TRAINING COURSE

ON

SOFTWARE FOR GROUNDWATER
DATA MANAGEMENT

UNDER

WORLD BANK FUNDED HYDROLOGY PROJECT

LECTURE NOTES
ON

GROUNDWATER

MODELLING SOFTWARES
(UNIT-5)

BY

P K MAJUMDAR

ORGANISED BY

NATIONAL INSTITUTE OF HYDROLOGY
ROORKEE - 247 667
INDIA



GROUNDWATER MODELLING SOFTWARE FOR
HARD ROCK REGION

1.0 INTRODUCTION

Groundwater modelling may be used for a variety of purposes, some of which are;
estimation of aquifer parameters, regional simulation of groundwater levels, conjunctive use
of surface and groundwaters, irrigation planing and /or aquifer management. Use of classical
porous media models in hard rock region may not give always an approximate solution to
certain degree acceptable limit. Flow phenomena through fractured media is quite different
to that of granular porous media. Secondary porosity is more important in rocks as
compared to grain size porosity. Fracture dimensions and configurations play vital role in
the value of the properties like permeability, hydraulic conductivity and storativity of the
rock masses.

The analysis of flow, and displacement processes in rock has a long history in
connection with the production of oil from underground reservoirs. However, it is only in
the past fifteen years that this analysis has been extended to include detailed structural
properties of the media. These studies are quite diverse in the physical phenomena that they
consider.There are two types of non-classical hard rock aquifer models-the discrete and
continuum models. Continuum models represent the classical engineering approach to
describing materials of complex and irregular geometry, characterized by several length
scales. The physical laws that govern fluid transport at the microscopic level are well
understood, with the exception of ultramicroporous structures. Leaving aside that case, one
could in principle write down differential equations for momentum, energy, and mass and
the associated initial and boundary conditions at the fluid-soil interface.

However, as the interface in typical rocks is very irregular, practical and economical
techniques are not available for solving such boundary-value problems-even in the unlikely
event that one knows the detailed morphology of the medium. Determination of the precise
solid-fluid boundary in anything but the simplest rocks is, and will probably remain, a very
difficult (if not impossible) task; the boundary (even if known) within which one would have
to solve the equations ot change would be so tortuous as to render the problem
mathematically intractable. Moreover, even if the solution of the problem could be obtained
in such great detail, it would contain much more information than would be useful in any
practical sense. Thus it becomes essential to adopt a macroscopic description at a length scale
much larger than the dimension of individual pores or fractures.

Macroscopic properties such as effective transport coefficients are defined as averages
of the corresponding microscopic quantities (see, for example, slattery,1967,1969;
Whitaker,1967). The averages must be taken over volume V that is small enough compared
to the volume of the system, but large enough for the equation of change to hold when
applied to that volume. At every point in the medium one uses the smallest such volume and
, thereby, generates macroscopic field variables obeying equations such as Darcy’s law of
flow or Fick’s law of diffusion. The reasons for choosing the smallest suitable volume for
averaging are to allow in the theory suprapore variations of the porous medium and to
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generate a theory capable of treating the usual macroscopic variations of effective properties.
There are several situations in which the conditions for the validity of such an averaging are
not satisfied. Even when the averaging is theoretically sound, the prediction of macroscopic
properties is often difficult because of the complex structure of rock. In any case, with
empirical, approximate, or exact formulae for the transport coefficients and other effective
properties, the results of a given phenomenon in a porous medium can be analyzed with the
macroscopic theory.

Past theoretical attempts to derive macroscopic transport coefficients from the
microstructure of the rock entailed a simplified representation of the pore space, often as a
bundle of capillary tubes(Scheidegger, 1974). In this model, the capillaries were initially
treated as parallel and then, later, as randomly oriented. These model are relatively simple,
easy to use, and sufficiently accurate, provided that the relevant parameters are determined
experimentally and the interconnectivity of the pore space does not play a major role.

Having derived macroscopic equations and suitable effective transport properties, one
has the classical description of the system as a continuum. We shall therefore refer to
various models associated with this classical description as continuum models. These models
have been widely applied because of their convenience and familiarity to the engineer. They
de have some limitations, one of which was noted above in the discussion concerning scales
and averaging. They are also not well suited for describing those phenomena in rock in
which the connectivity of the pore space or a fluid phase plays a major role. Such models
also break down if there are long-range correlations in the system.

The second class of models, the discrete models, are free of these limitations. These
models have been advanced to describe phenomena at the microscopic level and have been
extended in the last few years to describe various phenomena at he macroscopic level. Their
main shortcoming, from a practical point of view, is the large computational effort required
for a realistic discrete treatment of the system. They are particularly useful when the effect
of the pore-space interconnectivity or long-range correlations is strong. The discrete models
are mostly based on a network representations of the rock. The original idea of network
representation of a pore space is rather old(Owen, 1952; Fatt, 1956), but it was only in the
early eighties that systematic and rigorous procedures were developed (Mohanty, 1981; Lin
and Cohen, 1982) to.map, in principle, any disordered rock onto an equivalent random
network of bonds and sites. Once this mapping is complete, one can study a given
phenomenon in porcus media in great detail.

However, only in the past fifteen years have ideas from the statistical physics of
disordered media been applied to flow, dispersion, and displacement processes in porous
rocks. These concepts include percolation theory (Stauffer and Aharony, 1992 Sahimi,
1993b), the natural language for describing connectivity effects, diffusion limited growth
processes( Meakin, 1988), which describe fundamentally nonequilibrium growth processes,
fractal concepts(Mandelbrot, 1982; Bunde and Havlin, 1991), which are the main tool for
describing the self-similarity and self-affinity of the morphology of a system and the effect
of long-range correlations, and universal scaling laws, which describe how and under what
conditions the effective macroscopic properties of a system may be independent of its
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microscopic details. It is most important to define relevant ideas and techniques from the
statistical physics of disordered media and their applications to the processes of interest , and
review the progress that has been made as a result of such applications, in particular, the
important effect of the connectivity of the pores or fractures of the system on the phenomena
of interest and point out how scaling and fractal concepts provide powerful tools for
describing flow, dispersion, and displacement process in reservoir rocks.

In recent years, quit a number of discrete fracture network models have been
developed to represent fracture flow. In general, the dimension, orientation and flow
properties of each fracture is treated randomly and, by monte carlo simulations, realizations
of a possible portion of the fractured medium with the same statistical properties as the
observed ones are generated and analyzed.

To have any representativeness, such models must be three dimensional
representation. But then, the size of the domain which can be represented in 3-D is very
limited, because of computational constraints since the number of unknowns very rapidly
becomes immense, as the size of the area is increased. One must therefore conceptually
define the use that can be made of such calculations in predicting the flow in a large
fractured rock mass. Three stochastic concepts which must be understood to arrive at the
prediction of this large scale flow (in other words, to address the problem of the scale effect
in fractured media) are as follows:

1 Connectivity of the fracture system. Simple criteria suggesting the existence
of a large scale behaviour would be discussed on the percolation theory.

2, Stationarity of the fracture properties. Constraints imposed on modeling by the
hypothesis of stationarity would be discussed as well as possible treatment of
non stationary systems.

2 Ergodicity. This is a key issue, enabling us to pass from the spatial domain
to the stochastic essemble of realization domain, and vice versa. Based on
this issue, methods of calculating an equivalent continuous system as well as
the variability within this continuum are discussed.

In this lecture, assessment of flow properties of fractured media would be discussed
where the blocks(or matrix) between fractures are so low a permeability, compared to that
of the fractured network, that they can be considered impervious. For a long time,
hydrogeologists have studied semi-empirically the flow of fluids in single fractures and
expressions linking hydraulic gradient and velocity in the fracture plane have been developed.
How to move from a single fracture to a set of fractures is a major problem which has not
yet received a complete answer.

One of the first points to consider is that of the existence of an "equivalent porous
medium" (EPM) which behaves macroscopically as the fractured medium. This problem is
generally tackled by using the concept of the representative elementary volume (REV) (Bear,
1972): it is generally assumed that if a large enough volume of fractured rock is considered,
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which has enough intersecting fractures to "average" the directional flow along each fracture,
an "EPM" can be defined at this scale i.e. the flow through the rock mass can be described
by Darcy’s law using a second order symmetric permeability tensor. Such a concept (i) only
applies to the flow conditions where, for each individual fractures, the velocity head gradient
relation is linear (which is not always the case; it depends on Reynold’s number and the
roughness in the fracture), and (ii) is by definition, approximate, i.e., for a given size of the
REV, the anisotropic Darcy’s law applies only within a predefined tolerance band. This
concept is not sufficient to understand fracture flow; connectivity concepts must be
introduced.

The second issue is that of determining the equivalent hydraulic conductivity of the
EMP. There are two possible approaches that are used traditionally; one is based on
geometry, the other on hydraulic test. In the geometrical approach each fracture of the
medium is assumed of infinite extension, thus ensuring a perfect connectivity of the fracture
network. The fractures are mapped (e.g. on an outcrop) to determine their aperture,
direction, dip and density; it is usual, but not obligatory, to group the fractures into a finite
number of classes of direction (e.g. 3 or 4). Assuming that the properties and density of the
fractures remain the same everywhere, the hydraulic conductivity tensor of the EPM is
calculated by geometrically adding up the directional hydraulic conductivity of each fracture
(or family of fractures). It is generally agreed that the assumption of infinite extent for the
fractures is a severe limitation and that the determination of the fracture aperture from
outcrops is very unreliable.

In the hydraulic test approach one can try to determine the equivalent hydraulic
aperture of each fracture (or average fracture aperture for a family of fractures) by
performing an injection test (in a borehole with double packers) isolating one fracture. These
equivalent hydraulic apertures are used in the "geometric’ approach above. It is, however,
very difficult to locate and isolate single fractures in order to conduct such test. Moreover
a very large number of tests are required.

Another approach is to make injection test over long borehole sections and to
determine directly either the local hydraulic conductivity (e.g. the classical lugeon test) or
the global conductivity tensor from pressure measurements in adjacent packed sections of
other wells (using an inverse technique). Both approach assume that the necessary size of
the EPM is already reached at the scale of the test (length of section, or distance between
boreholes). This assumption again is very strong. A third approach is to identify the
hydraulic properties of a given fracture from the response of a pumping test. Assuming a
given geometry of the fracture intersecting the well (e.g. horizontal, vertical..). ,),
Gringarten (1982) has published type curves to determine its hydraulic property from
drawdown measurements. This approach, used in the petroleum industry, only gives the
local properties of a major fracture and does not assume that an EPM exists.
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2.0 SANDIA WASTE-ISOLATION FLOW AND TRANSPORT MODEL FOR
FRACTURED MEDIA(SWIFT III).

This Flow and Transport Model is a fully transient, three-dimensional model which
solves the coupled equations for transport in geologic media. The processes included are :
Fluid Flow, Heat transport, Dominant-species miscible displacement, Trace-species miscible
displacement. The first three processes are coupled via fluid density and viscosity. Together
they provide the velocity field on which the fourth process depends. The computer model
described herein extends the capabilities of SWIFT(Reeves and Cranwell, 1981) to include
fractured media.

2.1  APPLICATIONS OF SWIFT

Because the SWIFT model is general, it has many possible applications. They include,
but are not limited to, the following:

1. Nuclear waste isolation in both fractured and unfractured formations

2. Injection of industrial wastes into saline aquifers

3. Heat storage in aquifers

4. In-situ solution mining

5. Migration of contaminants from landfills

6. Disposal of municipal wastes

7. Salt-water intrusion in coastal regions

8. Brine disposal from petroleum-storage facilities

9. Brine disposal as a byproduct of methane production from geo-pressured aquifers
10.Determination of aquifer transport parameters from well-test data

2.2 MATHEMATICAL IMPLEMENTATION

The SWIFT II model is designed to simulate flow and transport processes in both
singly and doubly porous media. The analyst designates the fractured regions of the system
to which dual porosity is to be applied. In those particular regions two sets of equations are
solved, one for the fracture processes and the other for the matrix processes. The fracture-
porosity equations deseribing flow and transport for the fractured regions are identical to the
singly-porosity equations for the nonfractured zone, except for sink terms giving the losses
to the matrix. Consequently, one general set of equations which applies to both zones is
presented, which will be called the global set of equations. The matrix-porosity equations for
the fractured zone differ somewhat from their global counterparts. Therefore, a separate set
of equations is presented which will be called the local set of equations. As was mentioned
in the introduction, a variable-density formulation is used throughout. Density (and viscosity,
porosity and enthalpy) is taken to depend relatively heavily on pressure, temperature and
brine concentration, but not on radionuclide concentrations. For this reason, the flow, heat,
and brine equations are termed the primary equations.

A steady-state solution option is provided for the global primary equations with two
qualifications. First, it is assumed that heat-transport is basically a transient process.
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Certainly, this is true for high-level nuclear waste repositories, a dominant application for
the code. Thus, heat transport, like radionuclide transport, is not included in the steady-state
option. Secondly, it is assumed that matrix processes are negligible at steady-state.
Consequently, the state equations for the matrix porosity are not solved for the steady-state
option. Of course, the code will permit transient solution of radionuclide transport (with or
without dual porosity) in conjunction with steady-state solution of the primary equations since
this is perceived as a very desirable simulation procedure.

2.2.1 The Global Transient-state Equations for Flow

The transport equations are obtained by combining the appropriate continuity and
constitutive relations and have been presented by several authors, including Cooper(1966),
Reddell and Sunada (1970), Bear(1979), and Aziz and Settari(2979). Sink terms are included
for fractured zones in which losses to the rock matrix are significant. The resulting relation
for flow may be stated as follows:

-V.pw - q - q,
convection  production  sink/source
d
+ Re - I'y = --- (Jp)
at
salt loss to
dissolution matrix

Several quantities in Equation require further definition in terms cf the basic parameters.

Darcy flux :
Pg
u = - (k/p).(Vp - --V2)
Ee
Porosity :
G = G, [1+C(p-p,)]
Fluid density:

p = poll+Cy(p-po)- C(T-Ty)+ CLC']
Fluid viscosity:

po= pg(Cexp[B(C)(T'- Ty )]
Where parameter C.is defined in terms of an input density range(o;- py) and the reference
density p,:

Ce = (p1- PP
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2.2.2 The Global Steady-state Equations for Flow

In safety evaluations for nuclear-waste repositories, auite often the time frame of
interest may extend over many thousands of years. Typically, the assumption of time-
invariant flow and brine conditions is justified in such cases due to the lack of specific data
for such a long period of time. For the fluid flow, the overall effect of transient rainfall
boundary conditions may have a minor effect on radionuclide transport. Duguid and Reeves
[1976] have shown this for a combined saturated-unsaturated simulation of tritium transport
averaged over a period of only one month. Two steady-state options have been included. The
first option permits solution of the time-independent flow equation:

Fluid (stead-state):

-V.ow) - g - Gy " e =0
convection production  sink/source  salt
dissolution

In both options the accumulation and the matrix-loss term are set to zero. For the
steady-state fluid-flow option, however, the salt dissolution term is also set to zero. The
second option permits a coupled time-independent solution for fluid flow.

2.2.3 Local Transient-state Equations for Flow Within the Rock Matrix

The flow and transport processes occurring within the rock matrix are conceptualized
as being one-dimensional in a lateral direction relative to the movement in the fractures.
Thus, it is assumed that the fractures provide the only means for large-scale movements
through the entire system while the matrix provides most of the storage of the system. The
approach used here to treat the fracture matrix system is similar to that used by Bear and
Braester[1972],Huyakorn et al.[1983], Pruess and Narasimhan [1982], Tank et al. [1981],
Grisak and Pickens[1980], Streltsova-Adams[1978], and rasmuson et al.[1982].

Conservation equations used here for the matrix are very similar to those presented in Section
for global transient equation. They are as follows'

ad
- Vup'u’) + ry = (&)
at
conduction  gain from accumulation

fracture

It is anticipated that either parallel fractures or intersecting sets of parallel fractures
will be treated. A Prismatic block is invoked in the numerical solution, and for the latter,
either prismatic or spherical blocks may be used to approximate the actual matrix geometry.
Thus, either one-dimensional Cartesian or spherical geometry may be used for the local
matrix equations. In either case, he interior boundary is assumed to be a reflective no flow
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boundary. The fracture/matrix interface provides a source r’ which is identical to the fracture
loss r to within a geometrical scaling factor. The flow equation is coupled by following
relations for

Darcy flux :

u = - (kK/w)yvp’
Porosity :

D' =& [1+C(p’-p,)]
Fluid density:

P’ = po[1+Cy’(p’-po)- CH(T’-T,)+CC’]
Fluid viscosity:
= pp (C7exp[B(CT)((T")!- Ty )]

Parameter C. is assumed to have negligible importance in determiring Darcy velocities within
the matrix.

3.0 NUMERICAL SIMULATION OF FLUID FLOW IN A TWO-DIMENSIONAL
DISCRETE FRACTURE NETWORK:Program NETFLOW.

The two-dimensional fracture flow theory used here is very similar to the theory of fluid flow
in pipe networks. Typically a pipe network problem has a predetermined general structure
and numerical methods are used for sensitivity analysis and design optimization. Since the
same problem structure is repeated many times during a study, it is profitable to optimize
right at the beginning the structure of the matrices to be solved numerically. Linear theory
and graph theory methods are commonly used for these types of pipe network analysis
(Kesavan and Chandrashekar, 1972: Isaacs and Mills, 1980).

The numerical model presented here is two-dimensional, and the rock matrix is
assumed impermeable. A node conductance matrix is first set up by applying the mass
balance constraint to each node in the network (i.e., the sum of flow rates at any free node
must equal zero). Since this computer code is intended to be applied to actual field problems,
it must simulate the fractures in a slice of rock large enough to be considered statistically
homogeneous with respect to the fracture system. Moreover, the random fracture generation
process produces a numerical matrix that is very dispersed in structure. By renumbering
systematically all the nodes and by using a variable-bandwidth storage scheme, the code
presented here reduces considerably the computer storage requirement for a large sparse
matrix. A direct method of solution based on the Choleski algorithm is then used to solve the
set of equations in a manner that is efficient in computing time.
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3.1 MODEL FORMULATION

For steady-state laminar flow of an incompressible, viscous fluid between two smooth
parallel plates, the analytical solution of the Navier-Stokes equation yields the following
relationship for volume flow rate per unit width (e.g., Huitt, 1956):

Wiy Ay
q — T e ——— x v

Where W is the plate separation [L], v is the weight density of the fluid [F/L3],
is the dynamic viscosity [FT/L2]. x is the distance along the plates [L], and y is the
hydraulic head [L]. In the solution of network flow problems, it is often convenient to define
the conductance of the fluid conduit of length | as:

B = e [L2T]

i.e., the hydraulic conductivity multiplied by the cross-section and divided by the length.

Using Figure (to be supplied in the class) as an example, the flow rate at node 1 is
expressed by:

e - ¥) = -q
In this convention, flow into the system is positive and flow out is negative. For the

internal node 2, the mass balance constraint requires that sum of flow rates into and out of
that node equals.

ca(\bl - tJLZ) + eb(‘lb:i - ’11"2) + ed(\b‘s = Hbg) = 0

The numerous methods of simultaneously solving systems of equations like above can
be divided in direct methods and iterative methods. Direct methods are generally faster but
require larger computer computer memory than iterative methods. In the code NETFLO, the
matrix and vectors of above Equation are rearranged and partitioned according to the degree
of freedom of the nodes:

The matrix equation can be summarized by
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Erf.ﬂ + Epo. = Q
and

chqbf + Eccdzc = Qc

These equations can be used to compute the unknown head values ( ¢; ) and can give the
flow rate at the boundary nodes (Q.). The approach taken in program NETFLO is to
compute the head at all the free nodes then to compute the flow rate in all the segments
individually . Rearranging gives:

Err¢f = Q - Efcd;c = Q!

After setup of the augmented flux vector Q! , program NETFLO solves for ¢, using the

This corresponds to two matrix equations: |
Choleski algorithm .
\
|
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