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Abstract :

A distributed mathematical model to simulate the overland flow

Jrom fallow upland phase of the small watershed subjected to rainfall conditions has
been presented. Overland flow has been simulated using St.~Venant equations with

kinematic wave approximation.

Mein and larson approach based on original

Green and Ampt method has been used to estimate the rainfall excess rate.
All the parameters of the model have physical significance and can be easily

measured in the field or the laboratory by conducting experiments.

The solutions

to the governing partial differential equations of flow have been obtained using
finite element technique and the model validated using reported runoff data.

Introduction

Many  hydrologic  simulation models
utilize hydrologic technique to route the flow
(e.g., Stanford Watershed Model-1V and USDA
HL-73). This technique employs the equation
of continuity (an ordinary differential equation)
with either an analytic or an assumed relation-
ship between storage and discharge within the
system. Therefore, it cannot best represent
the dynamics of flow (Viessman et al.. 1972),
Also, these models do not predict the peak
values to the desirable satisfaction (Subra-
manya, 1985) which is of tremendous impor-
tance to those interested in sediment yield
estimation. Moreover, these models are
lumped parameter models (Woolhiser, 1973
and Heatwale et. al. 1982) in which non-
uniform parameters such as rainfall, soil, land
use and topographic features of the watershed
are weighted to obtain some representative
values of the entire watershed. These type of
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models can only be used when necessary data
requirements are made which require conti-
nuous gauging of the watersheds. These type of
models beside being less accurate requires a lot
of effort to collect such an enormous data and
their applicability may not be feasible in deve-
loping countries due to the lack of the relevant
data.

A mathematical model that employ hydrau-
lic routing to the flow, describes the dynamics
of the flow more accurately to the one utilizing
the hydrologic flood routing (Viessman, et. al.
1972). Also, a mathematical model that inte-
grates the spatial variability of the controlling
parameters on an ungauged watershed can
provide more reliable prediction of spatial and
temporal distributiod . of watershed response.
A distributed parameter model possesing the
above characteristics is described in the follow-
ing paragraphs.



Development of the Model

Water Routing

Overland flow can be simulated using
hydrodynamic equations of continuity and
momentum.

Continuity equation :

The continuity equation can '‘be expressed
as :

(1)

where

Q=discharge per unit width. of the overland
flow plane. m?/sec.

A=Cross-sectional area of the flow per
unit width of the overland flow plane, m.

x=distance in the directlon of fiow,
t=time, sec., and

q=/lateral inflow rate per unit length per
unit length per unit width of the flow plane
(rainfall rate-infiltration rate) m/sec.

The lateral inflow rate can be computed
by estimating the infiltration rate of the soil.

Estimation of infiltration

Most of the infiltration equations (Kosti-
akov, 1932; Horton, 1940; Holtan, 1961;
Huggins and Manke, 1956; Smith, 1972; and
Smith, 1976); are strictly empirical and the
parameters must be calibrated from the field
data. The equation developed by Philip (1957
a) consist ‘of parameters that have physical
significance but its accuracy is questionable for
long durations as it does not have any para-
meter that accounts for the equilibrium infiltra-
tion rate. Mein and Larson (1973) considered
infiltration process to be a two-stage event and
applied the original Green and Ampt model
(1911) for rainfall conditions for determining
the cumulative infiltration at the time of the
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surface ponding. The Green and Ampt model
was modified to make it applicable to post-
surface ponding conditions while accounting
for the volume of water infiltrated before the
ponding began. The equation, ‘hereafter for
brevity termed as Green-Ampt-Mein-Larson
(GAML), consist of the parameters that have
physical significance and can be easily measured
in the laboratory or the field. The parameters,
saturated hydraulic.conductivity and the suction
at the wetting front, are easily measurable in
the laboratory from the soil .samples brought
from the field or directly in the field itself. The
other input of the GAML model, saturation
moisture deficit can either be computed by
measuring the initial moisture content of the
soil or. estimated.

The GAML model considers infiltration
process to belong to either pre-ponding stage or
post-ponding stage. For a steady rain, infiltra-
tion may first start with an unponded surface
and afterwords it may change to a stage with
surface ponding and will continue to be in this
stage till the cessation of the rainfall event.

Pre-ponding stage : The equation employed in
the GAML to predict the infiltration amount
prior to ponding is given by :

SW.M
FI,'—“W . |>KS (2)

and the time to surface ponding is given by

tp=-Fill (3)
where

F, = Cumulative infiltration .at the

time of ponding, m,
SW = Average suction at the wetting

front. m,

M = Initial soil moisture deficit, m/m,
Ks = saturated Hydraulic conductivity,

m/sec.,
rainfall intensity, m/sec.

t, = time to surface ponding, sec,



Equations (2) and (3) are used only when rain-
fall intensity exceeds the saturated hydraulic
conductivity. When the rainfall intensity is less

than Ks, all of the rain infiltrates. Mathemati-
cally, it is expressed as :

F=1I.t1 1 < Ks (4)
where

F = cumulative infiltration at time t, m and
t = time, sec.

Post-ponding stage : The equation used for
estimating infiltration at any time durieg post-
ponding stage is obtained using the following
equation :

Ks (t—t, +t/) =F—MSW In (‘l

where

t, = equivalent time to infiltrate volume F,
under ponded surface condition, sec.

This equation can be solved directly for t
and by iteration for the cumulative irfiltration

amount F. The pseudotime t, can be calculated
from
sk,
Kst, = F,—SWM In (1 rarr)  ®

Surface ponding indicators Chu’s (1978)
surface ponding indicators for identifying pre-
ponding, post-ponding conditions that may arise
during unsteady rainfall infiltration has been
used in this study. For both no ponding and
ponding conditions at the beginning of a uni-
form rainfall intensity interval, two possibilities
arise, that is, after the interval the surface
conditions may correspond to ponding or no-
ponding situations.

(1) No surface ponding at the beginning
of a period :

The surface indicator has been expressed by :

CU = CR (tn) — CRO (t,,_l)—ﬁ(‘”;'—f%év-)'—“-"

IR ey
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where
CU = surface ponding indicator, when
there is no surface ponding at the
beginning of a period.

CR = cumulative precipitation -amount at
time, t,, mm,
CRO = cumulative rainfall excess amount at

time, t,, mm

t, = present time period, and

t,_; = previous time period.,

For the case of no surface ponding at the begi-
nning of a period, a value of CU less than zero

shows that there will be no ponding at the end
of the period.

(2) Surface ponding at the beginning ofa
period : The surface indicator has been expressed
by :

CP = CR (t,) — F(t.) — CRO (t.1)  (8)

For the case of surface ponding at the beginning
of a uniform intensity interval, a value of CP
greater than zero shows that there will be
ponding at the end too but a value CP less than
zero indicates that there will be no ponding at
the end of the period.

The complete working of the GAML, model
to estimate the infiltratian and the rainfall excess
under unsteady rainfall conditions is illustrated
in the flow diagram in Fig. (1).

Momentum equation :

The momentum equation can be expressed as :

2+ W0 gl —ga(s—s) (9
where,

S = bed slope of flow plane, m/m,

Sy = friction slope, m/m

h = depth of flow, m, and

g = acceleration due to gravity, m/sec?.
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Fig. 1. Comprasion of the Hydrograph of Numerical Solution (Using Linear Interpolation Function)

with that of the Analytical Solution)
Kinematic wave approximation :

The assumption of the kinematic wave
approximation (Lighthill and Whitham, 1955)
is that the friction slopes is equal to the bed
slope. In other words, the gradients due to
local and convective accelerations are assumed
to be negligible and the water surface slope is
assumed to be equal to the bed slope implying
uniform flow for which Manning’'s equation
can be used.

Q=V A= R S12 A/n
where,
V = velocity of flow, m/sec
R hydraulic radius, m, and
n = Manning’s roughness coefficient.

(10

=

Initial and Boundary Conditions

To solve the equations of flow on a sloping
plane subject to rainfall and infiltration the
following initial and boundary conditions can
be assumed :
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A(x0)=0;0{x0)=0 0<x=< L

AONH=0;Q00t)=0t>0
where,

L == Length of the flow plane, m.

(1)
(12)

Finite Element Formulation
Overland flow :

Using Galerkin residual method to develop
the algebraic equations from the partial differen-
tial equation of flow, following finite element
equation is obtained for a linear element.

1 [KM] {A} + (LM) {Q} —1 g {m} = O
where

1 1 1
(kM) =] * ‘"]; iy =[—% ¢
[ g 1 [—% ]
“3 A] Ql
= {1} o {3 {ar
and 1 = length of the element, m

If the time differential of the area is represented

by a simple explicit time integration procedure.

A(t+dt) —A(Y)
dt

time increment, the equation for

one linear element becomes :

A(t) = (14)

where dt

1
g (KMI{AY + LM —1
q{M}=0

For the element equation to be adopted to a
finite element grid consisting of more than one
element, it must be arranged to cover the total
number of elements. The Direct Stiffness
Method (Desai and Abel, 1972) has been used

in this formulation to obtain the assembled
matrices.

1
at_[KM]{A}”"“ i
(15)

Similarly, one can derive finite element equation
of continuity equation using cubic interpolation
function as follows :
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Time increment for solution convergence :

Courent condition has been used as a
criterion in selecting time increment, dt, which
states

dt < 1/c

where,

(16)

¢ = kinematic wave speed, m/sec. which is
equal to (5/3 v).

VERIEICATION OF FINITE ELEMENT METHOD
WITH ANALYTICAL SOLUTION

Since the analytical solutions to the kine-
matic wave approximation are not available, the
verification of the finite element solution (FES)
has been made with analytical solution
(Eagleson, 1970) based on certain assumptions.
It has been assumed that rainfall excess is
invariant in time and space and the catchment
is a uniform plane whose surface roughness,
slope and flow regime are invariant in time and
space. The duration of rainfall excess has been
considered as finite.
(Eagleson, 1970) for three situations is presen-
ted as follows :

Case (1) t<t. < 1,

h =it (28)

(29)

| ———

The analytical solution



for the computation of flow profile
h=(xife)" 0 x <L
Case (3) t>tr>t.
h is given by the implicit relation
L=olh™1 (hil4 m(t—t))
where

(30)

x = distance along the plane, m,

h = depth of flow, m,

L = Length of the plane, m,
i = rainfall excess, m/sec
ol = s!/?/n
m = 2'in flow equation. Q = ah™

t. = duration of rainfall excess, sec.

t. = time of concentration, sec, which is
equal to (L it-"a)tm

Comparison of FES (Using Linear Interpolation
function) with analytical solution

Finite element solution was obtained using
linear interpolation function for a hypotheticai
case of flow over a flow plane of length 100
metres. The parameters assumed were :

(i) Slope = 0.01
(i) Manning’s n = 0.025
(iii) tjme step == 30 sec.

A rainfall excess rate of 6 mm/hr was
assumed for a period of 2hr and the flow plane
was divided into three elements of equal length.
Solution was obtained using explicit time
integration scheme. The comparison is shown
in Fig. 2. Comparison of FES (Using Cubic
Interpolation Function) with Analytical Solution

A smilar comparison was made using cubic
interpolation function in the finite element
solution. In this case the flow plane has been
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considered to be consist of one cubic element
and rest of the conditions and values of para-
meters were assumed to be same as that in the
solution obtained using linear interpolation
function. The result is shown in Fig. 3. It
illustrates that both the interpolation functions,
give good agreement with the analytic solution.
A comparison of flow profile using three cubic
elements give good agreement between analytic
and numerical solution, (Fig. 4).

VALIDATION OF THE MODEL

The mathematical model has been verified
by a set of observed data reported by Akan and
Ezen (1982). Eight different flow conditions
examined together with the assumed saturated
moisture deficit (SMD) and Mannings n values
are summarized in Table1. In the first four
cases, the overland flow length is 23m with a
bottom slope of 0.10. In the remaining cases
the overland flow plane is 21.9m long and has
a bottom slope of 0.17. Also shown in the
table 1 are the observed and the computed
results.

A perusal of the tabulated values shown
that good agreement exist between the simula-
ted values and the observed results for all the
flow cases examined.

CONCLUSIONS

The event based overland flow model,
utilizing distributed parameter approach, gives.
good agreement with the reported runoff data.
The model requires only limited data input
which can be collected easily. All the para—
meters of the model have physical significance
and. can be measured in the field. or in the
laboratory. The model needs to be further
evaluated with the observed runoff hydrograph
to test its validity in the temporal domain.
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Fig. 2. Comparison of the Hydrograph of Numerical Solution (Using Cubic International

Function) with that of the Analytical Solution.
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1
INPUTS
SOIL FACTORS(K'K; INITIAL SOIL MOISTURE,
CROP GROWTH STAGE COEFFICIENT (bbn),
WEATHER FACTORS (RRp,EPpy

i2
. NO. OF DAYS ]

i3
COMPUTATION OF DAYS AFTER RAINFALL Tn

DAY NO. =1

]l Lo
| COMPUTATION OF RELATIVE ET ]
{5
ESTIMATION OF ACTUAL ET (AE)

16
STORM NO.=1,NO.OF STORMS DURING THE DAY

ESTIMATE ET BETWEEN
LAST AND PRESENT STORM

M= FILLABLE ESTIMATE ET UNTILL THE

POROSITY MINUS | |BEGINNING OF STORM
UNAVAILABLE

SOIL MOISTURE 12
ESTIMATE M AT THE
BEGINNING OF STORM

13

ESTIMATE THE INFILTRATION RATE AND
RAINFALL EXCESS RATE USING GAML

14

YES
= ——LAST STORM OF THE DAY

15

4

ESTIMATE ET FOR
REST OF THE DAY

16

ESTIMATE MOISTURE
AT THE END OF THE
DAY USING SOIL

| WATER BALANCE

Fig. 3. A Flow Chart Showing Computation Steps to Calculate Soil Water Balance.
33




8 —
5 ANALYTICAL SOLUTION
7 —-— NUMERICAL SOLUTION
8
E 5
E
=
o
=
e
L
o
i
’-—
a.
w
(=]
AFTER 330 TIMESTEPS
it ] 1 L ] £ B
0 10 20 30 40 50 60 70 80 90
DISTANCE ALONG THE SLOPE (metres)
Fig. 4. Comparison of Flow Profile using Cubic Interpolation Function.
Table 1 Comparison of simulated and observed runoff volumes.
Rainfall Runoff
Case M n Intensity ~ Duration ~ volume (m?)
No. (mm/h) (min) Observed Simulated
1 0.310 0.18 18.0 10 0.001 0.002
2 0.255 0.012 23.8 15 .040 0.051
F3 0.155 0.006 37.8 12 100 0.111
4 0.220 0.020 10.8 35 .026 0.026
5 0.310 0.180 18.0 10 .002 0.002
6 0.255 0.012 23.8 15 .048 0.051
7 0.155 0.006 37.8 12 110 0.111
8 0.220 0.02 10.8 35 .027 0.026
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