as dipicted

in figure (2) was evaluated as:

Q3 - Q2 + GO(I2 = QZ) o s (:83)

corresponding to this discharge, the normal depth at the middle
>f the reach was evaluated using Newton-Raphson method based
>n the normal depth-discharge relationship as:

L
[(B + ymZ)ym]5/3 5o ... (84)
Q3 =

(8 + 2y_<J1ez%)?/3

Then the discharge at the middle of the reach was evaluated as:

5=

0= L ® 00000 v oo (85)

Knowing Qm,ym,Q3 and Fz, the new © was computed using equation
(77) corresponding to Q,- Based on equation (66) the flow

depth at section (3) was evaluated as:

(Qy - Q)

< , (B+y 2)y J1+2° Q
[j(B+2ymZ)_j

¢ +(86)

¥3- = ¥pm g
m

Z ] y (B+y Z)

(B+2me1+Z ) m m
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The velocity v, at section (3) was computed as:

. Q3 ... (87)
3 k! y3(B+y3Z}

Knowing wv5 and yq , and the distance of routing reach px, the

new travel time K was computed using equation (76).

These revised K and 6 values were used for the next step
of solution corresponding to the new input ordinate. These
steps were repeated for the entire solution procedure, thus
varying the values of K and © at every time step, but at the
same . time adopting the linear solution procedure. The flow
deptl: at the outflow section corresponding to the solution Q

was computed as:

(Q, - Q)
2 m ...(88

5 4 ¥, (Bry 2) [1+2° Q
['E(B*'zymZ)_‘g‘ L

Y2= Y a0

:l m
(B+2ym-Jl+ZZ) V' B2

The procedure described above correspond to the vari-
able parameters case. Two different approaches of solution

procedures were adopted for the variable parameters case viz,

1) Considering the entire 40 km. reach as a single reach
and
2) Considering it consists of number of sub-reaches. The

other solution procedure corresponds to the case of
adopting constant © and variable K, along with the

consideration of 40 km reach as a single reach.
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In order to test whether linear interpolation of given
inflow and routed outflow hydrographs at some downstream point
is appropriate for finding the routed hydrograph at some in-

termediate points, two different cases were studied.

In order to check whether the interpolation solution
yield comparable result with the direct routing solution for

2 distance of 5 km, the following procedure was adopted:

For the case of channel type-1, and channel type-2, the
linear interpolation solution was obtained at the end of the
reach length of 5 km. based on the given inflow hydrograph and
the routed hydrograph at the end of 40 km. For comparison
with this solution, the inflow hydrograph was routed for 5 km.

by considering it as a single reach.

Sixteen test runs as indicated in Table-2 were made in
order to have a better understanding of the proposed metho-
dology. Runs based on different combination of parameter
variations, and number of sub-reaches considerations were
made. Such combinations tested are listed in the 'Remarks'
column of Table-2. In all the runs, the routing time inter-—
vals At was considered as 15 minutes in order to avoid any

numerical error in the solution using equation (82).

40




*sydeidoapiy
MOTJFINO pa3jnol pue MOTJUuI JoO coAumHoapmuca 1eauT] AQ paUIB]IQO SBM UOTINTOG T
Jue3lsuod SUTIUTBWALI @ pue BuTAieA Y ATUQ .5

3dutkiea ) pue g yaog w2 930N

% € 1 g < G 9T

2B oY T 0% S z (o 5

G T s S T 7T

P P 0% T 0% S T €T

% C Q 0% 0% 17 Zr

s 0t T 0t 0% 7 1T

% 0% L 0t 0% 17 0T

% S 8 0b 07 c 6

%3¢ b7 T 0t 0% € 8

X 0 T 0t 0% € L

% g Q 0t 0% C 9

0% T 0% 0% 14 g

a Otz T 0t 0% Z H

s G Q 0t 0% T 5

3 0 T 0% 0% T Z

5 0% T 0% 0% | T
(Tuy)
SQyDdED1 utr yadus

yoeai-qns -gng (wy) ur yaduag yoeay 2dA ], *ON uny

s)ieway IO yaduag JOo *ON yoeay poajdopy paitnbay Ta2uuey) 1s9]

»1IVLEA NNY LSHL

¢ d19vl




AT s s B0 Rl e e

s Comparison Criteria
The following comparison criteria were adopted for check-
ing the efficiency of the proposed method of solution in com-

parison with the St. Venant's solution:

5.3.1 The hydrograph fitting consideration

The closeness with which the proposed method of solution
follows the true solution, including the closeness of shape
and size of hydrograph, can be measured using the criteria of |
variance explained by the method. The expression for variance :

explained in %Z is given as:

Variance explained _ (Total Variance-Remaining Variance) 400
in (2) - Total variance
v L]
vhere,
the total vamrance = iy (.. - Q )2 (90)
Nfil oi oi
the remaining variance = L F (Q. =0 )2 (91)
g Ni=1 ol Tigd e
with,
cEh o :
i = the 4 discharge observation
Qoi - mean of the discharge observation.
Q . = the ith discharge computed using the proposed
L method
N - the total number of discharge ordinates.

5.3.2 Magnitude of flood peak consideration

Relative error in peak discharge (%) is given as:
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= (9 Q)
Qpg - —BE PO » 100 35 2092)
po
where,
Qpc = the computed peak outflow discharge
on = the observed peak outflow discharge

Error in. peak stage (metre) is given as:

Ypp * e yPO 5o - (193]
where,

ypc = computed peak stage at the outflow section

ypo = observed peak stage at the outflow section.

5.3.3 Time of peak consideration
Error in time of peak discharge(hours) is given as:

T .+ (94)

PQE ~ t (Qpc) - t(on)
where,
I:(QpC = time corresponding to computed peak discharge
t(QPO)= time corresponding to observed peak discharge.

Error in time of peak stage (meters) is given as:

TPYE = t(ypc) = tfypo) «».(95)
where,
t(y C)= time corresponding to computed peak stage at
P the out flow section.
t(ypo)= time corresponding to observed peak stage at

the outflow section.
5.3.4 Conservation of mass consideration

The relative error in the flow volume in percent of the
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total inflow volume is expressed as:

N N
z - I :
T
EVOL = | N ] x 100
|
=1 *
where,
ek :
Ii = the i inflow discharge.
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6.0 RESULTS AND DISCUSSIONS
6.1 Results

Table-3 presents the results of variance explained, re-
lative errors in peak discharge and peak stage, errors in time
to peak discharges and peak stages, and the relative error in
flow volume for all 16 test runs made in this study. Figure(3)
'shows the inflow hydrographs, and the outflow hydro-
graphs , computed from test run nos 1, 2 amd 3
and from St. Venant's equations (the " Observed " hydrographs)
Figure (4) shows the corresponding computed stage hydrographs
at the outflow section. Similarly figures (5),(7) and (9) res-
pectively show the inflow-hydrographs,and the outflow hydrogra-
phs computed from test run number 4-6, 7-9 and 10-12 along with
the St. Venant's solutions for these runs. Fugures (6), (8)
and (10) respectively show the computed stage hydrographs at
the outflow sections along with the concerned stage hydrogra-
phs due to St. Venant's solutions for the above mentioned runs.
Figures (11),(12), (13) and (14) respectively show the varia-
tion of the travel time parameter K vs. the corresponding given
inflow ordinates for test run nos. 1,4,7 and 10. Figures (15),
(16) (17) and (18) respectively show the variation of the weigh-
ting factor © vs the corresponding given inflow ordinates for
test run nos. 1,4,7 and 10. Figure (19) shows the inflow hydro-
graphs, the computed outflow hydrographs, and the corresponding
St. Venant's solution from test run No 13 and 14 corresponding
to channel type-I. The computed discharge hydrograph at sec-

tion (3) corresponding to test run No. 14 has also been plotted



‘°C°GC UOTIDIS : 30UIISTDY  ++

vgieer UOTI0OE & BOUSIDTIN +

Z2°£°G¢ UOTIDDS 1 DOUAEDIIN  wx

*I°€°G UOTIIDAS : 9dUaIaTAY @
<00 <L*0 00°0 B0°0= - irt= 86" 66 z 97
€0°0 <Z'0 €2°0- 81°0-  £0°0- 766 z cT
6%°0 0S° T A U I €L°66 1 51
6140 <z°0 <z 0- Ty R 18°86 1 €1
87" 0- 00°0 00°0- 00°0 00°0 6666 t 1
0Z°0- 00°0 00°0 00°0 0% 0- 0666 " i
00°0- 00°0 00°0 10°0= " 0% 0- 6866 y 01
T 0- 00°0 00°0 00°0 00°0 8666 ¢ 6
6T 0~ 00°0 00°0 Ao SRS 1 11766 ¢ 8
0€ " 0- 00°0 00°0 200~  TH T~ 01°66 3 [
<70 05°0 <Z'0 00 9z Z- 28766 z 9
£6°2 $Z°0-  00°0 7%°0 78°¢ 0886 z S
%2°0 00°0 00°0 2€°0 06°0- 7066 z y
607 <z'1 $z°0 i o S 6086 1 ¢
72°8 §2°0-  00°0 9% 1 [1°8 S 46 1 z
25" 1 050 670~ 90" T 1652~ 8%°96 1 1
‘ wmc%wwa“w 2dA] -*oN uny
., T0Ad (a32dy (ay)TOdy  (13w) Hd EEL) x 9OUBTIEA  TouUURY)  3s9]

SLTINSHY 40 NOSTEVJWOD

£ = AI9Yl

46



to demonstrate that this hydrograph is observed downstream of

section (2), i.e, the outflow section, indicating the negative
value of the parameter 6. The outflow hydrograph computed from
test run No. 13 for the reach length of 5 km, was obtained by
interpolation of the given inflow hydrograph and the correspo-
nding computed outflow hydrograph at 40 kn. using the developed
procedure. The outflow hydrograph computed from test run No.14
was obtained by directly routing the inflow hydrograph using
the developed procedure for the same reach length of 5 km.
Figure 20 shows the computed and St. Venant's solution stage
hydrographs corresponding to test run No. 13 and 14. The com-
puted stage hydrograph of test run No. 13 was obtained by
linear interpolation of the '"observed" stage hydrograph at the
inflow section and the computed stage hydrograph at 40 km.
using the developed procedure. The computed stage hydrograph
of test run No. 14 was obtained by directly routing the inflow
hydrograph for 5 km. using this procedure. Figure (21) shows
the discharge hydrographs obtained from test run Nos. 15 and
16 corresponding to channel type II and they are similar to the
results of test run Nos. 13 and 14. Figure (22) shows the
stage hydrographs obtained from test run Nos. 15 and 16 corres-
ponding to channel type-II and they are similar to the results
of test run nos. 13 and 14. Figure (23) shows the wvariation
of ©, corresponding to routing in the first reach length of
5 km of test run Nos. 3, with the inflow hydrograph ordinates.
It can be seen that all the © values are negative indicating

the admissibility of negative values.
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6.2 Discussions

6.2.1 On the resultsof test run nos. (1),€2) and (3)

Based on the consideration of variance explained, it
can be seen from Table-3 and verified from figure (3), that
the hydrograph computed corresponding to test run no. 1 is
able to reproduce the St. Venant's solution more closely than
the solutions of test run. nos. 2 and 3, except at the beginning
of routing. The computed hydrograph dips in the beginning as
observed by many rtesearchers (Nash, 1959; Venetis, 1969; and
Dooge, 1973) in the case of Muskingum flood routing method.

The reasoning for this dip is explained at a later stage.

The hydrograph of test run no.2, corresponding to the
case of constant 6 and varying K, does not reproduce the St.
Venant's solution satisfactorily. The constant 6 value esti-
mated for this test run was 0.3198 and it was obtained using
the expression given by equation (77) after freezing all the
flow variable with reference to the reference discharge QO

which was computed as (Price, 1973):

I +Q
Q, = __ETT_Jl__ ss i (97
where,
Ip = the inflow hydrograph peak
Qp = the outflow hydrograph peak

The reasoning for the weighting parameter becoming negative
i1s given later. Note that the value of Q required for the

D
computation of Qo was unknown and it was approximately consi-

dered as the peak value of the hydrograph obtained by routing
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the given inflow hydrograph for the same reach length wusing

varying K and that © value which was computed from equation

(77) based on initial flow conditions. It may be noted from
Table-3 that conservation of mass principle is grossly violated
in this case when compared with the cases of test run nos. 1 and
3. However both test run nos. 1 and 2 reproduce equally well,
the other characteristics of hydrographs such as error in peak
flow and stage value, and the errors in time to peak discharge

and stages.

The results of test run nos. 1 and 3 are better than
test run no.2 from the aspect of conservation of mass. While
dip in the beginning of routing was observed in the case of
test run nos. 1, it was absent in the computed hydrograph of
test run no. 3. Although the peak flow was slightly underesti-
mated in the case of test run no. 3 (690 m*®/sec. when compared
with 758 m®/sec observed; and 740 m3®/sec obtained from test
run No.l), the other hydrograph characteristics were well re-
produced especially the stage hydrograph. It has to be noced
that there was no computational problem faced in the case of
test run no.3 of channel type-I when the reach of 40 km. was
sub-divided into 8 sub-reaches as it was noted in the corres-
ponding rectangular case(Perumal, 1986-87). It may be inferr-
ed from the overall considerations of results presented in
Table-3 for these three runs, that the routing solution obtain-
ed from eight sub-reaches consideration may be preferable than

the other two cases especially for flood forecasting purposes.
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b.2.2 On the results of test run nos. (4),(5) and (6)

As seen from Table-3, the variance explained by the
solution approaches of test nos. 4 and 6 were greater than 997.
Similarly in both cases, the conservation of mass was well
maintained (<0.257). However the multiple reach solution with
8 sub-reaches and Ax = 5 knm., belonging to test run no.6,per-
formed well when compared with the results of test run no.4 in
reproducing the stage hydrograph. Note that the peak stage
was differing from the true solution only by 0.05 m. when com-
pared with 0.32 m of test run no.4. The variance explained
by the solution procedure of test run no. 5 is less than that
of the other two cases, although the difference is not signi-
ficant. However from the consideration of :zonservation of
mass, this test case performed poorly than the other two cases.
In this aspect, the performance was simjilar to that of test
run no.2 which also used the varying K and constant © solution
approach in arriving at the routed hydrograph at 40 km. There-
fore the routing of steep rising inflow hydrographs such as in
the cases of test run no. (2) and (5), in very flat streams,
using constant 6 and varying K based solution approach may not
yield appropriate results. However further studies are requir-

ed to arrive at any definite conclusion about this statement.

Considering the result of test run nos. (4), (5) and
(6), one may prefer again the multiple reach bas2d solution
allowing both the parameters K and 8 to vary.

6.2.3 On the results of test run nos. (7),(8)and (9), and
(10); (11) and (12)

In all these runs the variance explained by the different
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solution approaches was gieater than 997 with the absolute
maximum error in the conservatioin of mass being = 0.42%. All
the other hydrograph characteristics were very well reproduced.
These test runs results indicated that there was no significant
difference between the results of variable parameters solution
approach in which both @ and K varying; the solution approach
based on the variatioin of K only keeping ® constant; and
number of sub-reaches solution approach considering the varia-
tion of both © and K. As will be discussed later, that there
exists no significant variation of © values corresponding to
the given inflow ord_nates for the test run nos. (7) and (9)
of channel type-3, and test run nos. (10) and (12) of chann=l

1

type-4. In these cases the value of S dY  yas nearer to zero

5 X

indicating that the flood wave is of kinematic in nature. This
inference has been verified by figures (7) and (9) as there was
very little attenuation of flood peaks in thes2 cases. It may
be inferred from the closeness of the solutions shown by fig-
ures (7). and (9) that the method suggested herein may be used

for kinematic routing of flood wave in long reaches in a single

step routing.
6.2.4 On the results of test run nos. (13),(14),(15) and (16)

Test Nos. 13 and 14 were conducted on channel type-1
and these 15 and 16 were conducted on channel type-II. These
tests were conducted for the verification of interpolatioin
solution obtained at 5 km. distance from the inflow point using

the hydrographs at the inflow section and iche computed outflow

hydrographs, obtaimed based oa single reach routing solution,

El
¢ N



at 40 Km. The verification was made by comparing the interpola-
tion solution at 5 Km. with the corresponding direct routing
solution based on the same solution approach. It can be seen
from table-3 that the results of these runs are compa-able to
each other and also they are wall comparable with the St.
Venant's solution. The same may be verified from figures 19,20
21 and 22. It may be inferred from the results of thesz test
runs that the unsteady flow solution required at any section
of the reach may be obtained by linear interpolation of the in-
flow hydrograph and thes resulting routed outflow hydrograph of
a long reach obtained in a single step solution. This inter-
polation approach replaces the number of tedious routing compi-
tations for short reaches. The basic difference between test
run nos. 13 and 14, and 15 and 16 is with reference to the
value of Manning's roughness coefficieni of the chann=21. While
n = 0.04 for test run no. 13 and 14 it was 0.22 for the latter
test runs. Results of latter runs indicate better performance
than the former runs which may be attributed to the reduac:ion
in the roughness coefficient which indirectly causes the reduc-
tion in the magnitude of water surface slope and thus making
it possible to adhere closely to thz assunptions involved in

the developmeni of the procedure.

6.2.5 On the variation of K and &

Variation of K

Figure (11),(12),(13) and (14) show the variations of
the trave. time parameter K ali eacn routing time level with

reference to the corresponding time level inflow ordinates for
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the cases of test run nos. (1),(4),(7)and(10). The purpose
of relating K with the inflow hydrograph ordinates is to
assess the real variation of K FOE. . -alll channel configu-
rations studied, standing on a common platform such as
*the inflow hydrograph which is not influenced by the outflow
information based on this method. Note that in all these
cases the reach length Ax was fixed as 40 km. It can be
seen from these figures that for all the cases the travel
time corresponding to the same inflow discharge decreases
as the order of channel type increase which implies that
the velocity increases with the increase in the order of
channel types. The reduction in the magnitude of K in
the case of channel type-2, when compared with channel
type-1 is solely due to reduction in Manning's roughness
coefficient to 0.02, when compared with the corresponding
value of 0.04 in the case of channel type-1. As indicated
by figures (13) and (14) the increase in the bed slope
also causes increase in the velocity. Therefore this dis-
cussion confirms that the physics of the open channel flow,
i.e. the decrease in roughness coefficient or increase
in bed slope or both cause increase in the velocity of
flow, 1is -closely followed by the methodology presented
herein. It has been seen that the travel time in trapezoidal channel
is dightly greater than that in the rectangular channel (Perumal 1986-87)
for the same inflow discharge.

Variation of ®
Figures (15),(16),{17)and(18)show the variations

of the weighting parameter ® at each routing time level with
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reference to the corresponding time level inflow ordinates for
the cases of test run nos: (1),(4),(7) and (10). Before dis-
cussing these results, it is necessary to look into the aspects

of the variation of 6 from the physical point of view.

The weighting parameter © can be expressed as:

TR TR
6 = S5 A ...(98)

With reference to figure (2), © represents the non-dimensional
distance between section (3) and (2). Using equation (98), the

variation of 8 can be studied.

When section (3) lies between the mid-section and the
outflow section of the routing reach, 0<6<0.5. When section(3)
coincides with section (2), then ® = 0 as in the Kalin-Milyukov
method.

However if the routing reach length is such that section
(2) is located ahead of section (3), in whecih case £>§§ , the
value of ©6€0. When such a situation occurs during the routing
process using this procedure, the outflow discharge magnitude
would be greater than the normal discharge Q3 as observed at
section (3).

This situation was experienced in test run no. (13) in
which the © values corresponding to each time level of routing
was negative and thus the outflow discharge was greater than
the normal discharge Q at all the time levels of routing.
Figure(19) shows the discharge hydrograph results of test run
no. 13, in which the single reach solution obtained by varying
both 6 and K is plotted along with the St. Venant's solution.

The corresponding normal discharge hydrograph is also shown
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therein. It can be seen from this plot, that the outflow dis-
charge hydrograph is observed ahead of normal discharge hydro-
graph confirming the interpretations based on equation (98).
It was observed that-2.3301<6<—0.3294 for this case. Although
the possibility of © < O was indicated by Dooge (1973), the
argument in favour of © becoming negative from physical point
of view has been put forwarded by Strupczewski and Kundzewicz
(1980). Note that the value of 6< O does not have any meaning
in the case of Muskingum-Cunge method as it is considered as
the numerical weighting factor with < 8<1. From the point of
view of numerical mathematics as generally understood for the
flood routing application 0 4€0. Therefore the reasoning given
herein for & <0 makes the present theory more attractive than
any other theories presented so far on the Muskingum flood rou-
ting method.

When section (3) coincides with the mid-section,i.e.,
=0 and this leads to © = %. This represents the situation in
which the normal discharge coincides with the normal depth at
the mid—seqtion of the reach and thus leading “o the Kinemati:

flood wave movement

The situation wherein 62 0.5, implies the location of
section 3) upstream of mid-section of the routing reach and
pased on the physica bhasis of the model, i.e., the discharg=
proceed«3 the corresponding steady flow stage in unsteady flow
situat’'on, the chsnge of direction of flow < uld be realized.
Accordingly, the computed hyidrograph at the outflow section

i.e, at section (2), would be ihe amplificaiion of the inflow
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hydrograph. Explanations on the basis of various considera-
tions are also available for 0>0.5 by other researchers (Cinge,

1969;Dooge, 1973; and Strupczwski and Kunilzewicz, 1930).

I+ can be seen from figures (15) and (16) which belong
to test run nos. (1) and (4) respectively, that the variation
of 6 w.r.t. inflow ordinates are wider. However for test run
nos. (7) and (10), the variation of © was not veryjmuch and
their values were also found to be nearer to 0.5+ These wvari-
ations are brought out in figures (17) and (18). However, the
6 values in these runs are greater than the corresponding

values in rectangular channel (Perumal 1986-87).

It can be inferred from these variations that when the

1 .B.X . . ¢ . .
term T A% is nearer to zero and its wvariation 18 not

o
significant then the value of © is nearer to 0.5 and its vari-
ation is less. But when the magnitude of % . %% is large and

o

varies much, it causes wider variations in the value of © in-
cluding the possibility of © values becoming negative as shown
in figure(23) corresponding to test run no. 13. An understand-

ing of these variations as explained above can be obtained from

equation (46) and (47). The term 1 . 3Y s inversely propor-

S X
0
tional to the term v '%%lm and c1erefore, higher magnitude
il Sl : 3A ; : gL
of T ¢y implies lower magnitude of Vi By'm which in mulcipli

cation with S results in the higher value of '4' the distance

between mid-section and section (3) of the routing reach. Thus

the magnitude of © will be much less than 0.5. When % .%% is
0
A

nearer to zero, there is increase in the magnitude of Vmﬁ?'m

and this causes decrease in the value of '¢'. Thus the
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magnitude of 6 will be nearer to 0.5. The typical values of

the terms %, . %% as calculated using this methodology for
0

test runs nos. (1), (4) (7) and (10) have been tabulated below:

TABLE 4
TYPICAL VALUE OF L ,8Y
SO 3 X
S1.No. Test Channel Length No. of Magnitude of Remarks
Run Type of Reaches 1 3y
No. Reach SO d X

Minimum Maximum

40 km 1 -0.6694 0.4558 Single reach

2 3 1 40 km 8 =122253 . 1.1908 @ first reach
-0.7991 0.7928 second reach

-0.7860 0.6563 third reach
-0.7706 0.5657 fourth reach

-0.7535 0.5010 fifth reach

-0.7359 0.4520 sixth reach

=05 7166! -0.413] seventh reach

-0.6959 0.3812 eight reach
3 4 2 40km i -0.3949 0.2435 single reach
7 3 40 km 1 -0.0281 0.0143 single reach
5 10 4 40 km 1 -0.0142 0.0062 single reach

It can be seen from Table-4 that the typical value of %b .g£7>1

for test run no. (3) and for this situation the binomial series
expansion is not convergent even though the results obtained
are not very poor from the true values. Further, it can be
seen as the order of channel type increases, the typical values
of % . %% become less and less indicating that the attenuation
causing factors do not have any role to play in the routing
process.

It was observed while discussing the results of test
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run no. (3) in section 6.2.1, that the eight sub-reaches solu-

tion with both O and K varying resulted in the stage hydrograph
much cioser_to that of St. Venant's solution when compared with
the case of single reach solution with both © and K varying.
This is due to the assumption of linear variation of water sur-
face is closely followed-in eight sub-reaches solution case than
in the case of single reach solution. Therefore to follow the
assumption of linear variation of g% , it is necessary to sub-
divide the reaches into smaller reaches. At this juncture, one
may rise the question that why the discharge hydrograph of test
run no. (3) was not properly estimated in the case of eight

sub-reaches solution when compared with the discharge hydrogra-
Ph of single reach solution. The reason may be attributed to
the magnitude of % %}% >1 as observed in the first reach of
the eight sub-reaches solution, thus invalidating the solution
of discharge hydrograph from the first reach. When this hydro-
graph is routed along the sub-reach, the resulting hydrograph
is poorly estimated than the single reach solution. From these
discussions one can infer that 'the assumption of linear varia-
tion of discharge is more valid than the ‘assumption of linear

variation of flow depth for a longer routing reach.
6.2.6 On the cause of dip in the beginning of solution.

This physically based routing method enables to ascer-
tain the cause of negative or reduced or dip in the beginning
of solution of the Muskingum flood routing method in the foll-
owing manner:

The governing unsteady flow equation of the Muskingum
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method is given as:

10 e gE [K(OI + (1-8)Q] ... (8)

Multiplying both sides of equation (8), by (1-8) gives:

o

I-(01+ (1-8)Q) = gelK(1-8) (81 + (1-8)Q)] . - o {99)
But the expression 61 + (1-8)Q is same as Q3 » the normal dis-

charge.

Therefore equation (99) is re-written as:

d

I-Q = ac [K(l—G)Q3] .« (1009
The solution of equation (100) assuming K and 6 to be constant,
yields
=t/ R(1=8) t
_ e T/K(1-9) -t/K(1-8)
93 = R et ATl ... (100
When I = IO at t =0
gy ot SSUEEY E R et o ahlen TR0 e 50
3 T TK(I-9) o ‘€
e +1(102)

Equation (101) and (102) indicate that at section o Q3=Io
and Q3 = O respectively when t = 0. Since the discharge varies
linearly along the reach from t = 0 onwards, this leads to a
discharge less than I or O at section (2) when it is located
downstream of section (3) for which case 0<6<0.5. The discharge
at section (2) would be always greater than the initial steady
flow if it is located upstream of section (3) for which case
8 < 0. The above inference arrived based on constant © and K is
also valid for variable K and ©. Note that when ' g ' is small
and section (2) is located far away downstream of section(3),

then such a situation leads to dip or negative flow in the be-
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ginning of routing. The larger distance between sections (2)
and (3) is due to longer reach considered for routing. This
aspect has been brought out by the results of test run nos. (1)
(4), (7) and (10) wherein the routing was carried out by con-
sidering 40 km. length-of the channel as a single reach. the
respective discharge and stage hydrographs plotted in figures

(3)-(9) show the dip in the beginning of the solution.

The magnitude and duration of this dip depends on the
magnitude of the terms % : %g. When the magnitude of this
terms is high, then theomagnitude and duration of the dip in-
creases. This inference can be verified from the typical
values of %, ; %% given in Table-4 for runs (1), (4),(7) and
(10) and fﬁgm the respective stage and discharge hydrographs
. given in figures (35—(10). The hydrograph solutions obtained
for the above mentioned runs and for the same length of reach,
after dividing it into sub-reaches, are also depicted in
figures (3)-(10). These solutions indicate no dip in the be-

ginning of routing and thus confirm the above inference arrriv-

ed regarding the formation of dip and its elimination.
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{0 CONCLUSIONS

1. A variable parameter simplified hydraulic method has been
developed for routing floods in channel reaches having
uniform trapezoidal cross-section and constant bed slope.

2. The governing equations of this method which describe
the flood wave movement in channels are same as that of
Muskingum flood routing method introduced by McCarthy
(1938), and it has been demonstrated using this method
that these equations can directly account for flood wave
attenuation without attributing to it the numerical pro-
perty of the method as stated by Cunge (1969). Therefore
this method gives a new insight into the theoretical
aspects of the Muskingum flo;d routing method.

3. The parameters © and K of the Muskingum method have been
related to the channel and flow characteristics.

4. The nonlinear behaviour of flood wave movement in chann-
els having uniform travezoidal cross-section may be mode-
lled using this method by varying the parameter 8 and K
at every routing time level, but still adopting the
linear form of solution equation.

5. There exists a minimum routing reach length for which
this method with both & and K varying can be applied
successfully without experiencing computational problem
due to high negative value of 6.

6. The flood routing solution in reaches having length less
than the above mentioned minimum reach length, can be

obtained by linear interpolation of discharge and stage
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10

hydrographs of given inflow hydrographs and the corres-

ponding computed outflow hydrographs obtained at the lo- %
cation of minimum reach length using this variable para-

meters. method.

In general, the method in which both © and K varying

along with multiple routing reaches consideration is able

to reproduce the true solution much closer than the

method in which both © and K varying, but with the con-
sideration of single routing reach.

In general, the method in which both © and K varying

is able to reproduce the true solution much closer than

the method in which only K varying and © remaining con-

stant.

However when the relative water surface slope % : %%
is very small, there is no difference between é%e solu-
tions obtained using the method in which both €6 and K
varying, and the method in which only K varying and ©
remaining constant.

As there is no standard definition of "small" and
"large'" applicable with regard to the magnitude of the

relative water surface slope % - %% , it is always de-
sirable to use this routing mgthod with the considera-
tion of multiple routing reaches, and both parameters
© and K varying in each reach routing.

The higher the absolute magnitude of the relative water

|
|
1 |
surface slope 5 - %% , the higher the values of travel
time K and their variation for the given channel cross-
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13

14,

15

16.

17%

The magnitude and duration of reduced outflow is direct-

section.

The higher the absolute magnitude of the relative water

surface slope % .
0
weighting parameter 6.

A 3 the higher the wvariation of
The weighting parameter © would be negative when section
(2) is located upstream of section (3) at any instant
of time during routing.

The cause of reduced outflow in the beginning of rout-
ing solution of Muskingum method is due to the linear
variation of discharge considered by the method over the
routing reach and due to longer routing reach length

Ax considered for routing.

ly proportional to the magnitude of the relative water

surface slope % - %% , and the length of routing reach
o

AX.

To avoid this reduced outflow theoretically, the routing
reach should be divided in such a manner that section
(2) is located upstream of section (3) for each consi-
dered sub-reach.

Routing in uniform rectangular channels can be achieved
using this procedure by putting Z = O in the governing

equations for the parameter K and ©.
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