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Abstract : An overview of Stochastic optimization models used in reservoir planning
and operation is presented. Various models are discussed which consider the stochastic
nature of system parameters involved in the determination of optimum operating rules

and reservoir capacities.

Stochastic optimization methodologies are discussed in

considerable detail applicable to real time reservoir operation.

INTRODUCTION

Reservoir models framed in stochastic
environment are of great importance, since they
incorporate the uncertainty of system parame-
ters into the decision or design process. The
stochasticity is induced by the hydrological
variables (e.g., streamflows, rainfall, etc.) which
form the inputs to the reservoir system. Deter-
ministic models on the other hand ignore the
stochasticity of system (stochastic' nature of
inputs, demand, prices etc.), thus having
limited applications. The stochastic optimization
techniques use the statistical aspects of the
input variables (streamflows) to arrive at the
optimum operating policy for the reservoir
under consideration,

This paper presents an overview of stocha-
stic optimization models under two main classi-
fications namely explicit and implicit stochastic
optimisation models. Explicit stochastic optimi-
zation (ESO) approach uses the expected value
of objective function along with statistical
properties of inputs to arrive at optimum decis-
ion, whereas implicit stochastic optimization
(1SO) utilizes simulation, deterministic optimi-
sation and multivariate analysis. The important
aspects of these models are dealt in considera-
ble detail, wherever possible specific examples
are provided. The ESO models discussed include

Chance constrained Linear Programming (CCLP)
models, Stochastic Dynamic programming
(SDP) models, Chance Constrained Dynamic
programming (CCDP) models and Stochastic
Linear programming (SLP) models. The fig. 1.
gives the classification of different models
under stochastic environment.

Explicit Stochastic optimization (ESO)

In the ESO, the probabilistic nature of the
hydrologic variabies is explicitly included in the
optimisation modef itself. The output fram the
model would therefore give a steady state or
long term operating policy. The SDP, CCLP,
SLP and CCDP are some commonly used ESO.
techniques. The ESO technique was first propo-
sed by Manne (1960), which was used by
many researchers (Gablinger and Loucks, 1970;
Loucks and Falkson, 1970)

STOCHASTIC DYNAMIC PROGRAMMING
MODELS

The Stochastic Dynamic Programming
(SDP) is extensively used to derive the long
term steady state operating policies for reservoir
systems (Butcher, 1971). The random input is
usually assumed to form a single step Markov
process and the objective is to maximize (or
minimize) the expected system performance
measure, A deterministic DP can be-easily

(2 )



STOCHASTIC OPTIMISATION

MODELS
IMPLICIT STOCHASTIC EXPLICIT STOCHASTIC
U e G G el OP TIMISATION MODELS
OHANCE CONSTRAINED STOCHASTIC DYNAMIC STOCHASTIC LINEAR CHANCE CONSTHAINED
LINEAR PROGRAMMING|  pRoGRAMMING MODELS| PROGRAMMING MODELS| | OYNAMIC PROGRAMMING
MODELS MODCLS
Fig. 1. STOCHASTIC MODELS FOR RESERVOIR OPERATION
generalized to Stochastic DP using recursive relationship defines the maximum expected
relationship and transition probabilites. A value of future performance of the system,
simple recursive relationship in the determini- starting from the current period ‘t".
stic environment may be written as
A simple (reservoir operating policy) SDP
F, (S))=MAX [B (S, L F S; 1 g i ;
« (S1) L [B (Sul) +Fit1 ()] ) model can be used to find out optimal reservoir

operating policy. For a single reservoir whose
capacity, release targets and storage targets are
fixed, the main aim is to maximize system
performance. System performance is a function
of release, storage and inflows.

The equation 1 represents a recursive relation-
ship of a backward moving DP algorithm. The
system can be in any state say S, for all i (i.e.
i=1...n). S, defines the discrete state of the
system (i=1, 2,.. n). ‘B' is the benefit function
dependent upon current state ‘i’ and decision Discretisation of possible random inflows
‘L. In deterministic DP, F,+; (S;) is known and initial (possible) storage volumes to a set
with certainty as starting from a state S,in of predetermined intervals forms the first step

period ‘t’, the transformation of system to state in SDP. The intervals for inflow are a range of
S, in period ‘t+1"is a non random process. discrete values represented by index ‘i’ and the
In SDP, however one or more inputs are random storage volumes by ‘k’. Then Q; and Sy, repre-
and therefore the state transformation is gover- sent the inflow and storage belonging to'a
ned by the probability distribution of the random particular interval ‘i’ and ‘k’ respectively in time
variables. period ‘t’. Along the same lines the inflows and

storage volumes are discretised into intervals
‘i and ‘L’ for the time period ‘t+1’ (next
period). Then the release possible for all com-
n _ binations of intervals is determined by conti-
F, (8)=MAX[B (S L) '472 P! ifFi 44 (S)]1 (2) nuity equation Ry, =Sk, +Q—Ek—S,, 1+

T ' vk ilt (3)

The basic recursive relationship of stochastic
DP using Markov process may then be written
as follows

Where P!;; represents the probability (called
transition probability) that the system isin where E, represents possible evaporation
state ‘j’ in period ‘t4-1’, given that it is in state and seepage losses

‘iin period ‘t". In simple terms the recursive
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The system performance measure By, is
in general a function of release R, #and storage
Sy.. Fig. 2 depicts the relationship between the
stage ‘n" and the within year period ‘t’, in the
SDP solutions. The recursive relationship is

solved iteratively till a steady state solution is
acheived. A simple problem with two possibie
intervals for inflows and storage volumes
considered for two time periods is solved in
detail (Loucks et al., 1981).

n : stages, t=time periods
Fig. 2. Backward moving Stochastic dynamic programming process

SDP models are very useful in arriving at
long term reservoir operating policies. The
technique is well suited for sequential decision.
processes and can easily handle nonlinear obje-
ctive functions with constraints also, It howe-

ver suffers from a serious limitation due to the

“curse of dimensionality’’, since the random
variables add to state space, The SDP formula-
tion is entirely problem dependent, hence no
general algorithms or packages are available to
solve reservoir related problems. It has been
proved that SDP solution . is computationally
difficult for multireservoir problems (Schwieg
and Cole, 1968).

It is known from the past experience
(Karmouz and Houck, 1987) that SDP cannot
perform well for large reservoir systems, for
this reason it is almost never used for systems
with more than two or three reservoirs, Discre-
tisation is very important part of SDP which
requires serious attention while formulation.

CHANCE CONSTRAINED LINEAR
PROGRAMMING MODELS

Chance constrained linear programming
models are basically explicit stochastic optimi-
zation models where risk is made explicit in the
reservoir design / operation by the usage of
chance constraints. The models determine the
reservoir operating rules or the design, perfor-
ming at the levels of certainty fixed by the
designer or decision maker. The level of certa-

(

inty is the “’reliability level’’. Chance constrai-
ned models are effectively used as preliminary
models in arriving at cost effective reservoir
designs and optimal operating policies.

A s'imple chance constraint may be written

as
Pr (R,=2D)>a

R, and D, represent the release and demand at
any time respectively, then the constraint
specifies that the release made is greater than
the demand for at least a*100% of the time.
The chance constraints of this nature cannot be
included in linear programming formulations
straightaway, hence they need to be converted
to deterministic equivalents for use in LP
solution.

The transformation of chance constraints to
their deterministic equivalents is possible by
linear decision rule proposed by Revelle et al.
(1969). Linear decision rule is a very simple-
and useful tool in converting chance constrained
problems (in reservoir design) into simple LP
formulations/problems. The simplest form of
linear.decision rule is as follows.

R=S8—b where R.is the release made
S : storage at the end of the previous
period
b : deterministic decision parameter
(operating policy parameter)

In stochastic framework, where the inputs
(streamflows) to the reservoir system are consi-
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dered random variables unknown in advance,
the linear decision rule facilitates the use of
chance constraints through their deterministic
equivalents in a LP framework.

A reservoir problem is presented here for
complete understanding of chance constraints
and their significance. A reservoir problem is
taken up to find optimal operating policy with
the requirements satisfied at predetermined
reliability level while aiming at minimum
reservoir capacity. A simple chance constrain{
chosen for the problem imposes on the model
the condition that the release made is greater
than the demand with a reliability level (i.e. Pr
(R>D;)>a). The model is then solved for
different reliability levels.

The model is written as

MINIMIZE K;

Subject to :

Pr(R, > D) >e; vt (4)
P, (S <K)>Pa1 yt (5)

K Reservoir capacity

R Release made in time périod t

D, Demand to be met in time period t.
Reliability level

S; Storage

Conversion of chance constraints to determinis-
tic equivalents :

The linear decision rule is given by the equation
below
R, =S,+0Q,— b, (6)
b, : deterministic (operating policy)
parameter
Q, : inflow occurring in that period.
Then the continuity equation for the reservoir
system is as follows

SH—[ == 81 + O-: I Rt (7)

Using linear decision rule (eqg. 6) the equation
can be written as

s ]

Si41 =b,0rS = b, (8)
Using equations (6) and (7) the chance con-
straint (4) can be changed into deterministic

equivalent as follows
Pr(Q, <D, + b, —by) < (1 —a) (9)

Here Q, is streamflow value in the period ‘t’
represented as random variable having normal
probability distribution. Then the equation (9)
represents the cumulative distribution function
(CDF) of Q,. Taking inverse of CDF we obtain

(o-t Q D:+br_bz-1) g F-l 0-1 (1'1) (10)

The streamflows are assumed to be normally
distributed. The chance constraint (5) can also
be transformed to deterministic equivalent by
use of LDR (linear decision rule)

The complete model with deterministic LP

formulation is follows
Min K;
S.T.
Di—b,—b;; — &, < o *F-1 Q (1—0a); vt
b,__1 —K <0 vt
#, : mean monthly inflow value,
o, : standard deviation value.

In the present case a LINGO package running
on DOS environment is used to solve the model
for different reliability levels for known demand,
For a particular reliability, the demand levels
are increased to examine the maximum demand
that can be satisfied with an associated
(minimum) reservoir capacity. The complete
results for several runs of the model with
different reliability levels is presented in the
table 1. For each reliability level, the inflow
pattern imposes a constraint on the value of
demand that can be satisfied beyond which the
solution becomes infeasible. For a constant
demand, the reservoir capacity increases as the
reliability level increases, This Is indicated
by fig. 3.

The model preéented is a simple model, but
extensions are possible to include many con-
straints (constraints related to free board, flood
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control and various others). The model can
also be modified for multireservoir planning
problems.
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Fig. 3. Variation of Reservoir Capacity with
Reliability (for constant demand)

Table 1
Reliability Maximum Demand Reservoir
Level (@) that can be met Capacity
(M.cum) (M. cum)
0.6 832 5137
0.7 707 4499
0.8 554 3644
0.9 354 2560
0.95 182 1623

Chance constrained linear programming
(CCLP) models can be used as preliminary
screening models before an optimal decision
policy is chosen from a class of possible
decision procedures. CCLP models can give a
precise representation of relationship between
operating policy and reservoir capacity. CCLP
models have been applied to variety of reservoir
management problems (Revelle and Kirby,
1970; Joeres et al., 1971; Nayak and Arora,
1971; Eastman and Revelle, 1973; Nayak end
Arora, 1974).

(

The linear decision rule which forms the
crux of the CCLP models has never been acce-
pted as the best rule. It has always been
questioned for the usage af deterministic para-
meter in the stochastic environment. Loucks
and Dorfman (1975) evaluated different linear
decision rules applicable to reservoir problems,
Many researchers believe that CCLP models
result in conservative dasigns and does not
yield optimum results (Loucks, 1970). A
complete analysis of CCLP model was provided
by Sniedovich (1980). Still today CCLP models
remain as basic stochastic optimisation models
used for preliminary designs, even after major
chenges in their formuiation and refinrement (in
linear decision rule).

STOCHASTIC LINEAR PROGRAMMING
MODELS

SLP models use linear programming technicues
to arrive at optimum operating policy decisions
(Loucks et al. 1981). In these typs of models,
the inflows are assumed tc follow a single step
Markov chain. Using SDP one can obtain
steady state operating policy, from where steady
state probabilities of release and storage can be
derived. But stochastic linear programming is
a reverse process where steady state probabili-
ties of release and storage are solved for and
the resulting information is interpreted to trans-
form them (steady state probabilities) into
releases and storages.

The same type of problem as discussed in
the SDP model can be used to apply the SLP
methodology to solve for optimum operating
policy. An LP model can be proposed to solve
for steady state probabilities (PSk, and PPi.)
of all storage volumes Sy and releases R
The steady state probabilities cbtained are
optimum steady state probabilities of releases
and storages. Then the actual values of storages
and releasas associated with optimum operating
policy (which minimizes expected sysiem
performance) can be calculated. The expected
system performance forms the objective function
for the LP formulation with constraints derived
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from the property of joint probabilities.

Stochastic Linear programming models can
be used in place of SDP models. SLP models
are used to solve multireservoir problems
(Houck and Cohon, 1978). However SLP for-
mulations are not popular because of enormous
tomputational effort, time and storage, required
for solvina simple reservoir operating problems.

CHANCE CONSTRAINED DYNAMIC
PROGRAMMING MODELS

Chance constrained models (Askew, 1974a)
are formulated on the similar lines of stochastic
dynamic programming models, but modified to
incorporate a risk constraint. When SDP is
formulated with an objective of maximizing net
benefits (for a reservoir), the optimum operating
policy derived may not ensure that the system
will perform without any failure (demand is not
met). Hence in order to have a control over the
probability of failure of the system, a constraint
on the probability of failure isincluded. In
cases where the constraint can not be included
directly, it is applied indirectly by using a
hypothetical penalty whose value is ‘W’, The
penalty is ‘W' when the constraint is violated
and zero otherwise. The stochastic dynamic
programming model recursive relation can be
modified to take the penalty.

The basic recursive relationship in SDP (Askew,
1974 a) is

Fi (S))=MAX [2‘. P(Q;) *[B (r)-C(x)-+(1/1+d)
i=1 *Fieg (Si1) 11

i :year number

d :annual discount rate
C (x) : cost incurred for annual release of ‘x’
B (r) : benefit acquired from actual release “r’
P (Q;) : probability of obtaining annual inflow
of Q;.
The SDP relationship can be amended to

take care of constraint as follows

Whenever the system fails (i.e.ris less
than x) then a penalty of value ‘W’ is applied
ta the recursive relation

25

B (nN-C (x)-W-+{1/1+d)* F._; (Si-y)

when r > x, the value of ‘W’ becomes zero.

Whenever a shortfall occurs in release, the
SDP tends to choose a more conservative
release as an optimum release, with the expec-
ted net benefit reduced. The probability of
failure and the response of the system can be
obtained by various runs of the model using
different values of ‘W',

Chance constraints related to average
number of failures of system can be included
directly into these type of formulations (Askew,
1974b). The benefit and the average number of
failures are represented as functions of storage.
An iterative search is made te identify the value
of ‘W' that yields a maximum value of net
benefit while the average number of failures is
limited to a predetermined value.

CCDP models use iterative search methods
to arrive at optimum operating policies at the
same time restricting the probability of failure
to an acceptable fevel. A modified CCDP model
which penalizes the discount rate was proposed
by Askew (1975). Many researchers beliave
that the chance constraints used in this type of
models are not explicit to optimization. CCDP
models are found to have limited application in
reservoir management problems, since the itera-
tive search procedures involved require enormo-
us computation time and storage.

Implicit Stochastic Optimization models

Implicit stochastic models (Young, 1967)
form a different class of optimization models
where in the stochastic nature of hydrologic
variables is included in the model implicitly.
The stochastic nature of hydrologic variables is
estimated from the past historical data to gene-
rate the time series realizations of system inputs
The optimum decision sequence is then obtained
for each input realization by application of any
suitable optimization technique. The optimal
decision sequences obtained from the model are
analyzed and the relationship with system vari-
ables is established through multivariate

\
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analysis (usually regression analysis). The
relationships are useful in defining the decision
function which in turn are used to obtain the
optimum decision for the entire system.

Usually a nonstationary Markov model (e.g.
veing & Jackson, 1971) is used for synthetic
streamflow generation. A reservoir operating
policy model is presented (Murali & P.P. Muju-
mdar, 1991) to help understand 1SO technique.
A linear optimization model is used for obtain-
ing optimal decision sequences.

Inputs to the Model

The inputs to the model (i.e. streamflow
values) are generated by synthetic streamflow
generation model, considering past historical
data of 24 years (of monthly inflows) to the
reservoir. Twenty sequences of monthly inflows
for 24 years are generated. Then these sequen-
ces are used as inputs to the optimization (here
LP model) to obtain different decision
sequences.

FORMULATION OF MODEL

The linear programming model can be formula-
ted as follows :
MIN [$ (D,-R,)-b*S,+L*0,]
t

S.T.:

R.<D;

SH—IESH- Il_Rn"—DI_El

ngs*"lg-. Sumx;

R.>0; 0, >0; S, >0

R, : release made during time ‘t’

D, : the demand (inclusive of both irrigation
and power)

I, : the generated

E, . evaporation

0, : overflow

Sumax : Maximum reservoir capacity

Sufficiently large value for L and low value
for b is chosen to achieve the required objec-
tive. The large value of L penalizes the objec-

(

tive function thus making the LP model to
achieve lower value of overflow. Similar
reasoning will help understand that lower
values of ‘b’ will result in high storage levels
(as the objective function is minimized). The
objective function is aimed at achieving two
things :

(i) Optimal release rule to meet the demand.
(ii)  High storages.

The LP model (Murali & Mujumdar, 1991)
is solved for 20 sequences of 24 years each.
The optimum solution for each sequence provi-
des value of S, (storage) and R, (release) made
during each period ‘t". For each month under
consideration the optimization model gives
20%24 sets of releases and storages.

In order to obtain the optimal release
policy for each month, a multivariate analysis
(Least square regression) is used to obtain a
relationship between R,, S, and |,. The relation-
ship of the form R,=a,}a, *S,+a: *I, can be
achieved. Finding out the values of regression
coefficients for each month, one can obtain the
release (optimum) which has to be made in the
month.

Table 2 gives the values of regression coeffici-
ents obtained by Multivariate analysis.

Table 2

month ao a, a:
1 215,00 0.000 0.000
2 464.23 -0.005 0.000
3 605.07 -0.003 0.005
4 639.78 -0.057 0.024
5 518.76 -0.026 0.130
6 691.48 -0.173 0.799
7 1413.44 -0.246 0.534
8 1697.26 -0.305 -0.249
9 1220.35 -0.221 -0.257

10 893.73 -0.115 -0.091

11 372.78 -0.002 -0.001

12 118.00 0.000 0.000

26

Reservoir capacity (live) : 3307 M. cum
Mean annual inflow : 1021 M. cum
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Using the coeffieients, the reservoir oper-
ation can be achieved in real time with a
suitable forecast of current period’s inflow 1.

ISO can be applied to wide variety of
problems related to reservoir operation. The
simulation procedure (synthetic streamflow
generation) used facilitates the designer or
decision maker to keep away from cumbersome
analytical techniques required for formulation
of problems (in slochastic environment). Modi-
fications are possible to basic 1SO model to
bring out better results (one of the version of
ISO is MCDP-Monte carlo dynamic progr-
amming; Young, 1967). One of the best
known modifications of ISO methodology is
ASO (Alternate Stochastic optimization) pro-
vided by Croley (1974 a).

These type of models require large amount
of computational time or storage in the gener-
ation of synthetic streamflow sequences,
multivariate analysis and optimization proce-
dures. Sometimes the multivariate analysis
used, may not depict the exact relationship
between different parameters.
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