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ABSTRACT

Unsteady flow to a large~-diamter well in a confined
aquifer has been analysed by discrete kernel approach for the
case where the pumping rate is a quadratic function of draw-
down. The equation assumed to hold good between pumping rate

and drawdown is of the form

s (n) s2 (n)
Q_(n) ok g s ]
n) = - - = g .
P [ - 2 Qr
F F

in which.SF and C are the pump characteristaics, QI is the
initial pumping rate and SW(n) is the drawdown at the large-
diameter well at time n. Results have been presented for
variation of Qp(n), Sw(n), and recovery of well storage with
time. Variation of specific capacity of large-diameter well
with time for different well storage has been studied. The
relationships between transmissivity and specific capacity
at various time after the onset of continuous pumping have
been presented for different values of well storage and specific
yield which can be used for estimating transmissivity.
Analysis of the design criteria for a large-diameter
well has been carried out. The procedure for finding the
optimum depth and diameter of the large-diamter well for
which the cost of excavation is minimum has been presented.

It has been found that the large~-diameter wells are useful

in the aquifers of low transmissivity.




1.0 INTRODUCTION

1.1 Performance of Large-Diameter Well for Non-Linear
Abstraction

Large-diameter wells are extensively used in many
parts of the world. The cheapness and simplicity of construction
and operation of dug wells are often the main reasons for
their use ( Jain, 1977). Another important advantage of these
wells is that they are suitable for shallow aquifers with low
transmissivity. In India and other South Asian countries, people
have been using large-diameter shallow dug wells tapping mostly
the phreatic and in some cases the semi-confined aquifers near
to the surface. Dug wells continue to be the primary source of
ground water in rural India. According to Baweja (1979), of
the total 9.5 million wells in India, 79 percent were dug wells
with large-diameter, 18 percent were shallow tubewells in hard
and soft rocks, and the remaining 3 percent were deep tubewells
in alluvial basins. Lahiri (1975) had estimated that about 71
percent of the ground water abstracted in the year 1971 was
from large-diameter wells. The farming community in hard rock
areas is mostly dependent on large-diameter dug wells as a
supplemental source for irrigation and domestic water. Aquifer
tests are generally conducted on the existing large-diameter
wells for evaluating the aquifer paramters. A better under-
standing of the performance of large-diameter well is therefore,

necessary for an optimal development of ground water resources.




1 2 Design of Large-Diameter Wel.

There are no defined guidelines for the design of
the large-diameter wells. It is generally not known in
advance as to how much should be the depth and diameter
of the large-diameter well to be constructed under a given
set of hydrogeological conditions. Therefore, a comprehensive
analysis of the optimum depth, diameter and cost of excavation

should be made for better utilization of resources.




2.0 REVIEW

25 1 Performance of Large-Diameter Well

Analytical solutions of unsteady flow to a well
considering well storage have been developed by several
research workers ( Papadopulos and Cooper, 1967, Lai et al,
1973, Lai and Wusu, 1974, Boulton and Streltsova, 1975,
Fenske, 1977, Rushton and Holt, 1981 and Herbert and Kitching,
1981) . The solution given by Papadopulos and Cooper for flow
to a large-diameter well in a confined aquifer is based on the
solution given by Carslaw and Jéeger (1959) for an analogous
problem in heat flow. The evaluation of aquifer response by
Papadopulos and Cooper's method requires numerical integration
of an improper integral involving Bessel's function. The
numerical integration therefore, involves large computations.

Rushton and Holt (1981) have presented an elegant
numerical solution for analysis of flow to a large-diameter
well both during abstraction as well as recovery phases. The
existence of the seepage face in the abstraction well, variable
abstraction rate and well losses can be included in their
numerical model. The model simulates the water levels in a
confined aquifer quite accurately, however, the results for
unconfined aquifer are not quite satisfactory. Rushton and
Singh (1983) have analysed flow to a large-diameter well

wherein the abstraction rate is a linear function of drawdown.




In the last decade, many complex ground water flow
problems have been analysed by the discrete kernel approach
(Morel-Seytoux and Daly, 1975, and Morel-Seytoux,l975).

Patel and Mishra (1983) have analysed flow to a large-diameter
well during pumping using discrete kernel approach. The same
approach has been extended for analysis of recovery phase by
Mishra and Chachadi (1985). Using discrete kernel approach

the unsteady flow to a large-diameter well induced by time
variant pumping has been analysed by Mishra and Chachadi (1985)
for the case when the pumping rate is a linear function of
drawdown. In the present report analysis of unsteady flow

to a large-diamter well has been carried out for the case when

the pumping rate is a guadratic function of drawdown.

2.2 Design of Large-Diameter Well

In the existing literature there exists no specific
guidelines for deciding the optimum depth and diameter
of the large-diameter well under given set of hydrogeological
conditions. Therefore, in the present report an attempt has
been made to find the optimum depth and diameter of the
large-diameter well for which the cost of excavation is

minimum.




3.0 PROBLEM DEFINITION AND METHODOLOGY

3.1 Performance of Large-Diameter Well

3:lsl statement of the problem

Figure 1 shows a schematic cross section of a large-
diameter well in a homogenous. isotropic confined aquifer of
infinite areal extent which was initially at rest condition.
The radius of the well screen is o and that of the unscreened
part is rc.Pumping is carried out up to time tP and the rate
of pumping depends on drawdown. It is required to determine
i) the drawdown in piezometric surface at the well face
and at any distance r from the centre of the well at time t
after the onset of pumping, ii) the pumping rate and contri-
pution of well storage to pumping and iii) the recovery of

well storage after stoppage of pumping.

initial
ater_level

piezometric
surface

“o: constant
ol e saturated ,' .*
w-..'.‘fhpth""'-:_'

Fig.i= Schematic cross-Section of a Large~
Diameter Well




Fiacdlear2 Methodology
The following assumptions have been made in the

analysis:

i) At any time the drawdown in the aquifer at the well
face is equal to that in the well.

ii) The time parameter is discrete. Within each time step,
the abstraction rate of water derived from well
storage and that from aquifer storage are Separate
constants.

Let the total time of pumping,tp, be discretised to m
units of equal time Steps. The guantity of water pumped during

any time step n can be written as

Qp (n) + Qe (Rl = Qp(n) e .. (1)
in which
QA(n). = water withdrawn from aquifer storage and,
Qw(n) = water withdrawn from well storage.
For n> m, QP(n) = 0. Otherwise QP(n) is equal to rate of pumping

per unit time period. When centrifugal pump is used for
abstraction the pumping rate decreases with the increase in
drawdown. A typical variation of discharge with drawdown

at the well face is shown in Fig.2. In such cases the pumping

rate can be expressed as:

5, (n) s2 (n)
QP(I'I) -_-[l = ((1=2) == = C ] QI; wie w020
F 2
SF

in which, SF and C are the pump characteristics, QI is the

initial pumping rate and Sw(n) is the drawdown at the large-
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diameter well at time n. C = 0 corresponds to the case where
the pumping rate is a linear function of drawdown. Drawdown,

sw(n), at the well face at the end of time step n is given by

n
Sw(n) = ——;;E——— Y;i QW(Y) cee (3)
where Qw(y} represents rate of withdrawal from well storage
or replenishment at time step y. QW(Y) values are unknown a
priori. A negative value of QW(Y) means there is replenishment
of well storage which occurs during recovery period. Making use

of equations 1, 2 and 3 the following expression is obtained:

f (1-C) n C n 5
Q, (n) n ='1-+=——s (Y= (.2 {v)) ] Q
A +QW l_ S ﬂr2 Y':l % 2 2 4 'Y-—):_L % I
F ¢ S=18x
¥ (a1
(4)
Rearranging
(1—C)QI Z G QI nEl
Q. (n) + Q (n)[ IS + Q (Yﬂ
A W g “r.? S2 Tr2r4 =1 "w
F (] F (e
8 QI 2 1l ~-cC n-1
b=y - 02(m) - o [1 - 2 o)
F 'r S., 4qr i
F
C {n:} 2}
* Ny Qi) ) =0 see (5)
SZ 1]2]:4 Y=1 w

Drawdown at the well face at the end of time step n due to
abstraction from aquifer storage is given by ( Morel-Seytoux,

1975)




n
SA(n) = f QA(Y) § (n = v+ 1) e wr (6)

] rw
where, 2 2
i) ¢rw ¢rw
e e o e R e
4 9T 4 T N 4 T (N-1)
(7)
= ¥
E (x) = — dy
= Y
where,
T = transmissivity of the aquifer,
¢ = storage coefficient, and
N = an integer.
S (N) are known as discrete kernel coefficeint.
rw
Because Sw(n) = SA(n), therefore,
5 1 2
8 -Y = z
S QA(V) rw(n +1) wrz 2] Qw(y) v o 08
c
Rearranging
1 . Al
%w(l) QA(n) S - T Qw(n) = 3 z QW(Y)
mr mT =1
=1
- T = ¥
i QA(Y) G (n +1) e (e )

From equation (9) QA(n) in terms of Qw(n) is found to be




Q (n) n-1
Q, (1) —[ - + s Lo Q ()
: =1 w
r2 § (1) ﬁrc érw(l)
e %w
1l -1
= g“——~—— nz Qa () Sy (BT Y +l)] sse (10]
(1) &
rw Y =1

Substituting for QA(n) by equation (10) in equation (5) the

following quadratic equation in Qw(n) is obtained:

C 0 (1=C}) ‘O
_5,__2____} Qi(n) i Qw(n) [ % + 1 + ————_7_1
g2 S TE § (1) Serc
T T o o Irw
2CQI n-1 1 HE}
t T2 21 el me]*[ 2 Y
SF ' c Tr 8 (l) -Y—l
rw
1 n-1 o : Y 41) ( 1I=c) QI n-1
- Q,(y) & e SUERLE o5 ) SR 3 R Z0 (y)
§ (1) Y=1 & =R I Sp T;ri Y=l Sw
E. 0 n-1
i 4 (B Q. (9 (=1 oo (11)
2 2 2 p=l
S ) A O
F c

Equation (11) is an usual quadratic equation. Defining the
quantities in lst, 2nd and 3rd sgure brackets of equation (11)
as a,b,c respectively, the roots of the equation are
2
- b+ ¢y(b" - 4 ac)

Q,,(n) = s oo w0 (12)
a

At any step n all terms but Qw(n) are known in
equation (11), and Q,(n) can be solved in succession starting
from time step 1. At any time step when Qw(n) is solved, QA(n)

can be known from eguation (10). Once QA(n) values are




known, the drawdown, Sr(n), in the aquifer at any distance

r from the centre of the well can be found, using the relation:

n
Sr(n) = I QA(Y) %in =i o otier ALY
y=1
where,
2 2
6, (N) =———1——[(El (— &y - g (— )1
4 7T 4 T N 4T ( N-1)

In particular, for the first time step i.e. n = 1 the

quadratic equation (11) reduces to

CcQ (l=€) D
i 2 1 I|_ )
2 2.4 v (1) + 0, 1) [ﬂrz iy S 1Tr21 s
F c cC rw F c
o ore ()
3.2 Design of Large-Diameter Well

3..2.1 Statement of the problem

Fig.3 shows a schematic cross-section of large-
diameter well to be constructed in a homogeneous isotropic
confined aquifer of infinite areal extent. Water level in the
area exist at depth SO below ground. Pumping at a rate of

Q per unit time for a duration of tp’ is required to meet

the water demand. Let the total depth of excavation be

represented by D. The maximum drawdown that can be caused
is D-5_. It is necessary to find the radius r, of the well
and depth D which meet the water demand and for which the

cost of excavation is minimum. The transmissivity (T),
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N
storativity ( ¢, discharge rate (Q) , and the duration of pumping

(tp) are known a priori.

Fo2ie:d Methodology

The following procedure has been adopted for finding
the optimum depth and diameter of a large diameter well under
a given set of hydrogeological conditions:
1) For known values of transmissivity, storage coefficient,
discharge rate and duration of pumping the maximum drawdowns at
the well point have been calculated for different values of r,
using computer programme presented in Appendix-I .
3oi) From these graphs, the various ?ombination of r, and
D—SO which could meet a required water demand for known values
of T, ¢ , Q and tp can be determined.

1dd) Knowing the radius r, and the corresponding D the cost

of excavation (CE) can be expressed as

ol
B =i ﬂrz D+ m' TTr2
~“E (o] c c
n'+l
nl
= ®E° B ( C. & pF == ) + v LT
(o) 0 ]

The above expression has been derived on the assumption

that the cost of excavation per unit guantity of soil at a

depth y from ground surface is given by




where,
Co = the unit cost of excavation (Rs) at ground
surface, and

m',n' = cost parameters.

iv) If the well is constructed in a agricultural land the
productivity of the land in which the well has been excavated
will be lost and this loss has to be incorporated in the
total cost of the well. Therefore, equation (15) can be

rewritten as

C. = 522 D (C 4mt B ) + mr® x CROP x PRICE
H 2 nit L &
L 1
; 121 (1+RATE )i g
where,
CROP = the production per unit area of a particular
crop that can be grown in the well command area,
PRICE= the market value of the crop per unit .quantity,
N = the number of years after which the present
worth of the loss of the productivity of the land
used for digging the well is negligible, and
RATE = the interest rate
v) Usina equation (16) the cost of excavation for different

depths and radii of the well can be found from which the optimal
depth of excavation and the radius r, can be known. The
computer programme for computing cost of excavation for different

depths and radii of the well is given in Appendixz-II.




RESULTS AND DISCUSSIONS

4.1 Performance of Large-Diameter Well

The discrete kernel coefficients, 6rw(N), have been

generated using equation (7) for known values of T, ¢ and .

After generating the discrete kernels, Qw(n) values are solved

in succession starting from time step n=l to time step n=m

using equation (11) for known values for QI' SF' c, m and rc

when pumping is stopped ey oY hpmy QP(n) = (0. The recovery

of well storage starts after stoppage of pumping. The values
of QA(n) and Qw(n) during recovery period are solved using
equation (1) and (10). The variation of QP(n) with Sw(n)
during pumping is shown in Fig.4 for different values of C.
The values of QI and SF adopted for obtaining numerical results
correspond to field values reported by Rushton and Singh

(1983). C= 0 corresponds to the case where pumping rate is a

linear function of drawdown. For C = 0.1 the values of

QP(n) at the end of 300 minutes of pumping is found to be
65% of QI' When C = 1, the corresponding value is 80% of QI‘
A typical variatiion of Sw(n) with time is shown in Fig.5

for different values of C. The variation of.f; Q. (1)/ g?QW(W
Yk L y=1

with time since pumping stopped is shown in Fig. 6(a)

through 6 (f) for different values of ¢, rw/rc and tp and for

a set of values of C, S and Q._. “E Q (Y) represents the
. B I =1 w
total guantity of water withdrawn from well storage during

n

. - Z .7
pumping, and Yem+1 Qw (y) represents the total quantity

15
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recouped up to time step n during recovery. It can be seen

from the figures that smaller the value of ¢ longer will be the
duration for 90 percent recovery. Recovery rate is rapid for
higher values of ¢ . For ¢=0.1, the 90 percent recovery occurs
at 850 minutes after the stoppage of pumping. For ¢ = 0.00001
the corresponding time is 1350 minutes ( Fig. 6 b). It is also
seen from the figures that for higher values of t_ and smaller
ratio of rw/rC the 90 percent recovery of well storage takes
longer time.

The productivity of a well is often expressed in

terms of the specific capacity, which is defined as QP(n)/Sw(n).
T

where Qp(n) is the pumping rate and Sw(n) is the drawdown at
the end of time step n. In other words specific capacity is the
discharge per unit drawdown and it is time variant. The
variation of specific capacity with time for the cases where the
pumping rates are either a quadratic function or a linear
function of drawdown are shwon in Fig.7 for different well
storages. It is seen from the figure that the specific

capacity decreases with increase in the time. As seen from the
figure the specific capacity becomes asymptotic to abscissa
indicating that a near stready state condition has been
reached. Higher the storage coefficient higher will be the

specific capacity.
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In many cases, especially, in reconnaissance ground-
water investigations, the hydrogeologic parameters of an
aquifer are estimated based on well-log, water level, and
specific capacity data. High specific capacities usually
indicate a high transmissivity. For a quick estimate of trans-
missivity, an examination of the relation between the trans-—
missivity, and specific capacity is useful. The relationship
petween the specific capacity and transmissivity for a large-
diameter well is shown in Fig.8 (b) through 8(g) fdr the case
where the QP(n) is a quadratic function of the drawdown.
Pumping periods of 1 27 3, 4; 5, 6 and 7 hours, ¢= 0.2, 0l 15,

0.1, 0.05, 0.01, 0.005 and 0.001, SF = 2 m, and QI= 800 mg/day

have been assumed in constructing the graphs. These graphs

may be used to obtain rough estimates of the transmissivity
from specific capacity data for a large-diameter well. The
coefficient of storage could be estimated from well log and

water level fluctuation data.

A Design of Large-Diameter Well

The variation of the maximum drawdown (D—SO) with
r_ are presented in Figs.9 (a) through 9(h) for values of
T ranging from 1 m2/day to 1000 mz/day and for ¢ = 0.1, Q=500
mg/day and tp: 4,6,8 and 12 hours. It is seen from the
figures that for transmissivity values greater than 100 mz/day
the variation in drawdown for 4different values of tp and r

C

are small
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Therefore, large-diameter wells will have no additional
benefits if constructed in an area having high values of T.
These graphs can be wused to find the set of values of r. and
D for the given set of T,. ¢ ,tp, Q and S . The r_ and D set

is one of the.inputs for estimating the cost of excavation by
equation (16). Tablé 1 shows the costs of excavation for
different sets of depth and radius of the well for m'=2 (Rs/m")
n' = 2, PRICE-1.7(Rs.)/Kg., CROP=0.08 kg/m? and RATE=10%.

In Fig. 10 the cost of excavation aré indicated for different
sets of depth and radius of the weli for given T, ¢ ,t_, Q,

P

So' It is seen from the figure that the optimum depth (D) and

radius (rc) for which cost of excavation is minimum are 8.5 m and

3.1 m respéctively.




TABLE COST OF EXCAV%TION FOR DIEFEREN’I‘ DEPTHS AND.,RADII OF THE
WELL FOR CO=6(RS)/m ,m'=2(Rs/mm~), CROP=0.08 kg-m~, PRICE =
1.7/kg, SD= 5 m,RATE=10% and n'=2.

pepth from ground Radius Cost of excavation
(m) (m) : (Rs.)
5.25 12.00 58,450
5.50 9.00 36,936
5. 75 1.25 i 26,829
6.00 6. 25 22,241
6.25 5.60 19,851
6.50 5.10 18,248
6.75 4.70 17,125
7.00 4.30 15,794
7.25 4.05 15,396
7.50 3..80 14,856
7:78 3.60 14,578
8.00 3.40 14,184
8,25 3.25 14,105
8.50 3.10 13,937
8. 75 3.00 14,147
9.00 2.90 14,300
91,25 2.80 14,393
9. 50 2..70 14,424
975 2.61 14,502
10.00 2+52 14,522
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5.0 CONCLUSIONS

Unsteady flow to a large-diameter well in a confined
aquifer has been analysed by discrete kernel approach for
a case where the pumping rate is a guadratic function of
drawdown. Tractable analytical expressions have been obtained
for determining aquifer contribution, well storage contri-
bution and drawdown at any point in the aquifer. The time for
90 percent recovery of well storage for various values of
storage coefficient,tp and rw/rc has been presented. The graphs
showing variation of transmissivity with specific capacity
at different time after onset of pumping have been presented
to facilitate rough estimate of transmissivity.
5 Analysis for the design of large-diameter well has
been done. The optimum depth and radius of the large-diameter
well for which the cost of excavation is minimum can be
found by adopting the procedure suggested. Construction of

large-diameter wells in areas having transmissivity greater

than 100 mzjday will not be beneficial.
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PROGRAM FOR CALCULATING COST OF EXCAVATION OF DUG WELL
DINENSION RC(S50) sDRAW(S0),COST(50),D{(20)
OPEN(UNIT=4sFILE="COSTX.DAT’ s STATUS="0LD")
OPEN(UNIT=2sFILE="COSTX,0UT" 1 STATUS="NEW")
PAI=3,14159265

READ (4s1) COyCROPsPRICEsSHsANsSO/RATE

FORMAT(7F10.3)

COST OF EXCAVATION AT DEPTH Y FROM GROUND IS GIVEN BY COtSHEYRXAN

[(1)=DEPTH OF EXCAVATION

CROP=PRODUCTION PER UNIT AREA

PRICE=PRICE OF CROF PER UNIT QUANTITY
§0=DEPTH TO WATER TABLE FROM GROUND SURFACE

[IRAW(I)=DRAWDOMN THAT WILL BRING WATER TABLE TO BOTTOM OF THE WELL

RATE=WORTH OF A PARTICULAR CROP AT NTH YEAR
WRITE(2y11)
FURHHT(l?X!'CU'!13X!'Sﬁ'!13X!'RN'!13X!'CRDP'JIIX!’PRICE'!10Xl'50
17914Xs 'RATE")

WRITE(2y12) COsSMsANsCROPyFRICEsS0sRATE
FORMAT(&X»7E15,5/)

Do 2 I=1,20

READ(613) DRAR(I)sRC(I}

FORMAT(2F10.5)

CONTINUE

D0 200 1=1,20

0(I)=S0+IRAW(T)

CALCULATE THE MARKET FRICE OF THE CROP AT THE END OF EACH YEAR
THE NUMRER OF YEAKS OF THE COMPENSATION IS EQUAL TO 23
THE RATE CAN BE 10s15, OR 20 PERCENT

SUuM=0,

00 13 N=1,25

SUM=SUMHL ./ (1, +RATE ) REN)

D0 4 I=1,20
CBST(I)=PGI¥RC(I)KKQID(I)X(CU+SH*D(I)**ANI(QN+1))+PﬁI‘RC(I)¥*2
1XCROPXFRICEXSUM

WRITE(Z,14)

FORMAT (42Xy ‘DEFTH(I) “»7%) ‘RCAI) 7 910X, 'COSTAI) ")

D0 44 1=1,20

WRITE(255) DMI)sRC(I)COST(I)

CONTINUE

FORMAT(37Xs3E15.46)

WRITE(2:53)

FORMAT (2X» “ RREXRKXKERERESXOCRXRRRREE R OO KRR R KX
B ettttsssstntsssserertneoeeseseisetsbiiititittess ]
STOR 3
END

Cl!tKtl!l!lt!!!ttltt#t!t!!ti!ltt*t!t**1#K*!#*X#t**tttt*1*!*!1#1!*!ltt*l**!*tlt!lt
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