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13.0 INTRODUCTION

During the last decade soft computing techniques mainly artificial neural networks
and fuzzy logic techniques have become popular in hydrological modeling, particularly in
applications in which the deterministic approach presents serious drawbacks, due to the
noisy or random nature of the data. The research in Artificial Neural Networks (ANNs)
started with attempts to model the biophysiology of the brain, creating models which
would be capable of mimicking human thought processes on a computational or even
hardware level. Humans are able to do complex tasks like perception, pattern recognition,
or reasoning much more efficiently than state-of-the-art computers. They are also able to
learn from examples and human neural systems are to some extent fault tolerant.
Recently use of fuzzy set theory has been introduced to interrelate variables in hydrologic
process calculations and modellling the aggregate behavior. Further, the concept of fuzzy
decision making and fuzzy mathematical programming have great potential of application
in water resources management models to provide meaningful decisions in the face of
conflicting objectives. Fuzzy Logic based procedures may be used, when conventional
procedures are getting rather complex and expensive or vague and imprecise information
flows directly into the modeling process. With Fuzzy Logic it is possible to describe
available knowledge directly in linguistic terms and according rules. Quantitative and
qualitative features can be combined directly in a fuzzy model. This leads to a modeling
process which is often simpler, more easily manageable and closer to the human way of
thinking compared with conventional approaches. The present lecture describes the
concept of ANN and Fuzzy logic. Furthermore, this lecture also presents a general review
of the applications of ANN and fuzzy logic in rainfall runoff modelling.

13.1 BIOLOGICAL NEURON

It is claimed that the human central nervous system is comprised of about
1,3x1010 neurons and that about 1x1010 of them takes place in the brain. At any time,
some of these neurons are firing and the power dissipation due this electrical activity is
estimated to be in the order of 10 watts. A neuron has a roughly spherical cell body called
soma (Figure 1). The signals generated in soma are transmitted to other neurons through
an extension on the cell body called axon or nerve fibres. Another kind of extensions
around the cell body like bushy tree is the dendrites, which are responsible from
receiving the incoming signals generated by other neurons.

dedrite
N

\

synapse

Figure 13.1  Typical Neuron
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As it is mentioned in the previous section, the transmission of a signal from one neuron to
another through synapses is a complex chemical process in which specific transmitter
substances are released from the sending side of the junction. The effect is to raise or
lower the electrical potential inside the body of the receiving cell. If this graded potential
reaches a threshold, the neuron fires. It is this characteristic that the artificial neuron
model proposed by McCulloch and Pitts, (McCulloch and Pitts 1943) attempt to
reproduce. Research into models of the human brain already started in the 19th century
(James, 1890). It took until 1943 before McCulloch and Pitts (1943) formulated the first
ideas in a mathematical model called the McCulloch-Pitts neuron. In 1957, a first
multilayer neural network model called the perceptron was proposed. However,
significant progress in neural network research was only possible after the introduction of
the backpropagation method (Rumelhart, et al., 1986), which can train multi-layered
networks.

13.2 ARTIFICIAL NEURON

Mathematical models of biological neurons (called artificial neurons) mimic the
functionality of biolagical neurons at various levels of detail. A typical model is basically
a static function with several inputs (representing the dendrites) and one output (the
axon). Each input is associated with a weight factor (synaptic strength). The weighted
inputs are added up and passed through a nonlinear function, which is called the
activation function (ASCE, 2000a; APPENDIX-I). The value of this function is the output

of the neuron (Figure 2).

Figure 13.2 Processing Element of ANN

13.2.1 Neural Network Architecture
A typical ANN model consists of number of layers and nodes that are organised to

a particular structure. There are various ways to classify a neural network. Neurons are
usually arranged in several layers and this arrangement is referred to as the architecture
of a neural net. Networks with several layers are called multi-layer networks, as opposed
to single-layer networks that only have one layer. The classification of neural networks is
done by the number of layers, connection between the nodes of the layers, the direction of
information flow, the non linear equation used to get the output from the nodes, and the
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method of determining the weights between the nodes of different layers. Within and
among the layers, neurons can be interconnected in two basic ways: (1) Feedforward
networks in which neurons are arranged in several layers. Information flows only in one
direction, from the input layer to the output layer, and (2) Recurrent networks in which
neurons are arranged in one or more layers and feedback is introduced either internally in
the neurons, to other neurons in the same layer or to neurons in preceding layers. The
commonly used neural network is three-layered feed forward network due to its general
applicability to a variety of different problems and is presented in Figure 3

Figure 13.3 A Typical Three-Layer Feed Forward ANN (ASCE, 2000a)

13.2.2 Learning
The learning process in biological neural networks is based on the change of the

interconnection strength among neurons. Synaptic connections among neurons that
simultaneously exhibit high activity are strengthened. In artificial neural networks,
various concepts are used. A mathematical approximation of biological learning, called
Hebbian learning is used, for instance, in the Hopfield network. Multi-layer nets,
however, typically use some kind of optimization strategy whose aim is to minimize the
difference between the desired and actual behavior (output) of the net. Two different
learning methods can be recognized: supervised and unsupervised learning:

Supervised learning: the network is supplied with both the input values and the correct
output values, and the weight adjustments performed by the network are based upon the
error of the computed output. '
Unsupervised learning: the network is only provided with the input values, and the
weight adjustments are based only on the input values and the current network output.
Unsupervised learning methods are quite similar to clustering approaches.

13.2.3 Multi-Layer Neural Network

A multi-layer neural network (MNN) has one input layer, one output layer and a
number of hidden layers between them. In a MNN, two computational phases are
distinguished:
1. Feedforward computation. From the network inputs (xi, i = /, . . ., n), the outputs of
the first hidden layer are first computed. Then using these values as inputs to the second
hidden layer, the outputs of this layer are computed, etc. Finally, the output of the
network is obtained.
2. Weight adaptation. The output of the network is compared to the desired output. The
difference of these two values called the error, is then used to adjust the weights first in
the output layer, then in the layer before, etc., in order to decrease the error. This
backward computation is called error backpropagation. The error backpropagation
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algorithm was proposed by and Rumelhart, et al. (1986) and it is briefly presented in the
following section.

Feedforward Computation
In a multi layer neural network with one hidden layer, step wise the feed forward

computation proceeds as:

[. Forward Pass

Computations at Input Layer
Considering linear activation function, the output of the input layer is input of input layer:
0,=1 (1)
where, O, is the M output of the input layer and /, is the ["™ input of the input layer.

Computations at Hidden Layer
The input to the hidden neuron is the weighted sum of the outputs of the 1nput

neurons: ;

\

1, =0, +u,,0, + ... 41,0, (2)
forp=123,....m
where, /,, is the input to the p™ hidden neuron, u,,is the weight of the arc between I

input neuron to p™ hidden neuron and m is the number of nodes in the hidden layer.

Now considering the sigmoidal function the output of the p" hidden neuron is given by:

1
(3)

hp . (1+e_’1([hp“‘9hp})

where O,,is the output of the pth hidden neuron, /,,is the input of the p" hidden neuron,
0,,1s the threshold of the p neuron and A is known as sigmoidal gain. A non-zero

threshold neuron is computatidnally equivalent to an input that is always held at -1 and
the non-zero threshold becomes the connecting weight values.

Computations at Output Layer

The input to the output neurons is the weighted sum of the outputs of the hidden
neurons:
Ly, = wlqOhl = quohz +ot quOhm . (4)

forg=1,23,..

where, 1, is the mput to the ¢™ output neuron, w,, ,is the weight of the arc between m"

hidden neuron to g™ output neuron.
Considering sigmoidal function, the output of the g™ output neuron is given by:

1
= ()

Oq (1+e'“/7-("0.,.“90q))

where, O, is the output of the ¢' " output neuron, A is known as sigmoidal gain, &, is the

threshold of the g™ neuron. This threshold may also be tackled again considering extra 0"
neuron in the hidden layer with output of -1 and the threshold value 6, becomes the

connecting weight value.

Computation of Error
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The error in output for the ™ output neuron is given by:

&' = Z( or = Oy (6)

where Om is the computed output from the " neuron and 1, is the target output.

Equation (4.19) gives the error function in one training pattern. Using the same technique
for all the training patterns the error function become

£=2.¢ (7)

where, N is the number of input-output data sets.

Training of Neural Network
Training is the adaptation of weights in a multi-layer network such that the error

between the desired output and the network output is minimized.
IL Backword Pass
For k™ butput neuron, £y is given by
1
é:k ZE(TI(_O()}()Z (8)

where, 7, is the target output of the k" output neuron and O, is the computed output of
the k" output neuron. The output of the & output neuron is given b
p p p g y

1 9

Ok = (1+e-1(1r)k“9m.~))

The change of weight for weight adjustment of synapses connecting hidden neurons and
output neurons is expressed as:

P .
howy = wngjj= -0, -d, | (10)
where, d, =A4-(T, - 0,,)-0,-(1-0,,) and 7 is learning rate constant
Learning rate coefficient determines the size of the weight adjustment made at each
iteration and hence influences the rate of convergence. Poor choice of the learning
coefficient can result in a failure in convergence. For a too large learning rate coefficient
the search path will oscillate and jump past the minimum. For a very small learning rate
coefficient the descent will progress in a small steps and thus significantly increase the
time of convergence.
Therefore, change of weight for weight adjustment of synapses connecting input neurons
and hidden neurons is expressed as:
Bty =22 =l o, ) (A0, 1= 0,))- 1] an
i

The performance of the backpropagation algorithm depends on the initial setting
of the weights, learning rate, output function of the units (sigmoidal, hyperbolic tangent
etc.) and the presentation of training data. The initial weights should be randomized and
uniformly distributed in a small range of values. Learning rate is important for the speed
of convergence. Small values of learning parameter may result in smooth trajectory in the
weight space but takes long time to converge. On the other hand large values may
increase the learning speed but result in large random fluctuations in the weight space. It
is desirable to adjust the weights in such a way that all the units learn nearly at the same
rate. The training data should be selected so that it represents all data and the process
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adequately. The major limitation of the backpropagation algorithm is its slow
convergence. Moreover, there is no proof of convergence, although it seems to perform
well in practice. Sometimes it is possible that result may converge to local minimum and
there is no way to reduce its possibility. Another problem is that of scaling, which may be
handled using modular architectures and prior information about the problem.

13.3 ANN: MODEL DESIGN & TRAINING

Before applying ANN, the input data need to be standardized so as to fall in the
range [0,1]. A typical hydrological variable, say river discharge (Q), which can vary
between Qmin to some maximum value Qua can be standardized by the following
formula:

_ Q - Qmm
Q"' Qm?m - len . ( ! 2)

where Qs is the standardized discharge. X

For a specific modeling problem, an ANN is designed in such a way to obtain a
simple architecture which yields the desired performance. As there is no analytical
solution to determine an optimal ANN architecture and therefore, a unique solution
cannot be guaranteed. The numbers of input and output nodes are decided from the
modeling problem. Further, the number of hidden layers and the number of nodes in each
hidden layer are determined to produce most suitable ANN mode] architecture. Generally,
a trial-and-error approach is used to find out the number of hidden layers and the number
of nodes in each hidden layer. The number of nodes should be chosen carefully since the
performance of a network critically depends on it. A network with too few nodes gives
poor results, while it overfits the training data if too many nodes are present.

The primary goal of training is to minimize the error function by searching for a
set of connection strengths and threshold values that cause the ANN to produce outputs
that are equal or close to targets. There are different types of learning algorithms that are
quite suitable for specific problems. The supervised training algorithm uses a large
number of inputs and outputs patterns. The inputs are cause variables of a system and the
outputs are the effect variables. This training procedure involves the iterative adjustment
and optimization of connection weights and threshold values for each of nodes. In
contrast, an unsupervised training algorithm uses only an input data set. The ANN adapts
its connection weights to cluster input patterns into classes with similar properties.
Supervised training is most common in water resources applications.

13.4 WHATIS FUZZY LOGIC ?

Fuzzy logic is a powerful problem-solving methodology with a myriad of
applications in embedded control and information processing. Fuzzy provides a
remarkably simple way to draw definite conclusions from vague, ambiguous or imprecise
information. In a sense, fuzzy logic resembles human decision making with its ability to
work from approximate data and find precise solutions.

Unlike classical logic which requires a deep understanding of a system, exact equations,
and precise numeric values, Fuzzy logic incorporates an alternative way of thinking,
which allows modeling complex systems using a higher level of abstraction originating
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from our knowledge and experience. Fuzzy Logic allows expressing this knowledge with
subjective concepts such as very hot, bright red, and a long time which are mapped into
exact numeric ranges.
Fuzzy Logic has been gaining increasing acceptance during the past few years. There are
over two thousand commercially available products using Fuzzy Logic, ranging from
washing machines to high speed trains. Nearly every application can potentially realize
some of the benefits of Fuzzy Logic, such as performance, simplicity, lower cost, and
productivity.
Fuzzy Logic has been found to be very suitable for embedded control applications.
Several manufacturers in the automotive industry are using fuzzy technology to improve
quality and reduce development time. In aerospace, fuzzy enables very complex real time
problems to be tackled using a simple approach. In consumer electronics, fuzzy improves
time to market and helps reduce costs. In manufacturing, fuzzy is proven to be invaluable
in increasing equipment efficiency and diagnosing malfunctions. Usefulness of fuzzy rule
based modeling in hydrological modeling and forecasting is also demonstrated by various
researchers.
13.5 FUZZY SETS

In ordinary (non fuzzy) set theory, elements either fully belong to a set or are fully
excluded from it. Recall, that the membership u(x)of Qof a classical set A, as a subset of
the universe x, is defined by:

. I, iff xe A
L (X)=
9700, it x g 4

This means that an element [Jis either a member of set A(u(x)=1) or not
(#1:(x)=0). This strict classification is useful in the mathematics and other
sciences. Figure 4 presents difference between boolean logic and fuzzy logic.

Figure 13.4  Boolean Logic Vs Fuzzy Logic.

13.5.1 Membership Function Assignment and Rule Generation

First, partition the input and output space as small, medium, large etc. After
partition, the next step is to assign a membership function. First the data points whose
membership grades are among the highest are chosen. The mid-point of these data
points is assigned grade of one, which is the index of membership function. Then a
membership grade C (0<C<1) is assigned. :
The membership function is shown in the Figure 5, where ¢; and by are the center and
the half-width of the membership function respectively. And x is the average distance
of the vertex to the left and the right edges. Thus, we have:

35.=1;1C_:>g,_ . .(13)
if

C is a parameter to be assigned. This C is usually determined by experience, although
some optimization techniques may be used. Typical values of CM vary from 0.5 to 0.8.
After partitioning the input and output spaces and assigning the membership
functions, the next step is to construct the rules.
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13.5.2 Steps for Developing Fuzzy Logic Model

Step by step procedure for developing a fuzzy model is given below:
Define the model objectives and criteria: What am [ trying to model? What do I have to
do to model the system? What kind of response do I need? What are the possible
(probable) system failure modes?
Determine the input and output relationships and choose a minimum number of variables
for input to the Fuzzy Logic (FL) system.
Using the rule-based structure of FL, break the modelling problem down into a series of
[F X AND Y THEN Z rules that define the desired system output response for given
system input conditions. The number and complexity of rules depends on the number of
input parameters that are to be processed and the number of fuzzy variables associated
with each parameter. If possible, use at least one variable and its time derivative.
Although it is possible to use a single, instantaneous error parameter without knowing its
rate of change, this cripples the system's ability to minimize overshoot for a step inputs.
Create FL membership functions that define the meaning (values) of Input/Output terms
used in the rules.
Create the necessary pre- and post-processing FL
Test the system, evaluate the results, tune the rules and membership functions, and retest
until satisfactory results are obtained. Figure 6 presents steps involved for developing of
fuzzy model.

Figure 13.6 Steps for developing fuzzy model

13.6 RULE-BASED FUZZY SYSTEMS
In rule-based fuzzy systems, the relationships between variables are represented

by means of fuzzy if-then rules in the following general form:

If antecedent proposition then consequent proposition.
Fuzzy propositions are statements like “x is big”, where “big” is a linguistic label,
defined by a fuzzy set on the universe of discourse of variable x. Linguistic labels are also
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referred to as fuzzy constants, fuzzy terms or fuzzy notions. Linguistic modifiers (hedges)
can be used to modify the meaning of linguistic labels. For example, the linguistic
modifier very can be used to change “x is big” to “x is very big”.

The antecedent proposition is always a fuzzy proposition of the type “x is A” where X is a
linguistic variable and 4 is a linguistic constant (term). On the basis of structure of the
consequent proposition, different fuzzy rule based models are defined. In a Linguistic
fuzzy model (Zadeh, 1973; Mamdani, 1977) both the antecedent and consequent are fuzzy
propositions. Singleton fuzzy model is a special case where the consequents are singleton
sets (real constants).

13.6.1 General Linguistic Fuzzy Model

The general Linguistic Fuzzy Model of a Multi-Input Single-Output system
is interpreted by rules with multi-antecedent and single-consequent variables such as
the following:

Rule I IF[] 1s B” AND ]2 18 B12 AND] iSB[r

THEN O is D;, [=12,.n \ ..(14)
Where I; , I>,.., I, are input variables and O is the output, B; (i=1, ...,n, j=I,...,r) and D,
(=1, ...,n) are fuzzy sets of the universes of discourse Xj, X2,., X}, and Yofil,,I,., I, and

0 respectively. The above rule can be interpreted as a fuzzy implication relation

B/=ByxBpxxB,—D;in (X=X, x Xox.x X,)xY:
Ri(x,y) = T(Bi(x),D(»).Bix)=T" (Bi;(x),Bi2(x),....Bi(x)) -.-(15)

Where 7 and T’ are the t-norm operators and may be different from each other.
Let the fuzzy set 4 in the universe of discourse X be the input to the fuzzy system of (14).
Then, each fuzzy IF-THEN rule determines a fuzzy set /) in "

F(y) = T(Rx)AR) (16)
For a crisp input x* = (xl ] xz ,. x,*)
if x; = xI
A[(x):{ 0,if x, % x° ..(17)
Then
Fi(y) = T(Rx,),4(x))
= T(Birx),4(x),Di(y)) ..-(18)

= T(Bu(x).D(»)
where B:/(x) is called the Degree Of Firing (DOF) of rule /:

B =T (Bu(x ), Bia(x2),.... Bu(x, ) ..(19)
The output fuzzy set F of the fuzzy system is the t-conorm of the n fuzzy sets F
(I=1,2,..n):

F(y)=S[Fi(y), F2(y),... Fu(y)] ...(20)
Where, S denotes the t-conorm operator. To obtain a crisp value of the output, the

commonly used Center of Area (COA) method, may be used.
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Yi

[yF(dy
y o=t .21
[Py

Yo
Where, the real interval Y =[ypy,] is the universe of discourse for the output.

The fuzzy system is usually not analytical, but analytical formulation is essential
for the use of training algorithms like Back Propagation (BP) and Least Mean
Squared (LMS). We, therefore, use the following simplified fuzzy inference system: First,
T-norm and T-conorm operators are chosen to be the multiplication and addition
operators, respectively. Then equation (20) becomes,

F() =Y F() =3 B(x')- D) | 22)

"

Obviously, the summation brings the output fuzzy set F(y) out of the unit interval.
However, it does not have an effect on the defuzzified value. By substituting for F(y) in
(21) we get the COA defuzzified value:

n

[y B,6)D, (e
R =1

[ B,6)D, )y

Yo

) [yD,(»)ay
D B S
. [Di(y)dy

Yo

S B,(x')

> B(x" )y
I=1

= ...(23)
ZBI(}C,)
=1

Where the y;* s are the centroids of the fuzzy sets D.
The defuzzified value " is determined by the weighted average of the centroids of the
individual consequent fuzzy sets. Using a symmetric triangular membership function, the

fuzzy system becomes,
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Sy - 'xbil)
Y =)= L

¢, =b, <x,<¢c,+b, ..(24)

i

1
n —
Ixr Cﬁl

r 1 _
= (HI: b,

!

Where ¢, and b, are the center and the half-width of the triangular membership
function respectively.

13.7 RAINFALL-RUNOFF MODELLING

The problem of transformation of rainfall into runoff has been subject of scientific
investigations throughout the evolution of the subject of hydrology. Hydrologists are
mainly concerned with evaluation of catchment response for planning, development and
operation of various water resources schemes. A number of investigators have tried to
relate runoff with the different characteristics which affect it. For the purpose of rainfall-
runoff process simulation and design flood evaluation, conceptual and physical based
models are widely used. The model calibration and validation are the important aspects of
the hydrological modelling proper calibration and validation of the hydrological model is
necessary before using the model for simulation. In order to ascertain the uncertainity in
the parameters as well as parameter stability the sensitivity analysis must be carried out.

13.8  GENERAL DATA REQUIREMENT FOR RAINFALL-RUNOFF
MODELLING

Before undertaking rainfall-runoff modelling for a particular storm, it is advisable
to assess the quantity and quality of available data. Quite often, the available data dictate
the type of model to be used more than the problem itself. A general inventory of data
frequently available or needed is given in what follows.

Watershed Characteristics .

The most commonly available is the topographic map from which many useful
geomorphic parameters can be extracted, that is, watershed area, subbasin areas,
elevations, slopes, channel lengths, channel profiles, centroid, etc. Many other
geomorphic parameters can then be computed. Another useful map is the landuse map,
which provides data on areas of land-use practice, soil types, vegetation, forest areas,
“lakes, urban development, etc.

Rainfall Characteristics

Determination of the average amount of rain that falls on a basin/subbasins during a given
storm is a fundamental requirement for many rainfall-runoff models. A number of
techniques for estimating mean areal rainfall have been developed. Rainfall hyetographs
are needed for each subbasin. Some of the subbasins may not have a recording raingauge
and may involve extrapolation of rainfall data from neighbouring subbasins. If a subbasin
has more than one raingauge, then the mean areal rainfall hyetograph is to be determined.
Sometimes, only standard/storage-type raingauges are available in some watersheds. The
rainfall amounts then need to be properly distributed in time so that rainfall hyetographs
can be prescribed.

Infiltration and other Loss Characteristics
In a majority of cases, no data are available on soil infiltration, interception, depression
storage, and antecedent soil moisture. If data do exist in part or full, maximum advantage

212



must be taken to estimate infiltration and other loss functions. If no information is
available on antecedent soil moisture, then an antecedent precipitation index can be used
to get an estimate of the antecedent soil moisture. Soil type and landuse vegetation
complex can be used to estimate infiltration parameters.

Stream flow Characteristics

Streamflow may be available in terms of the stage at the watershed outlet and at some
other gauges within the watershed. Appropriate rating curves can be used to convert
stages into discharges. Part of the streamflow data may be used for model calibration and
the remaining data for model verification.

13.9 HYDROLOGICAL PROCESSES IN RAINFALL-RUNOFF MODELS
Various stream flow simulation models generally consider the following

hydrological processes to simulate the time series of stream flow.

(a) Land Surface Processes

(1) Interception '

(i)  Infiltration \

(iii)  Overland flow

(iv)  Evapotranspiration

(v) Snow accumulation and Melt

(b) Sub-surface Processes

(i) Interflow

(i1) Soil moisture storage and Movement
(iii)  Ground water storage and flow

(c) Channel Processes

(1) Channel flow

(i1) Flood plain storage

(iii)  Lakes, Reservoirs and Diversions

Modelling Procedures
The following procedures are usually followed for Rainfall-Runoff Modelling:

e Develop a suitable model structure to simulate various component processes
keeping in mind the quantity and quality of the data available and nature of the
problems for which the modelling is required.

e Calibrate the developed model using the historical records.

e Validate the model using the historical records which have not been considered
for calibration.

¢ Perform sensitivity analysis study to identify the most sensitive parameters of the
model which require proper investigation before arriving at the final parameter
values.

e Use the calibrated and validated model for solving the specific hydrological
problem for which the development of the model is intended for.

13.10 SOFT COMPUTING FOR RAINFALL-RUNOFF DYNAMICS

Various researchers have investigated the use of multi-layer perceptron NN for
rainfall- runoff modelling successfully. ANNs are also studied for the rainfall-runoff
modelling in snow covered catchment on the basis of measurement data. Regressive
neural networks is also investigated for modeling and forecasting the rainfall runoff
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relations. Intensive research efforts have been made to identify optimal network
structures, find appropriate training algorithms, and select proper training patterns for
improving runoff prediction accuracy (Solomatine et al., 2003). The application of fuzzy
logic as a modelling tool in the field of water resources is a relatively new concept,
although some studies have been carried out to some extent in the last decade and these
studies have generated lots of enthusiasm. Bardossy and Duckstein (1992) applied fuzzy
rule based modeling approach to a Karstic aquifer management problem. Bardossy and
Disse (1993) used fuzzy rules for simulating infiltration. Panigrahi and Mujumdar (2000)
applied fuzzy logic for reservoir operation and management problems. The fuzzy
modeling approach has also been successfully applied for water quality management. Use
of multiobjective fuzzy linear programming for sustainable irrigation planning and
optimal land-water-crop planning has been demonstrated by Sahoo et al. (2006)
respectively. Few attempts have been made to demonstrate the applicability of fuzzy rule
based approach in river flow forecasting (Chang and Chen, 2001; Lohani et al., 2005a;
Lohani et al., 2005b), modeling stage discharge relationship (Lohani et al., 2006, Lohani
et al., 2007a) modeling stage discharge sediment relationship (Loham et al , 2007b) and
estiming monthly ground water recharge. \.

Selection of the input and output variables is the first step in development of a
ANN or fuzzy rule based rainfall-runoff model. Runoff at the outlet of a catchment is a
function of previous rainfall and runoff values, as well as of the meteorological,
topological, and soil and vegetative conditions of the catchment. Theoretically, a non
linear and time varying storage function may be useful to express the rainfall-runoff
process. There are inherent difficulties in defining such functions particularly when
sufficient data are not available and estimation of catchment response is only relying on
available rainfall data. Therefore, in the case of a rainfall-runoff model with minimum
available data, the output variable describes the runoff that is to be predicted and possible
input variables are measured rainfall and runoff data.

13.11 REMARKS

The computing world has a lot to gain from soft computing techniques. Their
ability to learn by example makes them very flexible and powerful. Furthermore, there is
no need to devise an algorithm in order to perform a specific task; i.e. there is no need to
understand the internal mechanisms of that task. Soft computing techniques are also very
well suited for real time systems because of their fast response and computational times.
These techniques also contribute to hydrological modeling and forecasting. They are
successfully used to model various hydrological processes. Even though each soft
computing technique has a huge potential, however, one may get the best of them when
they are integrated together.
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