Well Hydraulics

G.C. MISHRA
Water Resources Development and Management, IIT Roorkee

INTRODUCTION

A sustainable and efficient utilization of the groundwater resources in a region needs to
ensure

(i)  high water supply accountability (specially during drought period):
(ii))  high water quality ( mandatory for drinking water );
(iii) low energy consumption (by controlling well spacing and pumping schedule) , and

(iv) low environmental impact (by restricting stream depletion due to excessive pumping ).

Ground water can be tapped almost everywhere in a groundwater basin digging a well
and water can be lifted to ground surface spending external energy except for a flowing well. An
in-depth knowledge in well hydraulics is required for predicting response of an aquifer to
pumping in a well under various hydro-geological conditions and estimating the safe yield of the
well. The safe yield of a well is computed multiplying specific capacity at the stabilized
drawdown with permissible drawdown in the well. In case of confined aquifer, the drawdown in
piezometric surface should not cause the confined aquifer to become unconfined; and incase case
of an unconfined aquifer, the water level in the well should be above the top of the well screen. A
safety factor ranging from 60 to 80% is assumed while recommending the design discharge of
the well. A basic knowledge in well hydraulics is also necessary in solving several well aquifer
interaction related problems such as:

(i)  Design of an optimal well field i.e. the number and spacing of the drainage wells and the
pumping schedule to control water logging in an internally draining basin;

(i)  Estimation of artificial groundwater recharge through a vertical shaft filled with gravel
and coarse material

(iii) Stream depletion due to pumping in a well in the vicinity of the stream;
(iv) Estimation of safe yield of a well;

(v)  Estimation of transmissivity and storage coefficient from aquifer test data.
UNSTEADY FLOW TO A WELL (THEIS’ SOLUTION)

For two dimensional axis symmetry radial flow in a confined aquifer the governing
equation for unsteady groundwater flow is derived as follows: Consider a control volume
bounded by cylindrical surfaces atr —Ar/2, and r+ Ar/2, vertical surfaces at € and
atd + A0 and horizontal impervious surfaces at the base and top of the confined aquifer (Fig.2).
Let at point (r, 0), the radial velocity be v, and hydraulic head be 4.

Inflow=(r — Ar/2)A0 b{v, - ‘:’r (Ar/2)}At :
r
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Outﬂow=(r + Ar/ 2)A6’ b{vr + Zv’ (Ar/Z)}At §
r

Change in storage=S r A8 Ar b Ah.
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Fig. 1 Unsteady flow to a well in an extensive confined aquifer (Todd, 1980)

Performing mass balance in the control volume and incorporating Darcy’s law,

oh

v, =—k— , we derive the governing differential equation for axis-symmetry radial flow in a
or

confined aquifer

Oh,10h_ 90 "
or- ror T Ot

where 7'=kb = transmissivity; ¢ = Sh=storage coefficient.

The position of water table or piezometric surface is generally measured from a high
datum instead of measuring its position from the base of the aquifer. For an aquifer initially at
rest, the initial piezometric surface is selected as a high datum. At any time, at a location, the
sum of draw down in piezometric surface measured from high datum and height of the surface
measured from low datum is constant i.e s+h = a constant. The above equation can be expressed
as:
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Fig. 2 Mass balance in a control volume

When a fully penetrating well in an extensive homogeneous and isotropic confined
aquifer is pumped, axis symmetry radial flow condition prevails and the unsteady flow is
governed by above equation. Drawdown consequent to pumping water from a well of very small
radius at a constant rate is predicted using Theis’ solution for the above differential equation

satisfying the initial condition s(#,0) =0, and the boundary conditions (i) S(OO,I)=O;

5 "
(i) 27 kb (r é;} 0= —0p . The first boundary condition is a constant head boundary condition

and is known as Dirichelt type and the second boundary condition is known as Cauchy type
boundary condition. Theis’ non-equilbrium solution is:

Op e _ Op
)= 4l J SR ) & i

47:

2
' . . . ; ; ;
X =——_ r=distance of the piezometer (observation well) from the well, t=time since pumping

ATt
starts. /(X' is known as Theis’ Well Function with argument X

( l)n X!‘J

W(X)= [“—dv=-0.57721-In(X)- )
v
X

n=]
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The convergence of the series is very slow for X = 1. The well function W (X ) can be
computed using the following polynomial approximation.

For X <1
W (X)=-In(X)-0.57721566+0.99999193X —0.24991055X

+0.05519968* X* —0.00976004X" +0.00107857X’ )
For X >1

X7 (X) = X"+8.5733287X° +18.059017X" +8.6347608X +0.26777373 ©
X' +9.5733223X* +25.632956X” + 21.099653X +3.9584969

If pumping stops after time t, , the residual drawdown at time t is given by:

s(r ) = E—P{W [W]—W(@"QH (7)
AT| | 4T AT(t-1))

Let unit volume of water be pumped in a time period A7, and the pumping be

discontinued, at time ¢ = nAf, where n is an integer. In that case the pumping rate, 0, = ="
t
Let the drawdown S(r,nAr) corresponding to this unit pulse withdrawal be designated

aso (r, nAf), known as the discrete kernel coefficient.

5(r,nAt) = 1 /4 g’ -W —L} (8)
4xTAt| \ 4Tt 4T (ndt — AY)

If pumping rate is not uniform or pumping is not continuous, the drawdown is computed
using the relation

s(r, nAt) = i;‘QV (;/)5{1', (n - A+ 1)At} )

th

Where O, (;/) =volume of water withdrawn during " Af time unit.

Specific Capacity

Specific capacity is an indicator of well condition. The specific capacity of the well is
estimated imposing a steady state flow condition. It is defined as pumping rate per unit
drawdown:

Sp ==L (10)

where, S (m?‘ / day)-:speciﬁc capacity; O, (m3 / day)= uniform pumping rate, S, (m) =

stabilized drawdown in the well corresponding to the pumping rate. We derive specific capacity
for a fully penetrating well, the well screen intercepting the entire thickness of a homogeneous,
isotropic confined and finite aquifer. Under continuous constant pumping, the flow to a well in a
finite aquifer having a constant head boundary at the outer periphery attains a steady state
condition. The aquifer is assumed to be a circular island and a single well is located at the centre
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of the circular island. The stabilized drawdown is computed considering the flow to be non-
linear.

Darcy’s Law

Darcy’s law states that in a homogeneous isotropic porous medium, the discharge per
unit of pore plus soil area, which is known as discharge velocity ,v, is linearly proportional to

dh

dh A ;
the hydraulic gradient, i, i.e., v=—k — =ki, where s = variation in hydraulic head along
s ]

the flow direction, s; k = coefficient of permeability. Several investigators have found that,
forl < R, <12, flow in soils changes from laminar to turbulent (vide Harr, 1962), where the

Reynolds’ number in case of flow through soils is given by R, =vdp/u, v= discharge
velocity, d = average of diameters of soil particles, p = density of fluid, and x = coefficient of
viscosity of water.

Forchheimer’s Law

For a fully turbulent flow condition, Forchheimer has proposed the following relation
between the hydraulic gradient and discharge velocity:

i=av+bv’ (11)

where ‘a’ , and ‘b’ are positive constants and the hydraulic gradient i = —dh/ds . Equation

(11) is valid for which dh/ds is negative or the hydraulic gradient i as well as the velocity v is

positive. Such situation prevails when recharge is taking place through a well. Solving the
quadratic equation, the velocity in terms of hydraulic gradient in turbulent flow condition is
given by:

_ 2 % _ L1/2
y = D2 R0 PR a+a[1+4—‘2’} = (12)

2% 2b 2% 2b

.2
bi
a3

Q [~

a

The other root, which yields a negative velocity, is dropped as the velocity is positive.
Equation (12) indicates that for a given gradienti, under turbulent flow condition the velocity is
less than that under laminar flow condition.

When an aquifer is pumped, the hydraulic gradient,i, as well as the radial velocity is
negative, the flow direction being opposite to the radial direction. Forchheimer’s equation in such
situation is

—i=—av+bv? (13)

Solving the quadric equation
=—4— (14)

The other root is dropped as the velocity is negative

Based on experiments Abbood (2009) has recommended the following empirical relation for
predicting @ and b:
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1/4 1.333
4 2640 —x1.02825T —i-=2.514n "
a d " b (12nn)
where T = temperature (°C),
a* =31.2(s/ m)
b* = 1513[52 lsz
Specific Recharge Capacity
From equation (11),
dh
bv;?' +av, +—=0 (16)

ar
Under steady state flow condition, at any radial distance ‘r’ from the well, the radial flow is

given by:
Q,=27rDv, =0y 17

where, D = thickness of aquifer, v, = radial velocity.

Incorporating v, = O in equation (16)
2w rD
2
i Or Lz'%'aQR l: _ dh (18)
22D ) r 2 D )r dr

Integrating and applying the boundary condition, h(?‘w ) = h,,, the rise at any radial distance r is

given by
2
Ok r { Or ] 1 1
hlr)=h,—a——=log,| — |[-b| == | | —— (19a)
( ) 2rD & r, 2rD A
The first part of head loss,azg’:zD logE[LJ, is linear aquifer loss and the second part,
Vs r,

2

1 1

b (42@—} — —— |, is non linear aquifer loss component.
2zD) |k, 1

A true flow domain is generally extensive. In case of a confined extensive aquifer,
theoretically steady state condition is not reached whether water is pumped into or pumped out.

Let us consider that at an unknown radial distance R, the hydraulic gradient is very small and
equal to 0.001.

h -
Incorporating # = R, and Z— =-0.001 in equation (18) and simplifying
r
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2
0.001R’ —(ﬂ}& —b(&J =0 (20)
2z D 2n D

Solving the quadratic equation, the radius of influence corresponding to the recharge rate is given

by:
(—a Q“]+\/[a Q“] +0004b( O J
_ 2 D 2n D 27 D

[ 0.002

(21)

As R, is positive, the other root is not applicable. Corresponding tor=R , equation (19a)
reduces to

!
ronm)=e B () en(325 ) | -4 @

T

1
The radial distance R, will be very large compared to well radius. Neglecting the term r

i

Or Or g
“or Dlog{r J (2@] @

w

h,—h(R)=a

W

For known injection rate (), and R, computed from equation (21), the corresponding seepage

Or

head A, — h(R,. ) is predicted from equation (23). The specific recharge is given bym :

. dh : ; a1
In case of a pumping weli,d— is positive, therefore, the hydraulic gradient, i, which is
r

equal to o is negative. The radial velocity v, is also negative. Accordingly Forchheimer
r

equation is written as

—i=—av, +bv,’ (24)
2nrDv, = -0, (25)
2
b 9, +a s . S5 (26)
2rrD 2zrD  dr
Integrating
2
a
h=—&9+ Q”lnr+A @7
2zD ) r 2nD
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Let h beequalto h, at r =r, . Accordingly the constant 4 is found to be

2
dho+ | L | B %y, (28)
27D ) r, 27D

The head h(r) at radial distance »

2
h(r) = i In-"—+h, + ( < J (E—b] (29)
27 r, 2D r, T
2
nR)-h, = a9, ln&-i-b[ 2 ](i—LJ (30)
2D r, 2zD ) \r, R,

The first part of the head loss is aquifer loss attributed to laminar flow and the second part is the
aquifer loss attributed to non-linear turbulent flow. The specific capacity of the pumping well is
thus reduced due to turbulence.

Applying the boundary condition at r = R,, jh =0.001 , in equation (26) we obtain
r
2
0.00IRf—a&Rl—b i = (31)
2nD 2 D

which is same as equation (20). The specific pumping capacity and recharge capacity are same.
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