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Abstract :
for pattern recognition.

Several classification techniques have been used in remote sensing
These techniques are basically divided into two categories,

The classification algorithm

viz., supervised and unsupervised classification.
identifies the important features of a class, i.e., determines what each class looks
like and given the data for a pixel of the imagery, it compares the features of
the pixel with the features of each class and then assign the pixel to one of the
classes. When multispectral band of data are available, the variances and
correlation of spectral responses pattern of different classes are determined from
the training data set to identify salient features of the class, to be used in

classification.

Two classification techniques have been analysed and compared in this study.
These techniques are the principal components analyses and the canonical analysis.
Both of them are preprocessing techniques. The study has revealed that the
internal correlation is of the order of 0.77 to 0.97 and only two orthogonal
components can explain 97% to 98%, of the variance of the original sample. They
hence, constitute a data reduction or condensation technique for preprocessing

of multi-spectral and TM data,

Introduction

The main objective of classification is as
foliows : given a set of objects, to assign each
object to one of a number of predetermined
groups. The most common application isin
remote sensing where the categories are
classes such as water, built-up areas, vegetation
etc. and the objects are the pixel in the image.
Ctassification may also be thought of a
labelling problem in which we label each
object with a class labsl.

employed preprocessing
linear transformation of

A commonly
technique is the

+
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variables. Consider for example, multispectral
data in ‘7' channels. Generally there is a corre-
lation between the reflectance values in
different channels and these correlation may
vary with the groups or classes. The principal
components are mutually orthogonal linear
transformation of original variables which
maximize successively the variance accounted
for that component. Geometrically, this is
equivalent to fitting to the image data by
rotation, translation and scaling, a set of
mutually orthogonal and hence uncorrelated
axes so that the first axis or principal com-
ponent ciearly explains the greatest amount
of variance with successive axes or component



accounting for a explaining less and less

variance.

Twe Dimensional Case

Let us consider, for the sake of simplicity
a two dimensional case of say, Band 5 & Band
7 plot of reflectance values for a class such as
watar with ‘X' axis for Band 6 and 'Y’ axis for
Band 6. (See Fig. 1). Let us rotate now the
axis through an angle ‘¢’, keeping the trans-
lation and scale factor unchanged. The
relationship between the old and new coordi-
nates is given by :
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Fig. 1 : Plot of Reflectance Values Vs Wave
Length for Bands 5 and 7
X'= Xcosg + Ysing (1)
Y' = —Xsing + Ycosg (2)

In matrix this is expressed as :—
v ()
Y Y

Let 62x and ¢®y be variances of X and Y

respectively and o%x * and o2y ' be the variances

of X" and Y'. By the law of propogation of
variances coveriance we have

cos § sin g

)= (—sin g cosg (3)
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where 3' = variance covariance matrix X', Y’

3. = variance covariance matrix of
Y

A = The coefficient matrix =
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and O'zx'
Cos ¢ (ovyx + oxv)

o6%x Sin®g + o2y Cos?’g + Sing
Cos g (oxy + 0vx) (7)
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Now, in order to minimize covariance and

maximize variance we must have :

ox'v' =0ox'y =0 (10)
which gives :
fanidigias o2 Oxy (10)

ze—Eyz

Thus if the axes are rotated through an angle
¢ given by the expression (11) above the new
variance ¢2x, and o2y, will be maximized and
covariance oy ‘x ', o,y 'x will vanish, breaking
the correlation between X'. Y’ and thus meking
then independent of each other, These new
components X', Y’ are the First and Second
Principal Components (PC's).

In general, if we have more than two dimen-
sional pixel values (reflectance) of image ie.
n bands, the principal components can be
obtained as follows :



Let s be the variance covariance matrix of i
class and n bands. Since 3 is symmetric it
can be diagonalized. Lety, i=1,2......n
be the eigen values of S (i.e. the roots of
| (z—n1D | = 0 in decreasing order i.e.
M A cevene Na Wa assume for the sake of
simplicity that there are no degenerate eigen
values. Letg; i =1, 2, .....n be the ortho-
nomal base of the eigen vectors of 3, that
satisfy

5,9;=Y:0 (12)
and let G be the orthogonal matrix that
diagonalizes 3, so that

G35G1l=n (13)
where

Ny =N by, dy=0ifiz£] (14)

sy=1ifi=]
Then the transformation
Y,' = N
]=1 G,‘j Xj ...... |—1, ...... n (15)

gives the required transformation and hence
the principle components

This method, therefore, defines a rotation of
n-dimensional coordinate system such that
there is data reduction i.e. the data are arranged
along axes of decreasing variance. The linear
combination of the original data cf radiances
from the variance of the transformed datais a
maximum along the first principal axis.

The percentage of information content of band
‘i" is given by :

percentage = - — x 100 (16)
ij

ij
and the correlation coefficient Ry, is given by :

Anm - ()\mn)f

(Sznm)lfa (1 7)
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where n = band, m = component
a,n = eigen vector for nth row, jth
celumn
Anm = eigen value for nth band and
jth component
s2,,, = variance for the nth band.

Canonical Analysis

The objective of canonical analysis (MC.,
Murty, 1976) is to derive a linear transforma-
tion that will emphasize the difference amongst
the pattern sample belonging to different
categories. The theoretical formulation is
given in Bow (1985) and may be compared
with that of James (1985).

Data used in Study

The data collected for the study are as
follows :-The area is covered by one Landsat-4
scene. Thaindex map is supplied by NRSA
Hyderabad. A scene is located by its path
number and row number. The area selected
is located by the Path Number 142 Row
Number : 042. The Landsat data, correspond-
ing to the aforesaid scene are obtained in the
form af CCT (1600 BPI) containing reflectance
values for bands 1, 2, 3 and 4. But the
correspohding positive films (1:1 m) and
paper prints (1 : 1/2 m) could not be obtained
from NRSA during the course of this study.
The toposheets 63 K and 630 covering the
area were also available for the study.

Classification using Principal Components

Using the principles explained in earlier,
and with two principal components (i.e., p=2)
the category wise means and standard devia-
tions of the principal components as well as
the 95% symmetrical confidence limits have
been calculated and they are shown in Table 1.
The confidence limits for different categories
for the first principal component indicate that
and dry soil have non-overlapping
limits and built up areas and

water
confidence



Table 1 ;

Categorywise Means, Standard Deviation and 95% Confidence Limits

Principal Components 1

Sl Category

Means Standard 959,
No. (®) Deviation Confidence Limits
(o) (#—1.96) (£-}-1.96)
y 2 Water — b.63386 0.4147 — 6.4465 — 4.8209
2, Built-up Areas —16.9809 0.6099 —18.1686 —15.6803
3. Vegetation —15.6893 05313 —16.6306 —14.5479
4, Dry Soil —27.3697 1.5082 —30.3258 —24.4137
Principal Component 2
1. Water — 3.0213 0.2830 — 3.5761 — 2.4667
2. Built-up Areas —12.2285 0.6894 —13.5797 —108773
3. Vegetation — 5.5449 0.3990 — 6.3270 — 47629
4, Dry Soil —17.5357 1.7006 —20.8689 —14.2025

vegetation have overlapping confidence limits
among themselves, but disjointed from water
and dry soil. The confidence limits for the
different categories in second principal com-
ponent indicate a disjoint set for built-up areas
and vegetation. Accordingly, a layered or
decision tree approach for classification as
shown in Fig. 2, is valid. This can also be
used for preparing colour composites with
enhanced discrimination.
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The eigen values show that the first two
eigen values contributing to 85.69 and 12.38
percent of the variance respectively are signi-
ficant, the third one contributing to 1.929 is
small and the last one with 0.019, is trivial.
Accordingly, it is identified that p =2 and 2
canonical components are required.

Classification using Canonical Analysis

The transformation matrix derived from
canonical analysis can be used to transform
original data and for subsequent classification
as in the case of principal component analysis.

Assuming two canonical components, i.e.,
P = 2, the category wise means and standard
deviation of the component as well as 959,
symmetrical confidence limits have been
calculated and are shown in Table 2.

The confidence limit for the first compon-
ent show, as in the case of principal compon-
ents analysis that water and dry soil have non
overlapping confidence limits and built-up
areas and vegetation have ovariapping con-



Table 2 : Categorywise Means, Standard Deviation and 959, Confinence Limits

Canonical Components 1

Sl. Category Means Standarp 959,

No. (») Deviation Confidence Limits

() (+—1.96) (#-+1.96)

1. Water 92909 06871 7.9442 106376

2 Built-up Areas 24.4806 0.7893 23.2891 25.6721

3. Vegetation 27.1588 0.6079 25.6112 28.7058

4. Dry Soil 38.56298 1.5914 35.4106 41.6489
Canonical Component 2

1. Water — 0.9558 —0.4020 — 1.7437 — 0.1679

2. Built-up Areas 2.6330 0.8693 1.2224 4.0436

3. Vegetation — 7.9891 0.7197 — 9.6929 — 6.1872

4, Dry Soil 0.3251 1.6013 — 28134 34636

fidence limits among themselves but disjointed
from water and dry soil. The confidence
limits for different categories in 2nd component
also indicate in a similar fashion a disjointed
set for built up areas and vegetaion. Accor-
dingly, a decision tree layered classification
is shown in Fig. 3.
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omparison of Principal Components
nalysis and Canonical Analysis

Both the principal components analysis

|
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and canonical analysis are orthogonal linear
transformation procedure suitable for a con-

densation of multichannel information into
fewer components. The components are
orthogonal to one another and are hence

uncorrelated. Principal components analysis
significantly maximises the variance explained
by the components, while canonical analysis
maximizes the ratio of among the class variance
to within the class variance sequentially.

A comparisen of results of eigen values in
principal components analysis indicate that the
canonical components explain a slightly larger
percentage of the variance (98.07 vs 97.5)
than that of principal components.

Results of Classification

The pixel wise classification of data may
be presented either as colour composites in
terms of principal components or canonical
components, or as coded or grey imageries,
The results of canonical analysis are used for
classification of a part of the scene used in the
study with the following corner points.
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