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CHAPTER-11

STOCHASTIC MODELLING AND STREAM FLOW FORECASTING

Dr. Sanjay Kumar,
Scientist-C
National Institute of Hydrology, Roorkee-247667

11.0  INTRODUCTION

The hydrological forecast involves the estimation of the future state of the
hydrological variables in space and time (WMO/UNESCO, 1991). Many times it is in real
time and for a particular location. River flow forecasting is one of the most important
hydrological forecast besides other forecasts such as those for avalanches, soil moisture and
groundwater levels, together with forecasts for navigable rivers and lakes. In addition there
are also the more specialized forecasts (WMO 1994) for water quality, including the travel
time of slugs of pollutants, for dam-breaks, and like phenomena. Hydrological forecasts are
valuable for various purposes such as river regulation, hydropower production, irrigation
scheduling, water supply and also for managing and mitigating the flood disasters.

A hydrological forecast needs to be accurate and timely to be effective. These two
features are dependent on a number of factors; primarily the availability of hydrological and
meteorological data, the speed of receipt of these data at the forecast centre, the effectiveness
of the forecasting method employed and the time taken to disseminate the forecast to users. In
addition the knowledge of the characteristics of a particular river basin is also important to a

forecast.

Most currently used methods of flow forecasting are based on one or more types of
hydrological model. Such a model attempts to describe the quantitative relations between the
precipitation, the other inputs and the outputs, primarily the flow. At one end of the spectrum
(WMO 1994) these models are simple empirical ‘black boxes’, which do not try to mimic the
physical processes involved. At the other end are those conceptual models, which aim to
recreate the physical processes and the concepts about the behavior of a basin in a series of
mathematical expressions. In the region between there is a great variety of models;
(deterministic, stochastic, lumped, distributed, event driven, continuous), which can all be the

basis of a flood forecasting system.

The time series models provide an alternative approach as compared to deterministic
or conceptual approach to hydrological forecasting. These models require long times series
for their best operation and are considered as ‘black box’ type. Identification of the
components of the structure of the time series is important to these methods; namely the
trend, the periodicity and the random component. A large number of time series models have
been developed which use these and other methods of time series analysis (Salas, 1992).
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This lecture covers the principles of time series analysis and various steps involved in the
identification of time series models.

11.1 TIME SERIES ANALYSIS IN HYDROLOGICAL FORECASTING

A time series is a collection of observations generated sequentially through time. The
special features of a time series are that the data are ordered with respect to time, and that
successive observations are usually expected to be dependent. The methodology adopted to
study the history of movement in time of the variables, e.g. hourly discharge, daily rainfall
etc., is called Time Series Analysis (TSA). Prerequisites for application are observed data
sequences. The analysis proceeds with the various components of a time series. In the
following sections a general overview of TSA, the terminology used in TSA, and brief

description of Box-Jenkins (B-J) modelling approach for univariate series has been provided.

In contrast to other areas of statistics, the characteristic feature of TSA is that the
observations occur in the temporal order. The implication is that we shall, among other
things, be interested in the relationship between the values from one time to the next; that is
in the serial correlations along the series, when we come to consider several series, it
becomes necessary to consider not only correlations between series, but also the serial
correlations within each series. Furthermore, the extent to which one series leads, or lags,

another becomes an important part of statistical modelling.

Thus, the primary objective underlying in studying time series is to understand the
mechanism that generates the data and also, but not necessarily, to produce likely future
sequences or to forecast events over a short period of time. These arc attempted by making
inferences regarding the underlying laws of the stochastic process from one or more
sequences of recorded observations and then by postulating model that fits the data, which

are again used for estimation purposes. The objectives of time series analysis are as follows:

(1) To obtain a concise description of the features of a particular time series process.

(ii)  To construct a model to explain the time series behaviour in terms of other variables
and to relate the observations to some structural rules of behaviour.

(iiiy  Based on the results of (i) and (ii), to use the analysis to forecast the behaviour of the
series in the future based upon the knowledge of the past.

(iv)  To control the process generating the series by examining what might happen when
some model parameters are altered, or by establishing policies that intervene only
when the process deviates from a target by more than a prescribed amount.
Definitions of the terms used in the TSA have been presented in the next section in

alphabetical order. Mathematical formulae and physical interpretation have been given

wherever necessary.
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11.2  Definition of Terms
Autocorrelation function (ACF): It is an important guide to the properties of a
time series and measures the correlation between observations at different distances (lags)
apart. These coefficients help in identifying the probability model that generated the data. It is
defined as
B, = 1) - )]

e = E[(xr —;5)2J

The set of values py and the plot of py against k = 1, 2, ..., are known the

autocorrelation function (ACF) or correllgram. In practice, however, the autocorrlation
coefficients are usually calculated by computing the series of autocovariance coefficients,

{ck), from the observed time series. Thus, the sample estimate of vy is

_“Z(x Xisk — \)

kN

and the estimated or sample ACF (SACF) is

The ACF has following three important properties.

Property 1:  The ACF is an even function. That is
Py = Py
Property 2: ‘p& f <1

Property 3:  Lack of uniqueness.

To use the autocorrelations for identifying models, it is necessary to know when py is
effectively 0, or is significantly different from 0. For this purpose the standard error of the
sample autocorrelations is required. For lags k greater than some value q beyond which the
theoretical ACF may be deemed to have died out, Bartlett (1946, 1966) has shown that an

approximate estimate of the autocorrelation is given by:

var(r, ) {1+2Zpl} k>gq

However, in practice population autocorrelations are replaced with the estimated

autocorrelations ri to obtain an estimate of the approximate variance of ry as

var(r, ) {1+22r J k>g

The square root of above equation is called the large sample standard error, SE (1) of 1y. For

purely random series, it can be shown (Kendall et al., 1983) that
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E("k)”*

var(rk ) =

and that r is asymptotically normally distributed under weak conditions. Thus, having plotted

the correllogram, approximate 95% confidence limits at —y 17 can be plotted, which
nt

often approximated as :t%;. Observed values of ry which fall outside these limits are

significantly different from zero at the 5% level.

Cross-correlation function (CCF): The cross-correlation function between two time series
Xt and-y; is given by

\ COV(J’ o
CCF(k) = 2%
)= TG varle)

and is a measure of the relationship is affected by the within series correlations, appropriate

transformations must be performed in both series before the CCF is estimated.

Partial autocorrelation function (PACF): The partial autocorrelation function at lag k is

defined as the correlation between time series terms k lags apart, after the correlation due to
intermediate terms has been removed.

The lag k partial autocorrelation is the partial regression coefficient ¢x¢ in the kth order
autoregression.

X, =@,% t@X ot P, ta,

and it measures the additional correlation between x, and Xy after adjustments have been
made for the intermediate variables Xi.i, X2, ..., Xtk+1. The Ok is obtained from Yule-Walker
equations (Mills, 1991). However, the sample PACF (SPACF) is calculated by fitting AR
models of increasing order: the estimate of the last coefficient in each model is the sample
partial correlation. Box and Jenkins (1976) present a recursive method for calculating

SPACF, which is attributed to Durbin (1960).
Qvenouille (1949) showed that the variance of the estimate of the partial

autocorrelations, gf;k,( is approximately equal to

2 1
varlg,, |=—
( kk) ln
where, n equals the number of observations after suitable differencing, and p represents the

first partial autocorrelations that are assumed to be non-zero.

The approximate standard errors are equal to
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1

SE|g,, )= —

( kk) \/;

Thus, the values of SPACF which lie within the confidence interval of i%— are said to
n

significantly not different from 0 at 95% significance level.

Prewhitening: Prewhitening refers to the process of removing the dominant
autocorrelation structures from the dependent and the independent series. This is done to
avoid spurious correlation that might exist between the two series due to high “within”
autocorrelation. It amounts to first obtaining the appropriate univariate models for each series
involved, and then, at the second stage, cross correlating the (residual) white noise series. The

process is known as “prewhitening” since it produces a series closer to “white-noise”.

Stationarity: Most of the probability theory of time series is concerned with stationary time
series, which is, broadly speaking, a series which contains no systematic change in mean (no
trend), variance and periodic variations; and for this reason TSA requires to turn a non-
stationary series into a stationary one so as to use this theory.

A time series is weakly, second-order or covariance stationary if

(i) p.’([) = U and y([) =¥, forallt

(ii) y(r,r+k)= Vi foralltand k
Condition (i1) implies that two observations, k time periods apart, have the same covariance
no matter where they occur in the series. Further, conditions (i) and (ii) imply that we can
define autocorrelation between x; and X as”

Cov(x,,x,,,) A

[var(x, Jvar(x, )| A

Since these conditions apply only to the first- and second-order moments of the process, this

pk = corr(xl ’x!+fc ) =

is known as second-order stationarity.

A time series is said to be strongly, strictly, stationary if the joint density functions
depend only upon the relative locations of the observations. That is if {x(z‘] )x(t, ). x(t,)}
denotes the joint density of the observations at times t;, t, ..., t,, we require that
if f{x(e, + &), x(e, + &), x(r, + &)} = f£{x(r,),x(t,).....x(z,)} for all choices of the {t}. In

particular, this means that

£ix(0)y = fix(e+ i)}
f{x(z‘l )x(t, )} = f{x(rl +k),x(t, + k)} and so on.

Usually for TSA the less restrictive definition of stationarity is considered.
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Stationarity and Invertibility Conditions: ~ Stationarity and invertibility conditions impose
restrictions on the parameters of the AR and MA processes respectively and ensure variance
stability and existence of unique MA process for a given ACF. These two conditions provide
a diagnostic tool to check stationarity of the fitted model. If the model fails to fulfill these two
conditions, it implies that some transformation, such as additional differencing, is required to

induce stationarity.

White Noise: White noise is a sequence of random shocks drawn from a fixed distribution,
with zero mean and constant variance. For a white noise (or random series) px = 0, k > 0 and

is approximately N (0,1/n), so that, if a time series is random, 19 out of 20 of the values of

can be expected to lie between + %/— , at 95% significance level.
n

11.3 Time Series Notation

Difference Operator =~
If {x.} represents the raw data or the series obtained after making a transformation to
stabilise the variance, the regular and the seasonal difference of first-order is then defined
respectively as
Vx, =x, —x,_ and 'V x, =x, —Xx,_,
where, s is the span of the seasonal cycle.
In general, combinations of seasonal and consecutive differencing are written as
VIivex,
where D represents the order of seasonal difference operator, s the span, and d the order of

the consecutive difference operator.

Backward Shift Operator
It is defined as
Bx, =x,, and  B'x, =x,_

{ 23

In general, B*x, = x,_, . Therefore, the relationship between V and B can be expressed

as
V=1-8B

Autoregressive Operator Polynomial
The regular and seasonal AR operator polynomial order p and P are defined

respectively as
¢0,(B)=1-¢,B-¢,B*—..—¢ B and
®,(B)=1-®B° - D,B* ~...-®,B”
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Moving Average Operator Polynomial
The regular and seasonal MA operators of order q and Q are defined respectively as

0,(B)=1-6B-6,B*~...-6 B" and
0,(B)=1-0,B -0,B* -..-©,B%

General Multiplicative Seasonal Model

The broad class of Box and Jenkins (B-J) models called the multiplicative ARIMA

models can be expressed in the form of the operators defined above as
¢, (B0, (B*W2Vx, =0, (B)o(B ),
General Transfer Function Model

Similarly the general class of TFN models can also be expressed in terms of the above

defined operators as

_o(B)(B')  e(BW(8')
= 5(B)A(B*) Zi-s ¢(B)<D(B“’)a'
with
x, =VPvy
zZ, = V_f,)V’dX,

11.4  Box-Jenkins Models .

Box-Jenkins time series models can be classified according to the number of variables
included in the model. A time series model consisting of just one variable is called univariate
time series model. A univariate time series will use only current and past values on one
variable. For example if we forecast the water table next month or two months from now
using a univariate model, we could use only the current and past water table data. The
assumption in the formation of such model is that the factors, which influence the water table,
have not changed or are not expected to change sufficiently. A time series model, which uses
other variables to describe the behavior of the desired series, is called a multiple time series
model. The model expressing the dynamic relationship between these variables is called a
transfer function model. The usefulness of transfer function can be better appreciated if we
consider an example. Suppose that beside water table fluctuation data, we also have rainfall
and groundwater withdrawl data for the corresponding period. Then, by constructing a
transfer function model, we could exploit the dynamic relationship between water table
fluctuations, rainfall and groundwater withdrawl. For instance, if we discover that changes in
rainfall and groundwater withdrawl this month (or any other time scale) will trigger a
response in groundwater table two months from now, we may then be in a much better

position than if we had just used a univariate model to predict future water table conditions.
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Finally, a special form of transfer function model is called intervention model. The special
characteristic of such a model is not the number of variables in the model, but one of the

explanatory variables captures the effect of an intervention, a policy change, or a new law.

In the following sections only univariate Box-Jenkins time series models are
described. The models involve non-seasonal and seasonal univariate models. For more detail
on transfer function and intervention models one may refer to Chatfield (1996), Harvey
(1993), Kendall and Ord (1990), Kendall et al. (1983), Box et al. (1994), Mills (1991),
Vandaele (1983), etc. Chatfield (1996) has given a very good and frugal review of some

relevant books on time series.

11.4.1 Autoregressive (AR) models

A time series is said to be governed by a first-order autoregressive process ifithe
current value of the time series, x; , can be expressed as linear function of the previous vaiue
of the series and a random shock a,. If we denote the previous value of the series by xy.; , this

process then can be written as
Xe = ¢ X1 + ()

where ¢ | is the autoregressive parameter which describes the effect of a unit change in X..; on

% and which needs to be estimated. The equation (1) is called an autoregressive process of
order 1, AR(1). The order of the proccss corresponds to the number of parameter that need to
be estimated. An autoregressive process of order p, AR(p), contains p number of parameters

and can be expressed as
Xt = (i)]X[.] + ¢2X1_2+ ............ + Xt.p+a[ (2)

The random shocks a, also known as errors or white noise series, are assumed to be normally

and independently distributed with mean zero, constant variance c:f and independent of x|

Le

E(a) =

E(a,a,) =c’ ?f t=s 3)
E(aa,) =0 if t#s

E(a,,x, ) =

Fig. 1 shows a schematic representation of an auto regressive process.
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Fig.1 Schematic representation of an Autoregressive Operator

The stationarity condition introduces restrictions on the parameter values (¢ ’s) of
autoregressive process. It can be shown that for a stationary first order autoregressive
process, the absolute value of parameter ¢ ; must be less than 1 i.e |¢I] < 1. There are certain

properties based on autocovariance and autocorrelation, which can be used to distinguish an
AR process from any other process. It can be shown that autocovariance of an AR(1) process

at lag k is
M :4):%0 (4)
Similarly it can be shown that autocorrelation of an AR(1) process at lag k is

?I\lk k "
f ), = = 5
k ? ; 1 ( )

Another distinguish feature of the autoregressive process is its long memory i.e current
observation x; is influenced by shocks a, that occurred in distant past. For an AR(1),

stationary process (IM <1), the effect of shocks will gradually dissipate, whereas this not the
case if the process is nonstationary. Stationarity conditions, as well as autocovarience,
autocorrelation and memory function characteristics can be derived for an autoregressive
process of any order however, they are not as simple as for an AR(1) process but complicated

function of ¢;’s parameter.

11.4.2 Moving Average (MA) model
The autoregressive model of first order AR(1) in equation (1) would be extended to
include past errors to see if they can improve on the time series representation of the data i.e.

the AR(1) model in equation (1) could be modified as
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Xt= 01X +a- 0a. (6)

Where a..; represent the error at period t-1, and 0, is called the moving average parameter,
which describe the effect of the past error on x,. A Moving Average (MA) model is obtained
from equation (6) by omitting the lagged variable x.;. Mathematically, we express a first

order moving average MA(1) model as
Xt =ag - 0 1 -1 (7)

Where 6, is the moving average parameter. The equation (7) expresses the current value of
the series x; as a linear function of the current and previous errors or shocks, a, and a,;. The
equation (7) is called moving average process of order 1, MA(1). The order of the process
corresponds to the number of parameter that needs to be estimated. A moving average

process of order q, MA(q), contains q number of parameters and can be expressed as
Xt =a - 0 1 dg-1 - ezat-z' ........... ol eqat.q (8)

The random shocks, a’s, in a moving average process are assumed to be normally and
independently distributed with mean zero and constant variance o’ i.e they satisfy equation

(3) Fig. 2 shows a schematic representation of a moving average process.

Xt At ,a-)

Fig. 2: Schematic representation of an Moving Average (MA) operator

The stationarity condition introduces no restrictions on the parameter values (0°s) of
moving average process. However for a 1 order moving average process, MA(1), the

parameter 6| must satisfy ]6‘f< 1. This condition is called the invertibility condition of an

MA(1) process. There are properties based on autocovariance and autocorrelation, which can
be used to distinguish an MA process from any other process. It can be shown that

autocovariance of an MA(1) process at lag 0, 1 and k=2 can be expressed as

?LG:(1+912)0’§

L, =-0,0;,and
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A, =0 for k>2

Therefore, the autocorrelations can be defined as

9l
(1+6})°
p,=0 for k=2

and

Pr==

It can be noticed that whereas the autocorrelations for AR(1) process die out gradually, they
die out abruptly for an MA(1) process. It follows directly from equation (7) that the memory
of an MA(1) process lasts only for one period i.e. the system will feel the full impact of a; at

time t, but its effect at time t+1 will be proportional to 0, .

\
\

Invertability condition, as well as autocovarience, autocorrelation and memory
function characteristics can be derived for a moving average process of any order however,
they are not as simple as for an MA(1) process but complicated function of0 ’s parameter. A
parsimonious representation of model is possible using a moving average process wherein the
number of parameters to be estimated can be drastically reduced. Vandaele (1983),
demonstrate the equivalence between an MA(1) process and an AR(o) process ( an
autoregressive model with an infinite number of parameter). It is important to represent a
time series process with as few parameters as possible as the parameters have to be estimated

with a finite number of data points.

11.4.3 Mixed Autoregressive Moving Average (ARMA) models
A process with an autoregressive and a moving average term is called (mixed)
autoregressive moving average process and is represented by equation (6). This may

reproduced as in equation (9)

Xe= 0 1Xer ta- 0 ag )

The autoregressive moving average models are denoted as ARMA(p q) and represented as in
Fig.3. The p refers to the number of autoregressive parameters, and the q to the number of
moving average parameters. Model as in equation (9) is an ARMA(1 1) process. The higher

order ARMA(p, q) can be expressed as

Xe= X F doxi2 t oL FOpXepta-0 an - - 0 gacq (10)
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Xt

Xt a a A

Fig. 3: Schematic representation of an (ARMA) operator

The stationarity condition introduces restrictions on the parameter values (¢ ’s & 6°s)

of ARMA(p, q) process. However for a ARMA(1, 1) process the parameter ¢ and 0, must
satisfy |¢,| <1 and |0,/<1 respectively. The autocovariance and autocorrelation, of an

ARMA(1, 1) process at lag 0, 1 and for k>2 can be expressed as

A= 1+8f f2291¢)1 o
1_¢1
R (1—(1),6])(4;1 —5) 6,2 , and
1-¢;

A=0, A, for k=2
Therefore, the autocorrelations can be defined as

p|=(1_¢1?|)(¢1 _el) , and
(1+67 —26,9,)

p=0,p, for k=2

It can be noticed that the autocorrelations for ARMA(1, 1) process die out gradually as for a
stationary AR(1) process. It is therefore difficult to distinguish between an ARMA(I, 1)
process and an AR(1) process based on these properties. However the first autocorrelation of

ARMA(1, 1) process is influenced by both the AR and the MA parameters.

11.4.4 Autoregressive Integrated Moving Average (ARIMA) model
Any of the models discussed so far cannot be used if the series is not stationary.
Transformation of the data will be necessary to induce stationarity. It is shown that for an

AR(1) model to be stationary, ¢ must be less than 1. A special model is obtained if ¢, = 1.

In this case, the AR(1) process in equation (1) can be written as
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Xt = X T &

or as Xt — Xt.] = & (11)

The equation (11) is known as a random walk model, a model in which changes are brought
about by a white noise series. The memory function of the random walk model demonstrates
that a random walk process is a stochastic process wherein successive random shocks
accumulate over time. This means that the effect of a shock incurred at time t will never die
out which is a general characteristic of a nonstationary series. The equation (11) suggest a
simple way to model the random walk. The first difference of the series, x; — X.; constitutes a
stationary series whose observations are random shocks a; , a , ...... a; . In other words the
differencing transformed the random walk into a white noise process. Thus the non stationary
series often transformed into stationary series by differencing. Suppose that the first
differences of a series are stationary. Then by defining the difference between consecutive

values of x, as
Wi = Xt — X1 (12)

we could replace x, and x.; in the mixed autoregressive moving average model, the
ARMA(1,1) model with wi and wy.; to obtain

Wi = ¢ Wer tag— 8 g a (13)
Modeling of x, expressed by equation (12) and (13) is called an autoregressive integrated
moving average (ARIMA) model. This model is labeled an ARIMA(1 1 1) model. In general,
autoregressive integrated moving average models are denoted as ARIMA(p d q). The number
inside the paréntheses refer to the order of the autoregressive process, the degree of
differencing required to induce the stationarity, and the order of the moving average process
respectively. It can be shown that the actual realizations, X, can be written as an infinite sum
of past and present differences transformation i.e.

X =Wt W twio o (14)

The general structure of an ARIMA process can be summerised as in Fig. 4

Xt Wi €t d

Fig 4: Schematic representation of an ARIMA operator
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The moving average operator transforms the white noise into an intermediate series e, For a

first-order moving average filter, e, would be represented as

e =a- 0 ja. (15)
The autoregressive operator transfer e, into another intermediate series wi. Again for a first

order autoregressive filter, w, would be expressed as
Wi = ¢ (Wi e (16)

And finally the integration operator transforms w; to x,. The above described models are also
called ARIMA models. An AR(p) model can always be denoted as an ARIMA(p,0,0) model.
An MA(q) model can be represented as an ARIMA(0,0,q) and an ARMA(p q) model as as
ARIMA(p,0,q).

11.5 Seasonal Box-Jenkins Models
Seasonal patterns are often encountered in time series observed at quarterly or

monthly intervals. For example with monthly observations, where s (seasonality)=12, it is
expected that x; depend on term such as x..|» or perhaps x.24 as well as terms such as x.., X..
It is therefore logical, to try to exploit the correlation between the same quarter or months in
successive years, as well as the correlation between successive quarters or months, to model
such time series. Box-Jenkins (1970) extended and generalized the ARIMA models to

analyze seasonal variations. The following sections describe seasonal Box-Jenkins models.

11.5.1 Seasonal Autoregressive (SAR) models
A time series (observed, say, at quarterly intervals) is governed by a first-order
seasonal autoregressive process if the current value of the series x, can be expressed as a

linear function of the value of the series attained one year ago, y.s (s=4), and a random shock,

a;1.e.

X =D Xes - a (17)
Backshift operator can be used to express equation (17) as

(1- @, B x =a (18)

Where @, is the seasonal autoregressive parameter. Equation (18) could be denoted as an
SAR(1) model i.e. seasonal autoregressive model of order 1. In general a seasonal

autoregressive model of order P can be written as
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O(B®)w, =a, (19)

Where
O(B*)=1-®,B°~ ®,B*~ .. .-],B™ (20)
w,=Vg Vix, 21)

The seasonal and consecutive difference operators (Vs . V%) used to induce stationarity in

the series X. The autocorrelation function of a SAR model is similar to the regular AR model,
except that the values of the autocorrelations appear at multiples of the span i.e. the
autocorrelations of SAR(1) model have non-zero values at lags that are multiples of the span.
That is,

Py =D  where s=spn, k>0
11.5.2 Seasonal Moving Average (SMA) models

A time series is said to be governed by a first-order seasonal moving average process
if the current value of the series X can be represented by a current shock, a, and a shock
occurring exactly s observation earlier, a, _, , where s equals the span of the seasonal model.
Such a model is written as
X, =4, w@Iat—s : (22)
using backshift operator

x,=(1-0,B%)a,

Where ©,is called seasonal moving average parameter. The equation (22) represents a first

order seasonal moving average, SMA(1) model. A SMA model of order Q can be c'xpressed

as

w, =0(B%)a, - (23)
where

©(B%)=1-0,B°-0,B% -.....~©,B* and (24)
W, =VSDVdXt (25)
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The seasonal and consecutive difference operators (VS , V") used to induce stationarity in

the series x,. The autocorrelation function of a SMA model is similar to the regular MA
model, except that the values of the autocorrelations appear at multiples of the span i.e. the
autocorrelations of SMA(1) model have only one non-zero values, which will occur at the lag
corresponding to span. That is,

®!
(1+©})

Ps=— where s=span

11.5.3 Mixed Seasonal (SARMA) models
A process which, is a combination of seasonal autoregressive and seasonal moving
average processes is called a mixed seasonal process and can be expressed as

O(B*)w, = O(B%)a, ' (26)

Where ®(B®)w, and ©(B®)a, are expressed in equation (21) and (24) respectively. Similarly

the difference operators have been expressed in equation (25). The autocorrelations of a
seasonal mixed process have nonzero autocorrelations at lags which are multiple of the span.

11.5.4 General multiplicative seasonal models
If all the models explained so far can be combined into one model then this broad
class of models is called multiplicative ARIMA models, and can be expressed as

d(B)D(B*)w, = 6(B)O(B®)a, (27)
where

¢,(B)=1-¢B-¢,B’ ..~ ¢ B

®,(B)=1-® B ~®,B* - .- B

6,(B)=1-6,B-6,B* -...-6 B and

w,=Vivix,

The equation (4.21) can also be summarized as
ARIMA(p, d, q) x (P, D, Q)

These models when analyzed properly can yield good fits to time series data and generate
accurate forecasts. '

11.6  Model Building Strategy for the Box-Jenkins Models
The Box-Jenkins iterative approach for constructing linear time series models consists

of four steps. These are as follows:
(1) Identification of the preliminary specification of the model
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(i)  Estimation of the parameters of the model

(i11)  Diagnostic checking of the model

(iv)  Forecasting future realizations

In the identification stage, one selects the order of consecutive and seasonal
differencing required to make the series stationary, as well as specifies the order of the
regular and seasonal autoregressive and moving average polynomial necessary to adequately
represent the time series model. After a tentative model has been identified, the parameters of
that model are estimated. Various diagnostic checks are then applied to determine whether or
not the model adequately represents the data. A new model must be identified if any
inadequacies are detected and the cycle of identification, estimation, and diagnostic checking
repeated. Finally, the model, which passes all the checks, is used to generate forecasts. It
should be noted that models, which adequately depict the behaviour of the data at time, may
generate forecasts, which are not at all acceptable. Whenever this bccurs, one may have to go

back to the identification stage and restart the process.

11.6.1 Identification

The preliminary stage in the model identification is to plot the time series data to
detect the incorrect data, keypunch errors and gross outliers etc. and to check whether any
transformation is required to make the series stationary. Variance stabilization and mean
stabilization are two types of transformations used for imparting stationarity to the time

series.

There is no adequate formal test to check the variance non-stationarity (Granger and
Newbold, 1977). However, one practical way to test for variance non-stationarity in cases
where the standard deviation or the variance seems to be proportional to the local mean of the
series is to divide the series into intervals of equal “length”, and find the mean and
corresponding standard deviation of each segment. If the local mean is found to be
proportional to the local standard deviation, the variance stabilising transformation is the
logarithmic one. If the local mean is found to be proportional to the local variance, the
variance stabilising transformation is the square root transformation (Mills, 1991, for
detailed discussion). Other transformations could also be evaluated to induce stationarity. A
general class of such transformationsl, called power transformations, can be specified.

However, in practice logarithmic and square root transformations are generally preferred and

" Box and Cox (1964) suggested the following transformation:

=14 azo0
e log, x, A=0

where A is the transformation parameter.
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used. For mean stabilization the time series plot and the correlogram help in assessing as to
whether the series contains any trend or seasonality. The series is made stationary by proper
differencing — regular differencing for trend removal and seasonal differencing to remove

seasonality.

Once the series is made stationary, the next step is to identify a general class of
tentative model using sample ACF and PACF. Table 1 shows the properties of ACF and
PACF for different B-J seasonal and non-seasonal models that help in initial model

1dentification.

Table 1 (a)  Properties of the ACF and PACF Non-seasonal B-J Models

Model ACF PACF
Tails off.
Exponential and/or sine wave .
AR (p) . Cuts off after lag p (p spikes)
decay, may contain damped
oscillations
Tails off.
) Dominated by linear combination of
MA (q) Cuts off after lag q (q spikes) . _
damped exponentials and/or sine waves,
may contain damped oscillations.
ARMA Tails off after g-p lags. . Tails off after p-q lags. Dominated by
Exponential and/ or sine wave exponential and/or sine waves after p-q
(p,9)
decay after g-p lags lags.

Table 1 (b)  Properties of the ACF and PACF Seasonal B-J Models

Model ACF PACF
Tails off.

AR (p), Seasonal === Cuts off after lag p + sP.

AR (P)

MA S I Tails off.

(@), Seasona Cuts off after lag q + sQ

MA (Q)
Tails off after (q + sQ) — (p + sP) Tails off after (p + sP) - (q +sQ)
lags. lags.

Mixed Models ags . : e ) ;
Exponential and/ or sine wave Exponential and/ or sine wave

decay after (q + sQ) — (p + sP) lags.  decay after (p + sP) - (q +sQ) lags.

11.6.2 Estimation
The next step after identifying a particular model from the general class of

multiplicative models is to estimate the vectors of parameters,

1

o=t br. 0] @=[0,0,,..0,],0-[0.0,..0,] md0=[0,6,....0,]
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The parameter estimation can be done using various available algorithm and optimization

techniques by minimizing the sum of squared residuals, SSR. That is one chooses

?Sé,é and © as estimators of $.D,0and O respectively so that SSR,
5..0,6)=3;

isa minimum.

11.6.3 Diagnostic Checking

Three groups of tests or diagnostic checks are performed to evaluate the model
adequacy. If inadequacies are detected then more likely that a different specification of the
model is required to fit the data. The three groups of diagnostic checks are described below.

Stationarity Analysis \

The fitted model must be checked for the stationarity and invertibility conditions
imposed on the equations of the AR and MA polynomials of order p and q respectively.
expressed by replacing B with z and regarding it as a complex variable and not as an

operator, 1.e.

0(z)=1-0,2-¢,z° —...=¢,z" =0 and }
(28)

8(2):1—812—6222 —...—6,2Y=0

The stationarity conditions for the AR (p) follow from the requirements tha@_. the roots of the
auxiliary Equation (28) should be greater than one in absolute value. If any root is <I in
absolute value, the process is non-stationary and needs to be differenced or transformed to
make it stationary. Similarly, the conditions for invertibility are that the roots of Equation
(28) should be greater than one in absolute value. When the reports are not available
explicitly, a partial check is available by computing the values of above equations at x = +1.

The condition can be satisfied only if

10,) <116, <1, 6(1) > 0, 9(~1)> 0,6(1) > 0 and 6(~1) > 0 (29)

The conditions in Equation (29) are necessary but nof sufficient.

Residual Analysis

If a model adequately depicts the ARIMA process governing the series, then the
residuals of the model, defined as the difference between the observed and fitted values,
should be white noise. The whiteness of the residuals is tested by time series plot and

correlogram. The time plot will reveal any outliers and any obvious autocorrelation or cyclic
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effects. The correlogram will enable a more close examination of autocorrelation effects. If
the residuals are truly white noise, then their ACF should have no spikes and the correlogram

is such that each autocorrelation coefficient is N (0, 1/n). Thus, the autocorrelations, r, which

lie, say, outside the range i—%f (i.e. outside the approximate 95%large sample confidence
n

limits) are significantly different from zero.

Instead of looking at, rys one at a time, Box and Jenkins (1970) describe Portmanteau
lack-of-fit test, (Box and Pierce, 1970) with modification by Ljung and Box (1978), which
looks at the first k values of the correlogram at once, for analysing the residual

autocorrelations. The Portmanteau test contrasts the null hypothesis:

A
\

Against the general alternative H1:  not all r; = 0. Based on the residual correlogram, the
modified Box-Pierce or the Ljung — Box (L-B) Q statistic is stated as

Q=Q(K)=n(n+ 2)i . 1 r’(a) (30)

where, n denotes the length of the series after any differencing. If the fitted model is
appropriate (i.e. if the residuals are white noise) Q is approximately distributed as Chi-square
distribute variable with (K-p-q-P-Q) degrees of freedom, where p, q, P and Q are the numbers
of AR, MA, SAR and SMA parameters respectively in the model. However, this and other
similar tests have poor power properties (e.g. Davies and Newbold, 1979) and as suggested
by Chatfield (1996) just ‘looking’ at few values of ry, particularly at lags 1, 2 and first

seasonal lag (if any), and examining if any are significantly different from zero using the

crude limits of the series + %/— is sufficient to test the whiteness of the residuals.
Vn

Metadiagnosis
This includes omitting or fitting extra parameters where the model is over specified or

underspecified as described below.

11.6.4 Overspecified Model: Omitting Parameters
A useful check on the model adequacy is to evaluate whether the fitted model does

not contain redundant parameters. The statistical significance of an estimated parameter can
be evaluated by calculating the t-ratio, which is the ratio of the parameter estimate to the

standard error. A parameter is significantly different from zero, if the t-ratio is equal to
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greater than 2 in absolute value. An insignificant parameter is an indication that the model is

overspecified and simplification of the model is possible.

11.6.5 Underspecified Model: Fitting Extra Parameters

In order to verify that the tentatively identified model contains the appropriate number
of parameters to represent the data, a more elaborate model is fitted to the data. For instance,
if the fitted model is ARMA (p, q), more elaborate models ARMA (p + 1, q) and ARMA (p,
q + 1) are fitted to the data. The model is then tested to see whether the additional parameters
improve the fit significantly. This is seen by examining residual variances; if the white noise
variances reduced by 10% by fitting an overfit model, then the overfit model is appropriate.

11.6.6 Forecasting
Once a satisfactory model is found using above described procedure, then it can, be

used to forecast the future values of the observed time series. For example, if the observed
time series is Xy , X2 ,....... » Xn then the estimation of future values such as x,+. where k is
called lead time is called forecasting. The forecast of x,+ made at time n for k steps ahead is

denoted as x(n, k). Broadly the forecasting methods may be classified into three groups:
(a) Subjective, (b) Univariate, (c ) Multivariate

Subjective forecasts (Armstrong, 1985; Wright and Ayton, 1987) are made using judgement,
intuition and any other relevant information. Univariate forecasts are based on a model fitted
only to past values of a time series so that x (n, k) depends only on X, , Xpp ...... Methods of
this type are also called naive or projection methods. Multivariate forecast of a variable
depends partly on values of one or more series. Methods of this type are also called causal
methods. In practice, however, a forecasting procedure may involve a combination of the
above approaches. In particular, hydrological forecasts involve combining statistical
predictions with the subjective knowledge and insight of people involved in the field. It is
important to realise that no single method is universally applicable and a analyst must choose
a method which is most appropriate for a given set of conditions. Kendall (1993) gives a
review of empirical comparisons of different time series forecastmg methods and their

suitability to different conditions.

Although point forecast are sometimes adequate, a prediction interval is often helpful
to indicate the future uncertainty. The prediction interval can be calculated assuming that the
fitted model holds true in the future or can be calculated on an empirical basis from the fitted
errors (Chatfied, 1993a). If we assume that the error terms a, are normally distributed, then
the forecast distribution of x(n, k) i.e. f, 1(x), will be distributed as a normal random variable
with mean x(n, k) and variance Var [a,(k)]. With this error distribution it is straight forward
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to make probability statement about future observations. Therefore the 95% large sample

confidence interval for x(n, k) is
Xn(k) £ 1.96 SE[a,(k)] (31)

Where SE denotes the standard error of the forecast error defined as the square root of

variance in equation below

Var [a,(k)] = E{a, X (k)] = oﬁfwj with y, =1 (32)

i=0

In actual calculation of the confidence limits, we replace the error learning coefficient with

their estimates and o with its estimate.

The models described in previous sections are assumed to be applied to discrete series
that are transformed to second order stationary i.e the distribution of random component is
normal. In practice this assumption would generally be sufficient in case of annual series.
However modifications are necessary for coping with closely spaced data i.e hourly, daily,
weekly and even for monthly data which are highly skewed (Kottegoda, 1980; Salas
etal.,1980) ). These closely spaced river flow data are auto-correlated and not normally
distributed. No standard procedure is available which can cope with both non-normality and
serial correlation (Swift and Janacek, 1991). In practice, however, one could fit a linear
model using least squares for a long series and rely on asymptotic results. This method
provides no information on the distribution of the errors. Therefore the prediction intervals of
the forecast cannot be calculated. Swift and Janacek, (1991) describe a model for auto-
correlated, non-normal data which allows (i) a general class of correlation structure and (ii)

any marginal distribution, and for which maximum likelihood estimates (MLEs) can be

found.

11.7  Algorithm for Adaptive Parameter Estimation

Due to many interrelated physiographic and meteorological factors, the parameters of
models as described above for one hydrograph may not be an optimal fit to another
hydrograph. This means, that every flood hydrograph may give different parameter estimates
of the models described above. Thus the parameters estimated from one storm can only be
taken as an initial estimate for another storm. The adaptive algorithms are therefore used for
updating the parameters as more and more readings of the rainfall-runoff process become

available.
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In forecasting floods, it is desirable to obtain the parameters recursively as the flood

develops. This real time surveillance of the hydrological system is desirable, especially when
the parameters are not constant but time dependent. This necessitates the formation of

adaptive filter models.

Adaptive filter models are used for online identification where the output from the
model is continuously assessed against the actual system output. The residual errors between
the actual and forecast output is used as a feedback information into the parameter adjustment
mechanisms. Adaptive filter model updates the model parameters using the previous estimate
of the model parameters and a function of the forecast error process. The updating algorithms

are of the general form:

Bk +1) =0(k) + k(k+De(k+1) (33)
where :
O(k+1) = Updated parameter vectors at time (k+1)
ok) = Previous estimate
k(k+1) = Weighting factor
e(k+1) = Residual error between the observed and the forecast values.

Kumar (1980) discussed these adaptive algorithms in detail and used them for on line

updating of model parameters.

11.8 REMARKS
The application of time series modelling techniques is explained to examine the

historical sequences of hydrological time series for generating likely future sequences over a
short period of time. These Black-Box techniques are particularly useful when there is a lack
of complete understanding of hydrological processes, resulting in uncertainties in the
magnitude and frequencies of future events. The Box-Jenkins time series models and various
steps involved in their identification, estimation and diagnosis are described. The data
generated through these models can be used for simulating water resources systems and
various other purposes. Adaptive filter algorithm has also been explained for on-line updating
of model parameters especially when the parameters are not constant but time dependent.
These adaptive filters are important to update time series models in real time for short term

forecasting of hydrological sequences.
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