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ABSTRACT Drought forecasting plays an important role in the planning and management
of natural resources including water resource svstems of a river basin, since drought has
severe effect when it persists over a longer period.  Modeling and Jorecasting of droughs,
which are nonlinear and nol-stationary, is a complex exercise. During the last decade
neural networks have shown great ability in modeling and Sforecasting nonlinear and non-
stationary time series. In this study an application of the back propagation feed forward
recursive ANN models are presented to Jarecast droughts. . The models were applied to
Jorecast droughts using standardized precipitation index series as drought indices in the
Kansabati River Basin, which lies in the Purulia District of West Bengal, The resulting
trained network is capahble of forecasting with satisfactory results upto 2-months of lead

time. The model can be used for waier resource management in the river basin.”

Key words Kansabati River Basin: neural networks: standardized precipitation
index; drought indices.

INTRODUCTION

Research has shown that the lack of a precise and objective definition in
specific situations has been an obstacle in understanding the drought phenomenon,
which has led to indecision and inaction on the part of managers, policy makers, and
others. The global climate change in recent years is likely to enhance the incidences
of drought. While much of the weather that we experience is brief and short-lived,
drought is a more gradual phenomenon, slowly taking hold of an area and tightening
its grip with time. In severe cases, drought can last for many years, and can have
devastating effects on agriculture and water supplies. It may be difficult to
determine when a drought begins or ends. A drought may either be short event
lasting just a few months, or it may persist for years before climatic- conditions
return to normalecy. Because the impacts of a drought accumulate slowly at first, a
drought may not even be recognized until it has become well established.

During the period from 1967 to 1992, droughts have affected about 50% of the
2.8 billion people who suffered from all natural disasters. Because of direct and
indirect impacts of droughts, 1.3 million lives were lost, out of a total number of 3.5
million people killed by disasters (Obasi, 1994). Nearly 50% of the world’s most
populated areas are highly vulnerable to drought. More importantly, almost all of
the major agricultural lands are located there (USDA, 1994). Drought produces a
complex web of impacts that spans many sectors of the economy and reaches well
beyond the area experiencing physical drought. Just as in many agricultural regions
of the world, in India also drought is quite common. The drought-prone areas of
India are mainly confined to the Peninsular and Western parts and there are also few
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pockets in other parts of India. Out of 795 Mha of geographical area in India, about
260 Mha of land have been subjected to different degrees of water stress and
drought conditions.

Drought forecasting plays an important role in the mitigation of impacts of
drought on water resources systems. Traditionally, statistical models have been used
for hydrologic drought forecasting based on time series analysis. Regression models
and autoregressive moving average (ARMA) models are the typical models for
statistical analysis of time series for drought forecasting. However they are basically
linear models assuming that data are stationary, and have a limited ability to capture
non-stationarities and nonlinearities in the data. Univariate Box-Jenkins ARIMA
analysis has been extensively used for forecasting hydrologic variables of interest
such as, annual and monthly streamflows, precipitation etc. Hydrologists have
generally accepted these methods over the past several decades. However, it 1s
necessary for hydrologists to consider alternative models when nonlinearity and
nonstationarity plays a significant role in the forecasting. In recent decades,
artificial neural networks (ANNs) have shown great ability in modeling and
forecasting nonlinear and nonstationary time series in hydrology and water resource
engineering due to their innate nonlinear property and flexibility for modeling.
Some of the advantages of ANNs are (ASCE, 2000 a, b):

s  Ability to recognize the relation between the input and output variables without
explicit physical considerations;

o  Work well even when the training sets contain noise and measurement errors;

s Ability to adapt to solutions over time to compensate for changing
circumstances; and

e Possess other inherent information processing characteristics and once trained
are easy to use.

Application of ANNs to solve civil engineering problems began in the late
1980s (Flood and Kartam, 1994a, b). Preliminary concepts of ANNs and their
adaptability to hydrology are well documented in ASCE (2000a) and also by
Govindraju and Rao (2000). An exhaustive list of references on ANN applications
in hydrology is given in ASCE (2000b). ANN application to simulation and
forecasting problems in water resources has shown great ability. Some of the ANN
applications in hydrology are by Karunanithi et al. (1994) and Hsu et al. (1995),
who predicted the flow at the catchment outlet with rainfall, upstream flow, and/or
temperature as the only inputs. Likewise, Campolo et al. (1997) applied ANN for
river flow forecasting, while Nagesh Kumar et al. (2004) used recurrent neural
networks for river flow forecasting.

ARMA models, pattern recognition techniques, physically based models using
either Palmer Drought Severity Index (PDSI) or Standardized Precipitation Index
(SPI) or moisture adequacy index involving Markov chains or the notion of
conditional probability seem to offer a potential to develop reliable and robust
forecasting methods (Panu and Sharma, 2002). While Rao and Padmanabhan (1984)
investigated the stochastic nature of yearly and monthly Palmer Drought Index
(PDI) and therefore used the valid stochastic models to forecast and to simulate PDI
series, Sen (1990) predicted the possible critical drought durations that may result
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from any hydrologic phenomenon during any future period using second order
Markov chain. On the other hand, Kim and Valdes (2003) used PDSI as a drought
forecasting parameter in the Conchos River basin of Mexico.

The neural network models presented in this paper are based on SPI as the
drought index. The SPI is used in this study due to its following advantages, as
discussed by Hayes et al. (1999). The main advantage is that SPI is based on rainfall
alone, so that drought assessment is possible even if other hydro-meteorological
measurements are not available. Secondly, SPI is also not adversely affected by
topography. Another advantage of SPI is its variable timescale, which enables it to
describe drought conditions important for a range of meteorological, hydrological
and agricultural applications. The fourth advantage of SPI comes from its
standardization, which ensures that the frequencies of extreme events at any
location and on any time scale are consistent. The nature of the SPI allows an
analyst to determine the rarity of a drought or an anomalously wet event at a
particular time scale for any location in the world that has a precipitation record.
Lastly, SPI can also detect moisture deficit more rapidly than PDSI, which has a
fairly long response time scale of approximately 8-12 months (Hayes et al., 1999),

The main objective of present paper is to calculate time series of SPI for
multiple time scales, and to develop a neural network model in order to better
forecast drought than any other linear stochastic models (Mishra and Desai, 2006).

STUDY AREA

The study area considered in this study is the portion of Kansabati River Basin
upstream of Kangsabati Dam, in the extreme western part of West Bengal. The
region has an area of 4,265 km”. The major crops grown in the catchment are paddy,
maize, pulses and vegetables. This area is considered to be drought prone due to
irregular rainfall and mostly lateritic soil condition with low water holding capacity.
About 50 to 60% of the study area is upland, which is generally managed by small
and poor farmers. Lands are mostly mono-cropped having limited surface irrigation
facilities. Irrigated crops are not widespread because of insufficient water. For this
study, monthly rainfall data were procured for the period from 1965 to 2001 for five
rain gauge stations (Table 1). Thiessen polygon method was used to compute the
average rainfall over the basin. The SPI time series was derived for average rainfall
over the basin and these SPI were used as drought index for forecasting drought.

Table 1Raingauge stations considered in the Kansabati River Basin.

Raingauge  Elevation Geographic Statistical properties of annual rainfall series
Stations (m) above coordinates (1965 to 2001)
m.s.l.

Latitude Longitude Mean Max  Min Standard  Skewness Kurtosis
(mm) (mm) (mm) deviation

Simulia 220.97 23°10"  86°22' 1300.68 1840 828 260.32 0.174 -0.605
Rangagora  222.92 23°04'  86°24' 115257 1729 743 219.1 0.782 0.656
Tusuma 158.6 23°08"  86°43 12683 1683 746 239.31 -0.22] -0.547
Kharidwar 135.96 232000 86°38 121697 1814 827 248.2 0.637 -0.306

Phulberia 144.32 22°55'"  86°37" 13457 2081 674 32273 0.329 -0.006
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Development of SPI Time Series in the Kansabati Basin

A deficit of precipitation impacts the soil moisture, streamflow, reservoir
storage, and groundwater level, etc. on different time scales. As discussed earlier,
SPI is used in this study for its inherent advantages. The evolution of the SPI is
briefly described here. McKee et al. (1993) initially developed the SPI to quantify
precipitation deficits over multiple scales. Bussay et al. (1999) as well as Szalai and
Szinell (2000) assessed the utility of SPI for describing drought in Hungary. They
concluded that SPI was suitable for quatifying most types of drought event.
Streamflow was best described by SPIs with time scale of 2-6 months. Strong
relationships to ground water level were found at time scales of 5-24 months.
Agricultural drought (i. e., deficit of soil moisture content) was replicated by the SPI
on a scale of 2-3 months. Lana et al. (2001) recently used the SPI to investigate
patterns of rainfall over Catalonia in Spain. Hughes and Saunders (2002) studied
drought climatology for Europe based on monthly SPIs at time scales of 3. 6, 9, 12,
18, and 24 months for the period from 1901-1999. A drought event occurs at the
time when the value of SPI is continuously negative. The event ends when the SPI
becomes positive. Table 2 provides a drought classification based on SPI.

Table 2 Drought classification based on SP1.

SPI values Class
>2 Extremely wet
1.5t0 1.99 Very wet
1.0to 1.49 Moderately wet
-0.99 to 0.99 Near normal
-l to-1.49 Moderately dry
-1.5t0-1.99 Severely dry
<-2 Extremely dry

Computation of SPI The SPI is computed by fitting a probability density function
to the frequency distribution of precipitation summed over the time scale of interest.
This is performed separately for each month (or for any other temporal basis of the
raw precipitation time series) and for each location in space. Each probability
density function is then transformed into a standardized normal distribution.

The gamma distribution is defined by its probability density function as:

g(x)=~—l—-,\‘” Toxih forx>0 (h

where « is a shape factor, Zis a scale factor and x is the amount of precipitation. All
these three parameters always have positive values. I'(¢) is the gamma function
which is defined as

T(a)= [y* e ™dy (2)
0
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Fitting the distribution to the data requires a and [ to be estimated. Edwards
and McKee (1997) suggested the estimation of these parameters using the
approximation of Thom (1958) for maximum likelihood as follows:

d—ﬁ(n/rﬁl—”] (3)

ﬁ'=§ 4

_ In(x)
A=In(x) - L (5)
n
where 7 is the number of observations.
The resulting parameters are then used to find the cumulative probability of an
observed precipitation event for the given month and time scale:

G(x) = 'Jg(x)dx = ] — f,x"}"'e"'r"'ﬁcix (6)
0 /Bar((l’) 0

Substituting ¢ for v/,@’ reduces equation to incomplete gamma function. McKee
et al. (1993) used an analytic method along with suggested software code from
Press et al. (1986). Since the gamma function is undefined for x = 0 and a
precipitation distribution may contain zeros, the cumulative probability becomes:

Hix)=q + (1-q) G(x) (7)

where ¢ is the probability of zero precipitation.

The cumulative probability, H(x), is then transformed into a standard normal
random variable Z (i.c., with a zero mean and a unit variance), which is the value of
SPL. Following Edwards and McKee (1997), and Hughes and Saunders (2002), we
employ the approximate conversion provided by Abramowiiz and Stegnum (1965)
as an alternative:

2
a '-( g l‘_
Z=8Pr=— - 01475 o for 0<H(x) <05 (8)
L+ dit+dyt™ +dyt
ol
2+ Cqt”
Z=SPl=+1-—CTNTDL | o 05<H(x) <] )
I+ dit+dyt™ +dyt
where
(= ln[@]ﬁ)—ﬂ for  0<H(x)<05 (10)
X))~
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1 _
t= In{mjl for 0.5<H(x)<I (11)

and
co =2.515517, ¢; =0.802853, ¢, =0.010328, d, =1.432788, d, =0.189269,

dy =0.001308.

The SPI series for different timescales is shown in Fig. 1. The correlation
coefficient between average values of discharge in river and reservoir storage with
different SPI series was calculated and shown in Table 3. It is observed that SPI 1
and SPI 3 have significant correlations with Kansabati river flow discharge, and,
SPI 3 and SPI 6 have good correlations with the reservoir storage over different
months.

Table 3 Correlation matrix of SPI vs hydrological variables.

SPI series Correlation coefficient with Correlation coefficient with
discharge reservoir storage
SPI 1 0.718 0.317
SPI 3 0.555 0.661
SPI 6 0.359 0.589
SPI 9 0.236 0.224
SPI 12 0.220 0.188
SPI 24 0.099 0.0844
METHODOLOGY

Artificial Neural Networks

Theoretically, it has been shown that given an appropriate number of nonlinear
processing units, neural networks can learn from experience and estimate any
complex functional relationship with high accuracy. Empirically, numerous
successful applications have established their role for pattern recognition and
forecasting. Although many types of neural network models have been proposed,
the most popular type for time series forecasting is the feed forward neural network
model. Figure 2 shows a typical three-layer feed forward model used for forecasting
purposes. The input nodes are the previous lagged observations while the output
provides the forecast for the future value. Hidden nodes with appropriate nonlinear
transfer functions are used to process the information received by the input nodes.
In the present paper a recursive multi-step neural network approach is used for
forecasting over different lead times.

Recursive multi-step neural network approach (RMSNN) This forecasting

technique is similar to ARIMA models in forecasting approach, which has single
output node, forecasting a single time step ahead, and the network is applied
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Fig. 1 SPI series over different time scales based on average rainfall over Kansabati Basin.

recursively. These forecast values are again used as input for the subsequent
forecasts ahead, as in Figure 2.
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Fig. 2 Feed-forward recursive multi step neural network approach.

To build a model for forecasting, the network is processed through three stages:

1) The training stage where the network is trained to predict future data based on
past and present data.

2) The testing stage where the network is tested to stop training or to continue
training.

3) The evaluation stage where the network ceases training and is used to forecast
future data to calculate different measures of error. Back propagation algorithm,
which is essentially a steepest gradient descent method, is used in this study.

Back propagation training algorithm for three layered neural networks Back
propagation network (BPN), developed by Rumelhart et al. (1986) is the most
prevalent of the supervised learning models of ANN. BPN uses the steepest gradient
descent method to correct the weight of the inter-connecting neuron. BPN easily
solves the interaction of the processing elements by adding hidden layers. In the
learning process, the interconnection weights are adjusted using error convergence
technique to obtain a desired output for a given input. In general, the error at the
output layer model propagates backwards to the input layer through the hidden layer
in the network to obtain the desired output. The gradient descent method is utilized
to calculate the weights of the network and to adjust the weights of interconnections
to minimize the output error. The error function at the output neuron is defined as

;5:12'('1“,(—,4,\,)2 . (12)
2 k
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where 7) and A, represent the actual and predicted values for the output neuron k.

The gradient descent algorithm adapts the weights according to the gradient
error, which is given by

VW, = -5 x i (13)

i

where 7 is the learning rate and the general form of GE/@WU- is expressed as
(Rumelhart et al, 1986):
_BE = 7(5-1_.' A[H*] (14)
ow, !

Substituting (14) into (13), the gradient error is

VW, =ns) 4" (15)

gn=l - - . .
where A" is the output value of sub-layer related to the connecting weight W,

and (Sf is the error signal, which is computed based on whether or not neuron J is in

the output layer. If neuron j is one of the output neurons, then
6, =T, -Y)Y, (1-Y) (16)
If neuron j is a neuron of the hidden layer

5,=\% 8, my),, |, (- H,) (17)
:

where /1, is the value of hidden layer.

Finally, the value of weight of the inter-connective neuron can be expressed as
I’VJ” o Wvl_;);---[ + VWUm - H/{:nﬂ] +n 5}1 A;."--] “ 8)

To accelerate the convergence of the error in learnine rocedure, Jacobs (1988)
g gp
proposed the momentum term with momentum gain & with its value ranging from 0
to I, in Eq. (18).

Wi =wr s A v v (19)

Design of Network

The use of an ANN for forecasting time series implies that the input nodes
reconnected to a number of past-observed values to identify the processes at future
time steps. For forecasting several time steps ahead a recursive multi-step method is
used. In a recursive multi-step approach based on one output node, forecasting is
done for a single step ahead and the network is applied recursively using the
previous predictions as inputs for the subsequent forecasts (Fig. 2). The activation
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function determines the relationship between inputs and outputs of a node in a

network. Here, a sigmoid function [1/(1 + e'x)] is used, which is the most popular
choice. Datasets are normalized before the training begins using the equation:

Xog— X
X, =—t—m (20)
)‘ma.\' 7Am1n

where X, and X represent the normalized and original data respectively while Xnin
and X, represent the minimum and maximum value among original data.

In time series problems the number of input nodes corresponds to the number
of lagged observations used to discover the underlying pattern in a time series and
to make forecasts for future values. The hidden layer and its nodes play a very
important role in successful application of neural networks. It is the nodes in the
hidden layer that allow neural networks to detect the feature, to capture the pattern
in the data, and to perform complicated nonlinear mapping between input and
output variables. It has been proved that only one layer of hidden units is sufficient
for ANNs to approximate any complex nonlinear function with any desired
accuracy (Cybenko, 1989; Hornik et al., 1989). The hidden nodes also allow taking
into account the presence of non-stationary parameters in the data such as trends
and seasonal variations (Maier and Dandy, 1996). In the case of the popular one
hidden layer networks, several practical guidelines exist. These include using
“2n'+1” (Lippmann, 1987; Hecht-Nielsen, 1990), “2n’ (Wong, 1991), ‘n’ (Tang and
Fishwick, 1993), where # is the number of input nodes. Fewer neurons in the
hidden layer than in the input layer has worked well in the past (Fletcher and Goss,
1993; Zhang and Dong, 2001). In order to determine the optimal network
architecture, the number of neurons in the input and hidden layer were determined
by experimentation. Tang and Fishwick (1993) claim that the number of input nodes
is simply the number of autoregressive (AR) terms in the Box-Jenkins model for a
univariate time series. This is not true because (1) for moving average (MA)
processes, there are no AR terms, and (2) Box-Jenkins models are linear models.

The number of AR terms only give the number of linearly correlated lagged
observations and it is not appropriate for the nonlinear relationships modeled by
neural networks (Zhang et al., 1998). In the present study, the number of input
neurons (m) ranged from | to 20. For each input layer dimension, the number of
hidden layer nodes (1) was progressively increased from 1 to 2n+1, where n is the
corresponding input neurons. The coefficient of correlation for each combination of
input and hidden neurons was calculated. The combination having maximum
coefficient of correlation was chosen as optimal network. The network was trained
for 5,000 epochs using back propagation algorithm with learning rate of 0.01 and
momentum coefficient of 0.9.

The performance of the predictions resulting from the neural network models is
evaluated by the following measure for goodness-of-fit:

—]];_i[(‘Xm)i Q(Xs)l']z (2])
i=1

Root mean square error = RMSE =
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' p

Mean absolute error = MAE = - Y = (X (22)
P =l

where the subscripts m and s represent the measured and simulated SPI values,

respectively and p is the total number of events considered.

RESULTS AND DISCUSSION

The neural network models are developed to forecast drought in this study using
recursive multi-step approach. The available data is split into two parts. The dataset
from 1965-1994 is used to estimate the model parameters and the data from 1995-
2001 is used to check the forecast accuracy. For SPI 24 the data from 1965-1989 is
used to estimate model parameters and the data from 1990-2001 is used to check the
forecast accuracy. The data set is different for SPI 24, so as to include more drought
incidences, as drought incidences for this time scale are rare. Input data differs for
different SPI series, which was found based on experimentation. The coefficient of
correlation for each combination taking different input and hidden neurons between
observed and simulated data is calculated. The input nodes (m) were varied from 1
to 20 and the corresponding hidden nodes varied from 1 to 2m+1. The combination
having maximum coefficient of correlation is chosen as optimal network.
Coefficient of correlation with different combination of input neurons and hidden
neurons for SPI 12 is shown in Fig. 3.

In a similar way the optimal architecture for other SPI series are calculated as
shown in Table 4. The model performance parameters viz., correlation coefficient
(r), root mean square error (RMSE), mean absolute error (MAE) over different lead-
time for all SPI series shown in Table 4. The SPI 3, SPI 6, SPI 9, SPI 12 and SPI 24
were forecast over different lead times (1, 2, 3, 4, 5 and 6 months) using optimal
networks. :

o
©
I

8,7 9.8

|21 38 6.9 /\
i {
0.8 A\/\ “ﬁll
i 10,
07 _\

Combination = {m.,nN)
lnput meuron = m =1 to 10
Hidden neuron = n =1 to 2m+ 1

Coefficient of correlation

Combination of different number of input and hidden neurons

Fig. 3 Correlation coefficient for different combinations of neurons for SPI 12.
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Table 4 Comparison of forecasting measures between observed and predicted data for
different lead time.

. ANN : 5 o
SPI R Forecasting 1 month 2month 3 month 4 month 5 month 6 month
A Architec- o : . . .
series wre Measures lead time  lead time  lead time  lead time  lead time  lead time
. 2 bl 59 2 b
P13 6:9-1 ' 0.83 0.67 0.462 0352 0.302 0.232
MAE 0.6417 0.8965 1.0724 118 1.4025 1.3537
RMSE 0.8382 1.1567 1.383 1.4325 1.4465 1.4691
! 15[ 3 3 5
SPL6 7-4-1 ] 0.8509 0.6307 0.483 0.36 0.295 0.254
MAE 0.5054 0.88006 1.1185 1.2888 1.4324 1.5346
RMSE 07139 09685 1.0994 1.1468 1.2649 13749
o [STOTY 3
SP1 O 9-3-| l 0.905 0.766 0.606 0.52 0.462 0.398
MAE 0.3739 0.6036 0.7843 0.9106 0.9851 1.0825
RMSE (0.5262 0.7656 0.9092 0972 1.08 1.0926
SPL 12 9-3-1 r 0.93 0.84 0.742 0.68 0.572 0491
MAE 0.2831 0.5608 0.7947 0.9372 1.0313 1.0972
RMSE 04101 0.6244 0.7734 0.828 0.9152 1.0075
SP24 L r 0.921 0.801 0.721 0658 0622 0591
MAE 0.2403 04172 0.5374 0.6561 0.7582 0.8615
RMSE 03176 0.4645 0.5397 0.6085 0.6264 0.6423

It is observed that the number of input neurons increases in direct multi-step
approach for forecasts with six months of lead time in comparison to recursive
approach. The number of hidden layer neurons were also varied corresponding to
cach input neuron and it is observed that performance of ANN architecture
increases when the number of hidden layer neurons is approximately half the
number of input neurons. The time series of the observed and one month ahead
simulated values for all SPI series are shown in Fig. 4 and the time series of the
observed and two to six month lead time forecast values for SPI 12 are shown in
Fig. 5. It is observed that with longer lead-time the forecast accuracy decreases
between observed and predicted values of SPL

CONCLUSIONS

The application of ANN has been successfully demonstrated for drought
forecasting using SPI in Kansabati River Basin, West Bengal. The objectives of the
study have been twofold: firstly to compute the SPI time series to quantify drought
over multiple durations in the basin based on the average rainfall. It is observed that
SPI 1 and SPI3 have good correlations with river flow discharge, and, SPI 3 and
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feed-forward recursive neural network for SPI series.
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Fig. 5 Comparison of observed data with predicted data over different lead time for SPI 12
using feed-forward recursive neural network.
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SPL 6 with the storage in the reservoir over different months. The second objective
has been to develop ANN models to forecast SPI. The results obtained from the
models show that recursive multi-step approach is best suited for prediction with
1-2 months of lead time. These neural network models can be very useful for water
resource planners to take necessary precautions in advance considering the severity
of drought ascertained by computation of SPI.
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