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' APPLICATION OF MODINV

1.0 INTRODUCTION

The MODINV suite of software comprises a number of programs, built to enhance
the usefulness of the popular USGS finite difference flow model, MODFLOW. The
MODINV is basically a parameter optimisation program for MODFLOW. Using this
software, the specific values taken by any parameter type that MODFLOW can read as a 2-
dimensional data array can be optimised such that model-generated heads are as well matched
as possible to those observed in the field. Steady state and transient, single and multi-layer,
confined and unconfined models can all be calibrated in this manner. As well as providing
optimised parameter values, MODINV indicates the reliability of these aquifer parameter
value estimates, given the observed head data that is used in calibration. Parameter values
can be fixed, grouped or transformed to enhance optimisation stability and efficiency.

2.0 MODINV SOFTWARE

Model parameter (or input) estimation is often referred to as the "inverse problem”
to distinguish it from the "forward problem". The latter refers simply to the process of
mathematical modelling and the means by which this is achieved for different physical
systems. For groundwater modelling, MODFLOW is a program that carries out forward
modelling using the finite-difference method; aquifer parameters and inputs are calculated.
On the other hand, when model outputs are known and an attempt is made to solve for one
or a number of the model parameters or inputs, then inverse modelling is being attempted.

Here, both aquifer input (eg. recharge) and physical properties (eg. transmissivity)
will together be referred to as model "parameters" for the sake of simplicity of expression.
Table-1 provides a list of such parameter types. As discussed latter, on the assumption that
some of the model parameters are known, we are attempting to ascertain the values of the
other parameters on the basis of a set of water level or head measurements taken at a number
of boresites at one or a number of times.

Table -1 Two dimensional real arrays that can serve as parameter types.

MODFLOW Package Array

BCF primary storage capacity (all layers)
secondary storage capacity (all layers)
transmissivity (all layers)
hydraulic conductivity (all layers)
layer bottom elevation (all layers)
layer top elevation (all layers)

vertical hydraulic conductivity/thickness
(all layers but bottom)

RCH recharge rate (all stress periods)
EVT surface elevation (all stress periods)
maximum EVT rate (all stress periods)
EVT extinction depth (all stress periods)
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Fundamental to the operation of most inverse modelling algorithms is an ability to
calculate model outputs using current estimates of model parameters, i.e., to carry out
routine solutions of the forward problem. These model outputs are compared with
measurements (in the present case through a weighted sum of squared differences criterion)
and the parameters are then adjusted to obtain a more favourable comparison. MODINV uses
MODFLOW as its forward processor. However as field-observed head data exist at only a
discrete number of bores, the two-dimensional head arrays constituting MODFLOW’s output
are interpolated to yield MODFLOW-predicted heads at these boresites; it is these
interpolated head values that are compared with historical or steady-state head data, and it
is the weighted squared sum of the differences between these two sets of heads which is
minimized. Hence the total forward model can be considered to be MODFLOW plus the two-
dimensional head array interpolation procedure; the forward model outputs are then the heads
at boresites whose positions and layer numbers are nominated by the user.

2.1 THE MATHEMATICAL MODEL

The purpose of a mathematical model is to predict the behaviour of a system as it
responds to changing conditions. If we consider these conditions as inputs to the model, then
once we know the parameters of the model, it is a simple matter to obtain model outputs for
as many different inputs as we like. For a groundwater model the inputs are normally
considered to be the sources (or sinks) of water (for example recharge, EVT rate, well
pumping rate, etc) while the parameters are aquifer physical properties such as transmissivity
and storage capacity. Boundary conditions such as lateral model inflow rate or constant head
levels are often considered to be part of the model itself, being neither an input nor a
parameter, the latter term normally referring to something which can be adjusted at the
model calibration stage. The model outputs are the heads or water levels in the aquifer

The partial differential equation describing groundwater flow is
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Considering the above equation together with the given boundary conditions as the
model, then the parameters (K,,, K,,, K,, and S,) are the model, "distributed", parameters.
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The fact that they are distributed means that they require for their complete description a
knowledge of their value at every point within the three-dimensional space occupied by the
aquifer. That is, as functions of position, they should be represented as K (x,y,z),
K,,(x,y,z), etc. Model inputs are functions of time as well as location, and hence can be
written as W(x,y,z,t). Similarly, the model output, h, is both time and space dependent and
can likewise be represented as h(x,y,z,t). Hence equation 1 can be represented conceptually
by the following equation:

M(Kyy, Ky, K,y S; W) = h e

where the semi-colon in the bracketed term above separates the model parameters (time-
independent), from the inputs (time-dependent). Again boundary conditions, (though they
may be time-dependent) are assumed to be part of the model, and hence the "M" term.

To model a natural system, simplifying assumptions are made to all terms of equation
(2). Spatial discretization of the M operator, through which a differential equation is
converted to a matrix equation, is fully described in the MODFLOW manual. To construct
a parameter estimation algorithm on which to base MODINV, some further simplifications
are made. In particular, it is assumed that all distributed parameters are "piecewise constant”,
ie. they are constant within each of a number of zones which, when put together, cover the
area of the model. These zones of constant parameter value do not necessarily coincide for
each different parameter type; however each parameter type now requires for its complete
description only a few numbers, these representing the values that the parameter takes within
each zone of constancy for that parameter.

Model inputs, W, are subdivided by MODFLOW into two types, viz. those that are
distributed across the mesh (recharge and EVT) and those that take on "point” or "line”
distributions (well recharge, drainage, river, general head boundary). For the first group
MODFLOW requires either a two-dimensional matrix of inputs (recharge) or a number of
two-dimensional matrices by which the source or sink two-dimensional matrix can be
calculated (EVT); for the second group MODFLOW requires either the model input, or the
means by which it can be calculated, at each pertinent cell, the latter being nominated
specifically by row, column and layer number. MODFLOW assumes that each input is
piecewise constant in the time domain, the period of constancy being referred to as a "stress
period". For recharge and EVT, let us also assume that the recharge rate and the properties
that determine the EVT rate can be represented, like the model parameters, by a limited
number of spatial zones within each of which the recharge or a particular EVT characteristic
is constant for a given stress period. These zones do not need to coincide for different stress
periods or for each of the three different EVT characteristics and recharge.

Let us now introduce a further simplification by acknowledging that, when calibrating
the aquifer, we only have field measurements to compare with the model output (head or
water level) at a finite, relatively small, number of points, these being the locations of bores
within the model area. Furthermore these borehole heads are known-at only one or a finite
number of times, corresponding to field sampling episodes. Assuming that we have a means
by which a MODFLOW head array output can be interpolated onto these same boresites at
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specific times corresponding to the measurement times, our model output can be considered
as a number of sequences of real numbers, each sequence providing a time series of water
levels or heads at a particular bore. Forcing these model heads to coincide as closely as
possible with the measured heads at the measurement times is the basis for model calibration.
Of course in the steady-state case, there is only one observed head and one model head for
each bore.

After making all these assumptions, equation (2) can be rewritten
M () =h .
where p is finite-dimensional vector of numbers representing all of

1. the values taken by each of the model parameters within each of their respective
constant-parameter zones.

ii. the values taken by recharge rate within each of its constant-recharge zones for each
stress period,

iii.  the values taken by each of the three parameters determining EVT in each of their
respective constant-value zones for each stress period, and

iv. the values taken by the coefficients that determine single cell model inputs, (ie.
rivers, drains, wells and general head boundaries) in each of the model cells that are
subject to such inputs for each stress period.

h is also a finite dimensional vector. It consists of head (ie. model output) values at specific
boresites at times for which a model output has been requested. If p contains N elements and
h contains M elements, then M is a continuous vector function from N-dimensional space to
M-dimensional space.

M as written in equation (3) does not have an inverse; i.e., if h is known it does not
follow that p can be determined. This is easily demonstrated by considering a model that is
subject to both recharge and EVT. If the former is increased everywhere while the latter is
decreased by the same amount, the model’s output heads will be unchanged. Hence, given
h, it is impossible to determine both recharge and the EVT coefficients. With other model
parameters, such as the transmissivity distribution, also having a strong effect on h, it is easy
to see that there are many different p’s which will produce the same, or almost the same, h.
Some of these different p’s can be obtained from any given p which satisfies (3) by varying
some of its elements in such a way that the effect of changing one or a number of these
elements is balanced exactly (or almost exactly) by simultaneously changing one or a number
of its other elements in a certain manner. This is an exampie of parameter correlation, of
which more will be said later.
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So it is obvious that if we are going to use measured aquifer heads as the basis for
model calibration, it will be necessary to assume that some elements of p are known. We
will then be left with the problem of estimating the remaining elements, for which we may
or may not be able to obtain a solution, depending on the degree of parameter correlation
that remains. If parameter correlation is still too high, a numerical inversion algorithm will
not converge to a solution or, at best, will show signs of instability. This is not the fault of
the algorithm, for it cannot answer an impossible question. In general, the fewer the
parameter types for which you require estimates, and the fewer constant-parameter-value
sub-areas for those parameter types, the more likely is the algorithm to perform well. Of
course, with fewer parameter sub-areas the degree of fit between model and observed heads
may not be as good (see later); however you may not be able to escape the fact that your
borehole head data is insufficient for any finer detail of aquifer property determination.

Returning to equation (3), then, we can rewrite it as follows:
m() =h ceee (4)

where those parameters and inputs of the model which are assumed known are now
included in the revised model function, m, and p is of reduced dimension. In fact it must
be of smaller dimension than h because when we derive a set of simultaneous equations to
solve for the elements of p in the next section, there must be fewer unknowns than
equations (the number elements of h) in order for the system of equations to be capable of
solution.

In the MODINV algorithm, the elements of p can be the parameter values taken by
up to three different types of parameter within their respective constant-parameter sub-areas.
Parameter types can be anything that MODFLOW can read as a two-dimensional array of
real numbers. This includes transmissivity, storage capacity, recharge for any (or up to three)
stress periods, etc.; one "parameter type" corresponds to each such two-dimensional array.
Though recharge is strictly a model input rather than a parameter, and though quantities such
as maximum EVT rate likewise govern another model input, we will refer to anything that
MODFLOW can accept as a two-dimensional real array (with the exception of initial heads)
as a "parameter type" in the discussion that follows. The values taken by any such
"parameter type" within its (unique) zones of piecewise-constancy are thus admissible
elements of the vector p.

2.2 THE INVERSE PROBLEM

m in equation (4) is a continuous function of p, mapping N-dimensional space into
M- dimensional space where N is the number of elements of p (equal to the number of
individual parameter values requiring estimation) and M is the number of elements of h
(equal to the number of observation times multiplied by the number of observation bores).
Let J be the Jacobian matrix of m. This is the matrix whose ith row is the derivative of the
ith element of h with respect to each of the elements (in order) of p. Hence J has M rows
(same as h) and N columns (same as p). Let hy, and p, satisfy equation 4. If we now
change each of the elements of p, by a small amount to obtain the vector p, the resultant
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change to the head vector can be approximately calculated as
Ah =h-h, = J(p - p,) = Jap vl (5

where the approximation improves as Ap, and hence Ah, are reduced. Let us assume
that we presently have an estimate for each of the values of each of our unknown
parameter types within their respective constant-value sub-areas: let this vector of
estimates be p, . Using our model (ie. MODFLOW), h, is readily calculated using
equation 4. Let h in equation 5 be the vector of heads observed from bores in the
aquifer; of course the elements of h must pertain to the same bores at the same
measurement times as do the corresponding elements of h,. Then in equation 5, there is
only one unknown, viz. p, the vector the model is calibrated provided, of course, that the
constant-parameter sub-area boundaries are well chosen.

However, there is a problem. If M, the number of heads, is less than N, the number
of unknowns, there are less equations than unknowns and we cannot solve for p. If M is
greater than N, then we could select a set of N of the M equations represented by (5) and
obtain a solution for p; however, selecting another set of N equation may give us a different
solution and we are left with the question for which solution is best. If N and M are equal
we obtain a unique solution for p, but the lack of redundancy in our observations gives us
no protection against the effects of head measurement errors or of an inappropriate parameter
sub-area zonation scheme. Without such redundancy, parameter value estimates may be
erroneous, and the calibrated model may thus provide a poor basis for predicting future
aquifer behaviour.

To solve the inverse problem, then, we must formulate it slightly differently. Again,
let us assume that we have a current set of parameter estimates, p,, and hence a
corresponding set of model-generated heads, h, ,calculated on the basis of p, for a number
of bores at a number of times. Corresponding to the elements of h, we have a vector, h,,, of
head measurements. We wish to improve our current estimate, p,, to a new parameter vector
P;, generating a head vector h, through equation ¢4) that is "closer" to h,, than h, . As it is
foolish to expect that we can choose our parameters such that all the corresponding elements
of h; and h_ are exactly equal, and as we wish to make use of all the measured heads in
establishing p,, we choose as our criterion for determination of p, that

® = (h, -h,) W, -h,) = minimum ....(6a)

where the superscript "t" refers to the transpose of the vector. & is often referred to as
the "objective function". In this equation, W is a "weighting matrix" which, in
MODINYV, is assumed to contain diagonal elements only. Hence equation (6a) can also be
written as

M
® =L (h; - hy)? w, = minimum .... (6b)
i=1
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where w; is the i’th diagonal element of W. In other words, the weighted sum of the squares
of the differences between model and observed heads must be a minimum. The use of
weights allows us to give measured head values which we "trust" a greater say in the
determination of parameter values than those which we do not. Alternatively it provides a
means by which we can enforce a condition that heads calculated in a particular model
sub-area, or at a particular time, be better matched to reality than those elsewhere or at other
times, if they cannot all be simultaneously matched as well as we would like. The diagonal
elements of the matrix W, then, can also be considered as a weighting vector of dimension
M, each element of which determines the importance of the corresponding element of h_, in
governing the estimation process; it is good practice to select these weights from the interval
[0, 1]. If measurements are missing from some bores at certain times, you can use "dummy"
measurements for the corresponding elements of b, , and set the corresponding measurement
weights to zero; in this way, such elements have no effect on the estimation process.

Defining
Ah = h; - h,; Ap =p; - p, i G0

where h;, P, and h, , p, jointly satisfy (4), then Ah and Ap approximately satisfy (5),
with the approximation improving with proximity of h, to h, and p, to p, , ie.

Ah =h, -h, =~ Jp, - p,) =JAp e (8)
Substituting (8) into (6)

(Ah + h, - h,)* W(Ah + h, - h,) = minimum

which is equivalent to:
Ah'WAh + Ah'W(h, - h,) + (h, - h,)WAh + (h, - hy)W(h, - h,) = minimum
ie.

Ah'WAh + 2Ah'W(h, - h,) = minimum vwes (9)

where constant terms have been ignored because they cannot be minimized and we have
made use of the fact that W is a symmetric matrix. Substituting (8) into (9):

(JAp)W(JAp) + 2(JAp)W(h, - h_) = minimum
ie.

Ap'J'WI)Ap + 2ApT'W(h, - h.) = minimum .s (10)
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Now if both terms on the left of (10) are differentiated with respect to each element of Ap
and the right hand side is equated to zero in each case (because of the minimum), we obtain

(J'WI)ap = -IW(h, - h,) e (ID)

J'WJ is a N x N matrix (often referred to as the "normal” matrix); hence equation (11)
represents N.equations in N unknowns which can be solved for the elements of Ap
provided J'WJ is not singular. A singular matrix implies that, even though there may have
been more borehole head observations than there are unknown parameter values, there is
still insufficient information for unique parameter value determination. For example if, in
a steady-state model, you ask that both recharge and transmissivity be determined
everywhere in the model, you will obtain a singular normal matrix because the values
taken by one parameter type (eg. transmissivity) for a particular head distribution, depend
on the values taken by the other parameter type (recharge). However if you assume that
recharge is known everywhere you can then estimate the transmissivity distribution, and
vice versa.

Problems can also arise if the normal matrix is nearly singular; if this occurs
MODINV may have trouble minimizing ¢ of equation (6). Considering the steady-state
problem again, this can occur if you attempt to estimate the transmissivity distribution with
too great a spatial precision in an area where there are too few borehole head observations.
If there are many model sub-areas in a zone of sparse measurement, it will be possible to
simultaneously vary the transmissivities of these zones in such a way as to maintain the
model heads in the observation bores relatively unchanged. This means that the observed
borehole heads do not have the power to tell you what the individual transmissivities are; this
is the phenomenon of high parameter value correlation again. The higher the degree of such
correlation, the closer will the normal matrix approach to singularity, and the greater will
be the possibility of numerical instability.

From equation (11)

Ap = - (JWI)'JI'W(h, - h,) p e (12)
while from (7)

p, = Ap + Do oyex KLD)
and an improved set of parameter values has been obtained. Because (8) is only
approximately correct (especially if py is a poor estimate of the aquifer parameters so that
Ap needs to be large), the process outlined above needs to be repeated to obtain another
estimate p,, then another, p, etc. until further improvement is impossible, or until ®) of
equation (6) is low enough to indicate an acceptably good fit between model and field

data.

MODINYV does not use equation (12) for parameter improvement; rather, it uses a
slight modification of it. Defining (%, as the value of the objective function (weighted sum
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of squared head differences between model and observed heads) with model heads calculated
on the basis of the parameter set p,, it can be shown that

Vé, = 2I'W(h, - h,) .. (14)

where V@, is the gradient of ¢, with respect to the elements of Po- Substituting (14) into
(12) and using (13) we obtain:

(JWI)'ve,

P = Py -~
2

Generalizing this to the i+Ith iteration:

W'V,
I e (15)
2

The hardest part of using equation (15) to improve parameter value estimates is
calculating the Jacobian matrix, J. In MODINV., finite differences are used. For p;, the
parameter set at the beginning of the i+Ith iteration, MODFLOW is run to obtain the
corresponding h; vector. Then a single element of p; Is increased by a small amount and
MODFLOW is run again to determine a new set of heads, hj, where the superscript "j"
indicates that the jth parameter value, ie. the Jth element of p;, was varied. The jth column

of the Jacobian is then calculated as the vector

where &pj is the change to the jth element of the parameter value vector p,. When
convergence has nearly been obtained, MODINV uses central differences for greater
accuracy in derivative calculations. In this case each p; is first increased, and then decreased,
by dpj to obtain, respectively, the set of heads hy,;j and h;,,j. The jth column of the Jacobian
is then approximated as the vector

hi(l)j B hi(2)j

The gradient vector is calculated in similar fashion.

Calculation of head derivatives by finite differences is very time consuming. In fact
for most MODINY runs, this accounts for over 70% of the computing time. There are more
efficient methods of derivatives calculation that can be used under confined aquifer conditions
(ie. when equation (1) is linear); there are also other optimization methods available that do

e
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not require the calculation of explicit head derivatives with respect to individual parameter
values for their implementation. However the calculation of derivatives of head with respect
to parameter values by finite differences is perfectly general, being useable for any
distributed parameter type that MODFLOW can read, under both confined and unconfined
conditions. Also the Gauss-Marquardt method (see next section) which makes use of these
derivatives for optimization, converges to a solution in fewer steps by far than most other
methods. Note that the reason why it does not completely converge in a single step is that
the relationship between Ah and Ap upon which all of the above theory is based (equation
8) is only approximately correct.

MODINV provides you with the choice of optimizing either parameter values
themselves or the logarithms or "logistic transformations” of parameter values, the last being
defined by the relationship

P, = log [p/(p-D] vsee {16)

where p is the parameter value and p, is its logistic transformation. In the latter two
cases, everything said so far about parameter estimation and derivatives calculation
applies just as well, provided the transformed parameter value, rather than the parameter
value itself, is considered as the parameter value to be estimated. There are two
advantages that accompany log or logistic parameter value transformation in certain cases:

1. There is strong evidence that the probability distribution satisfied by some aquifer
parameters (transmissivity, hydraulic conductivity) is log-normal, rather than directly
normal. For estimating such parameter types it is better to optimist the logarithms of
the parameter values than the parameter values themselves because parameter
stochastic property inferences drawn from a least squares inversion (discussed later),
assume that parameter values possess a multidimensional normal probability
distribution. Also, in such cases, optimization convergence appears to be faster and
more stable.

2. Some parameters must take values within a certain range for them to have any

meaning. For example, transmissivity must never be negative and storage capacity

must be between 0 and 1. If a parameter is left at the mercy of an iterative adjustment
procedure that pays no attention to whether it is given sensible values or not, errors
could result. By optimizing the log of the parameter, the parameter itself can never
become negative. Similarly, no matter what value is given to the logistic
transformation of a parameter, the parameter itseli will never be outside the interval

(0,1).
2.3 THE GAUSS-MARQUARDT-LEVENBERG METHOD

Equation 15 describes the Gauss method of solution of the inverse problem. Defining

N = J'WI] vwon LET)
Training course on "Software for Groundwater Data Management ” National Institute of Hydrology, Roorkee.
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f,=Ve,/2 .... (18)
(15) can be rewritten:
Ap;=-Nf, ... (19)

While the method often converges rapidly (the more rapidly it converges, the fewer
optimization iterations are required), its performance is not perfect, especially in cases where
parameter correlations are high. To make the method more robust and reliable, it is usually
modified in a manner similar to that originally outlined by Levenberg in 1944 and then by
Marquardt in 1963, though the method is normally named after the latter author.

To implement the method, N. the normal matrix, is modified by increasing all of its
diagonal elements. In the MODINV algorithm N is modified to N, by adding a fixed
amount, A, to all diagonal elements, ie.

N, = (N + Al one 20)

where A is a positive constant and I is the N x N identity matrix. If N, now replaces N in
(19) a Ap is obtained which has been found to be more reliable in many cases than that
obtained solely using the Gauss method (ie. a A of zero). (It should be noted that when A
is high, the resulting Ap is the same as that obtained using the so-called "gradient"
method of parameter value adjustment.) However we are still left with two problems
when using the Marquardt enhancement of the Gauss method. These are

(i)  how should k be determined at each optimization iteration, and

(ii)  once a Ap is obtained using N, in place of N in (19), what fraction of this Ap should
actually be added to p, to determine the p,,, which yields the minimum weighted sum
of squared differences between model and observed heads.

The first problem, the value of A, is not formally solved; instead, experience dictates
the best choice. In the initial stages of an estimation process A should normally be high
(otherwise the solution may not converge), especially if the initial parameter value estimates
(ie. the elements of p,) are poor. As the process progresses and the upgraded estimates
become better and better, A is normally reduced because the Gauss method has a superior
performance over the gradient method for parameter values which are close to optimum.

PREINV, the MODINYV preprocessor, asks you for an initial . This is the A value
used in the very first attempt at reduction of ¥, the objective function, of equation (6). For
each MODINV optimization iteration, one or a number of A’s are tried. For the first
optimization iteration the initial \ is used first; for later optimization iterations a A is first
tried which is reduced by a certain factor (supplied by you to PREINV) below that which
worked best for the previous iteration. Unless the objective function is drastically reduced
with this first A, a second A, reduced from the first by this same factor, is tested. If the use
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of the second A achieves a p vector that lowers & by a significantly greater amount than that
achieved through the use of the first one, then \ is lowered again and the process is repeated.
When it is judged that & cannot be further significantly reduced by lowering A, or a
maximum of five it’s have been tested, the best p is accepted as the updated parameter set.
Sometimes, however, A must be increased to obtain an improved parameter set. While
experimenting with different valves of A in this fashion is a little cumbersome, and certainly
consumes computer processing time, it is worth the effort because it is important, for each
optimization iteration, to achieve a good parameter improvement. With each new
optimization iteration the Jacobian matrix must be recalculated, and this is the most time-
consumptive part of the whole inversion exercise: hence the best or nearly the best,
parameter improvement possible must be achieved for each optimization iteration in order
that fewer overall iterations are required in the whole inversion process. If a few values of
A must be tested to maximize the improvement realised for each iteration, then it is worth
the effort. Fortunately it has been found that, if the initial \ and its adjustment factor are well
chosen, most iterations require the use of only one or two A’s so that little time needs to be
spent in this kind of experimentation.

The second problem, that of the step size, is solved in the following manner. Once
a A has been chosen and an N, calculated and substituted into (19), the latter equation is
solved for Ap. However because we have used N,, rather than N. Ap now indicates only the
direction of parameter change, the actual size of the change being SAp, where ,3 is a factor
which must be calculated such that BAp provides the maximum possible reduction in o of any
parameter changes that take place in the direction of Ap. It has been shown by Carrerra and
Neuman (1986b) that , can be calculated as

A e (21)

for the i+Ith iteration, where
v = dhy,, /96 veen (22)

In MODINV, the v vector is calculated using finite (forward or central, as
appropriate) differences.

2.4  MEASURED HEAD STANDARD DEVIATIONS AND THE REFERENCE
VARIANCE

In the above discussion, no assumptions were made concerning the probability
distributions of head observations or (transformed) parameter values for model sub-areas.
Our sole criterion for deciding on a set of model parameter values was that the sum of the
weighted squared differences between model and measured heads be minimized using this
set. Hence we arrived at a set of parameter values for which the fit between model and
observed heads is optimum in the weighted least squares sense.

Training course on "Software for Groundwater Data Management", National Institute of Hvdrology, Roorkee.
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If we make the assumption that both the head measurements and the individual
parameter values (those values taken by parameter types within their constant-parameter
zones) are normally distributed, then we can say something quantitative about the level of
uncertainty pertaining to these estimated parameters values. It is to this topic that we now
turn. Note that, in the discussion that follows, if a parameter value has been mathematically
transformed so that its log or logistic transformation is estimated, then the following
discussion is applicable to the transformed parameter value rather than the parameter itself;
in what follows, "parameter value" will refer to whichever of these is being estimated.

At first it may seem that the idea of observed heads being subject to a probability
distribution is fallacious because they can normally be determined to the nearest centimetre
at least. This is certainly correct, but when you come to calibrate your model it is likely that
you will have to accept discrepancies between model and observed heads that are much
greater than this. These discrepancies are attributable to the fact that head levels, as actually
measured, are subject to small-scale random spatial variations superimposed on regional head
variations because of the presence of aquifer spatial inhomogeneity. The actual aquifer
recharge, transmissivity etc. distribution is far more complex than our model has the power
to replicate, and probably far more complex than we have the ability, or inclination, to
measure. Our model seeks to reproduce the first-order or major determinators of groundwater
flow as they are expressed in the definition of constant parameter value sub-areas within the
model. Second-order earth physical property variations which are superimposed on these
major earth property subdivisions are not modelled; rather we are content to acknowledge
their existence by noting that every head measurement is subject to both a deterministic effect
(which we attempt to predict using the model), and a random effect (attributable to the fact
that the model is a simplification of reality). of course if it becomes apparent, through
running MODINV with a given aquifer physical property zonation scheme, that the random
head variations are excessively large, we may be inclined to add additional sub-areas to our
model, thus needing to estimate a greater number of parameter values. Or we may adjust
sub-area boundaries. But we acknowledge that we will never remove these random head
variations entirely, because we will never have a perfect fit between model and reality.

Because it is thus a stochastic varicble, a complete representation of each head
measurement must include both the measured value itself, and a quantitative description of
the probability function from which this measurement was taken. This description is
simplified if we assume a normal probability distribution for the heads. In this case, our
vector of observed head values, h,, can be considered as a collection of sample values of
random variables whose mean is estimated at each sample point and observation time as the
best-fit-model head at that point and time. The weight matrix is proportional to the inverse
of the measured heads covariance matrix, ie

_ 2 - 1 2 3
W=0,V p seew A23)
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where V, is the measured head covariance matrix and ¢.2 is a proportionality constant,
referred to as the reference variance. When head measurements are made in the field the
latter’s value is unknown. However it is determined as part of the least squares estimation
process; see below.

Because W is a diagonal matrix, so too is V,. This means that we assume that the
head measurements are uncorrelated both in space and time, ie. head measurement
uncertainties at any one bore at any one time have nothing to do with those at another bore
at another time. This assumption is not as obviously true as it first sounds, given the origin
of measured head random variations as discussed above. If an unaccounted-for transmissivity
inhomogeneity, for example, places a lower limit on the squared model minus measured head
sum, then its effects may be apparent on any bores that are in, or close to, the heterogeneity;
head "errors” are thus correlated for all bores affected by the some inhomogeneity. Also, if
we are carrying out a parameter estimation procedure using head measurements taken at a
number of times, then it is likely that heads at a particular bore will be over- or
under-estimated by the model not in a completely random fashion, but for a number of
sampling times in a row (see Carrerra and Neuman, 1986a). However the MODINV
algorithm does not try to incorporate such spatial or temporal measured head correlation into
the inversion process, both for reasons of simplicity and because the degree of spatial and
temporal correlation is difficult (o estimate and depends on the final model, which it is the
estimation algorithm’s purpose to determine. The weight matrix, then, being proportional to
the inverse of the measured head covariance matrix for a set of uncorrelated heads, is a
diagonal matrix. A diagonal element is large if the uncertainty level pertaining to the
corresponding head measurement is considered to be small and vice versa. If, for an evenly
distributed set of measurement bores, you assign smaller weights to head measurements in
certain parts of your model, you are asking MODINV to give greater importance to the
matching of model and observed heads over other parts of the model, presumably because
the heads in the area with low weights are subject to greater uncertainty, probably because
of greater aquifer heterogeneity there.

Any diagonal term of a covariance matrix expresses the variance of the pertinent
parameter value; the variance is the square of the standard deviation. By allocating relative
weights to your measured heads, you are, in reality, allocating relative variances and hence
relative standard deviations. The absolute variances for these heads depends on how good a
fit you end up achieving between model and measured heads. On the assumption that your
model (including its constant-parameter sub-areas as defined by you) is correct (an
assumption which you should always treat with suspicion), a good overall fit between
modelled and measured heads indicates that the head measurement standard derivations must
be small. It can be shown (eg. Mikhail (1976, p288) that an unbiased estimate for .2 is given
by

o2=[th-h)Wh-h)]/r=®/r ... (24)
where h is the vector of optimized model heads, h,, is the vector of measured heads and r

is the redundancy. The latter is defined as the number of observations minus the number
of parameter values for which estimates are required, ie.
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r=M-N e (25)
with M and N defined earlier in Section 3.

Once parameter values have been optimized, given your set of parameter zonation
sub-area boundaries, ¢,2 can be calculated from (24); you can then calculate the standard
deviation of individual head measurements by multiplying the inverse of each head
measurement weight by the newly-determined reference variance (equation 23) and taking
the square root. If you arrive at a figure that you consider too high, you can change the
model by, for example, maintaining the same number of parameters and shifting 9 parameter
zonation boundaries, or by adding some extra parameter constant-value zones (so that
"random" variations responsible for the unsatisfactorily high head measurement variances
now become incorporated into the model). However you should beware of trying to use a
model with too many parameters as computing times for MODINV rise linearly with the
number of parameter values for which an estimate is required. Also, the more parameter
values there are, the more likely are some combinations of values to be highly correlated.
This means that you may not end up with a model that is any better (in terms of its ability
to predict water levels over the model area) than one parameterized with fewer variables
because this high degree of parameter value correlation will be reflected in high parameter
value variances (see next section). Also, convergence problems and numerical instability may
raise their ugly heads. Carrerra and Neuman (1986¢c) provide a good discussion on
complexity in aquifer parameterization, to which you are referred for more details; in
general, simpler is better.

In the MODINYV algorithm, the reference variance is calculated after each parameter
upgrade. In PREINV you are asked to provide a reference variance which, if achieved, will
cause optimization to be terminated. If you indicate, using this reference variance, an overall
measured minus model head discrepancy that you can tolerate, further optimization can be
forestalled once (and if) this tolerable discrepancy has been achieved.

2.5 THE PARAMETER VALUE COVARIANCE MATRIX
It can be shown that the parameter value covariance matrix can be estimated by

V, = o2 JWJ))! vy A20)

The diagonal elements of this matrix are the variances (id the squared standard
deviations) of the individual parameter values while the off-diagonals elements are the
covariances between respective parameter value pairs; these latter are indicative of how
highly correlated two different parameter values are. It is important to note that the
derivation of (26) relies on two assumptions, neither of which are strictly correct in the
groundwater modelling context.

The first assumption is that heads and parameter values are normally distributed.
While this assumption may be more closely adhered to if parameters are transformed, it will
never be completely correct. As with measured heads, the concept of parameter values as
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random variables relates to the effects of aquifer inhomogeneities superimposed on the
simplifications inherent in the process of model construction.

The second assumption is that model head and parameter value variations are linearly
related in the manner described by equation (8). As previously discussed, this linear
relationship is only approximately correct, with the approximation worsening for larger
parameter and head variations about specific head and parameter values, the latter being
related to each other through the nonlinear relationship of equation (4). Hence if the
covariance matrix indicates that a parameter standard deviation is large, which is the same
as saying that the parameter value could vary widely and still be used in the calibrated
model, then the exact value of that standard deviation, as provided by the covariance matrix,
cannot be correct because such a wide parameter variation will put it outside the range of the
linearity assumption. |

Nevertheless, the parameter covariance matrix is one of the most useful pieces of
information to come out of the inversion process. Its principle role is that of an indicator of
how well your borehole head measurements are able to define aquifer properties (including
recharge or EVT if you are estimating either). For while your model heads may be well
matched to the measured heads, (the reference variance may be satisfactory), some parameter
value standard deviations may still be large. This indicates that, as mentioned above, these
parameter values can be made to vary by large amounts with little effect on the model heads
at the boresites. If this applies to a single parameter value, it will have a high variance and
will be uncorrelated with other parameter values. If, however, two or more parameter values
can be simultaneously varied in a certain relationship to each other while causing minimal
change to the model heads at the observation bores over time, then these parameter values
will each have a high standard deviation and the covariance between pairs of such
parameters, as indicated by the pertinent off-diagonal elements of the covariance matrix, will
also be large. This indicates high parameter value correlation or, to put it another way, a
high degree of stochastic dependence between the pertinent parameter values. If you were
to run MODINYV again while holding one (or more) of a set of highly- correlated parameter
values fixed, the standard deviations of the other members of the set may then be small
because the definition of the model now includes the first member(s) of the set as fixed. As
the first parameter now has no opportunity to vary in harmony with the others, for minimal
resultant head variation at the observation boresites, the standard deviations of the others
cannot be as large.

Thus the parameter covariance matrix tells you something about your model that the
goodness of fit between model and observed heads cannot tell you. For example, if the
density of observation bores is low or zero over a certain part of the aquifer, parameter
values estimated in that area may not be well defined, and this will be indicated in the
covariance matrix. While your model may appear to be well calibrated because the model
replicates observed heads at the existing observation bores with a good degree of accuracy,
its capacity to predict water levels over other parts of the aquifer may be highly suspect if
the calculation of these latter heads relies on parameter values which are, locally, ill defined.
By varying highly correlated parameters in directions defined by the parameter covariance
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matrix eigen vectors, you can test the effect of simultaneous parameter variation on modelled
heads at both observation bores and elsewhere. If the head change at the observation bores
is small, but is great at other places that may be of interest to you, then you may not have
enough information to parameterize your aquifer if one of the model’s tasks is to predict
water levels in this other area with any accuracy.

Correlation between pairs of parameters can be displayed as a correlation coefficient
matrix. If o; is an element of the parameter value covariance matrix, then the corresponding
element of the correlation coefficient matrix is given by

oy = oy / [02 o7]'"? s KOT)

where 02 and o2 are the ith and jth diagonal elements of the covariance matrix;
obviously the correlation coefficient matrix has diagonal elements of unity. The
correlation betwsen different pairs of parameter values is then readily apparent from the
pertinent off-diagonal elements, a high degree of correlation between parameter value
pairs being indicated by a correlation coefficient close to 1 or -1 (a correlation coefficient
cannot be higher than 1 or less than -1).

Another method of displaying the wealth of information that is available in the
parameter value covariance matrix, is to display its eigenvalues and eigenvectors. The latter
define the directions of the axes of the parameter confidence "ellipse” (actually, it is only an
ellipse in two dimensions, ie. if only two parameter values are estimated), whereas the square
roots of the eigenvalues are the magnitudes of the semiaxes of the parameter confidence
ellipse. If all eigenvectors have only one component, then the axes of the confidence ellipse
will lie along the parameter value axes, and parameter values are thus all uncorrelated. In
the more usual case, the degree of correlation between different parameter value estimates
can be obtained by examining the components of the eigenvectors. If, for example, the i’th,
j’th and k’th components of a particular normalized eigenvector are much larger than the
other components of that vector, and the eigenvalue corresponding to that eigenvector is
larger than most of the eigenvalues corresponding to the other covariance matrix
eigenvectors, then this indicates that the linear combination of the i’th, j’th and k’th
parameter values is better determined than are the individual values; the coefficients of this
linear combination correspond to the respective eigenvector elements. See Carrerra and
Neuman (1986¢) for a further discussion of how the covariance matrix eigenvectors and
eigenvalues can be used to understand the power and limitations that your measurement set
possesses in parameterizing your model.

2.6 FINAL POINTS

As described above, MODINV employs the Gauss-Marquardt method to minimize the
sum of the weighted squared head differences between measured and model heads. This
"objective function" is the same function that is minimized in the Maximum Likelihood
method of parameter estimation. In fact, in the present case, the only difference between the
two methods is in the estimated value of the reference variance; in the Maximum Likelihood
method, the denominator in equation (24) is M, the number of observations, rather than
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M-N, the redundancy. When M is much higher than N the two estimates are close: however
o, as provided by (24) has the advantage that it is an unbiased estimate.

Some worrying questions are (i) whether ®, as defined by (6) has a single minimum,
and (i1) if so, whether MODINV will always find it. Unfortunately there is no single answer
to both these questions that applies to all modelling situations and all parameter types and
combinations of parameter types for which estimated vatues are being sought. Experience in
using MODINYV has demonstrated that ¢ can converge to a local minimum in some cases,
for which parameter values are far from optimum. In other cases it will not converge at all.
However both of these phenomena are more likely to occur when many parameter values of
different types are being simultaneously estimated; in such cases you can often dramatically
improve MODINV’s performance simply by holding a few key parameter values fixed, or
by using fewer parameter values in a less complex areal distribution. Failure to converge to
a global minimum is often a signal that parameter value correlations are high and that you
are consequently asking too much of your data in trying to resolve individual values. Hence,
not only will a simpler model improve MODINV’s performance, but it may be a rore
realistic representation of the true information content of your measurements. As such,
predictions made with the calibrated model will tend to be "conservative" in that the
possibility of predicting spurious local head variations, resulting from the presence of local,
poorly defined parameter values, will be reduced.

3.0 MODINV PROCESSING STEPS

Fig.1 shows a simiplified flow chart of the MODINYV algorithm; see Table 2 for a list
of symbols used in Fig.1. You can tell what part of its algorithm MODINV is executing at
any time by inspecting its continually-updated run record which is written to file
MODINV.PRN. If you are running MODINV from the terminal and have requested a screen
display of computation progress, then additions to file MODINV,PRN are also sent to the
screen, allowing you to monitor the progress of the optimization process. If you are running
MODINYV as a batch job, screen display is not available. However some systems will allow
you to read MODINV.PRN, even though it is concurrently held open by MODINV; other
systems allow you to read a batch job log file (while the batch job is executing) containing
information that would have been sent to the screen if the job were run from the terminal.
If either case, periodic inspection of the MODINV output allows you to monitor MODINV
run progress.

Table-2 Symbols used in Fig.1

& objective function
v gradient of the objective function
J Jacobian matrix
N normal matrix
I identity matrix
z covariance matrix
A Marquardt lambda
pi parameter value-estimates for i’th iteration
Ap; parameter optimization direction vector for i'th iteration
B fraction of Ap by which to obtain Pi+1 from p;
Y derivative vector of model heads w.r.t.
m number of parameter values requiring optimization
1 optimization iteration number
Training course on "Software for Groundwater Date Mangement”, National Institute of Hydrology, Roorkee.
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Fig.1 Simplified flow chart of the MODINV algorithm.
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