LIST OF FIGURES

S.No.	Figures	Page I	No.
Figure 1.1	Field depressions as a function of the mean depth of the water table during the growing season for various soil types	3	3
Figure 1.2	Soils with salt problems	8	3
Figure 1.3	Difference in root development between drained and undrained plots	1	15
Figure 2.1	Random drainage system	2	20
Figure 2.2 a	Parallel drainage system depicting field layout su to growing a variety of row crops including cotton corn, soyabeens, sugarcane, sorghum etc.		21
Figure 2.2 b	Parallel drainage system depicting field layout suited to sugarcane crop	2	22
Figure 2.3	Cross slope system on slight to moderate slopes	2	24
Figure 2.4	Layout of a surface drainage system showing late drain, collectoral drains and main drainage chann		24
Figure 2.5	An isometric view of relief and interception drains	2	26
Figure 2.6	Types of subsurface drainage system	2	28
Figure 2.7	Rise in watertable due to effective position of the interception drains for reducing seep area	2	9
Figure 2.8 a	Intercepting drain at out crop of aquifer	3	1
Figure 2.8 b	Interception drain in a constricted aquifer	3	2
Figure 2.9	An open ditch intercepting drain	3	4
Figure 2.10	Mole plough	3	4

Figure 2.11	Cracking and fissuring of heavy soil as a result of mole drainage	34
Figure 3.1	Areal Analysis Graph	42
Figure 3.2	Diagrammatic presentation of maximum depth area duration curves for a catchment	43
Figure 3.3	Equivalent slope for a curved stream profile	45
Figure 3.4	Relation of overland time of travel to overland travel distance, average overland slope and the rational runoff coefficient SUH Procedure	49
Figure 3.5	SUH Procedure	52
Figure 3.6	Relationship betwen Ct and Imperviousness	53
Figure 4.1	Horslev piezometer test (a) geometry and (b) method of analysis	74
Figure 4.2	Piezometer test in a confined aquifer (a) geometry and (b) type curves	76
Figure 4.3	The Auger Hole method	78
Figure 4.4	Nomograph for determination of C in auger hole method for S> 0.5 H	81
Figure 4.5	Nomograph for determination of C in auger hole method for S=0	82
Figure 4.6	Computation of k by Luthen and Kirkham formula (a) geometry and (b) Nomograph	83
Figure 4.7	Guelph permeameter (a) Tripod assembly (b) supportubes (c) reservoir assembly	ort 87
Figure 4.8	A bulb of saturated soil	88
Figure 4.9	Curves for three classes of soil	89
Figure 4.10	Permeameter placement	91
Figure 4.11	A view of Guelph permeameter set in the field	91
Figure 4.12	Borehole dilution test (a) schematic diagram of	96

apparatus and (b) dilution of tracer with time

Figure 4.13	Distortion of flow pattern caused by the presence of the well screen and sand or gravel pack	96
Figure 4.14	Constant head permeameter	100
Figure 4.15	Variable head permeameter	100
Figure 5.1	A mass curve representation of the SCS rainfall runoff relationship	115
Figure 5.2	Variation of Q Vs P for Ia - 0.2S	120
Figure 5.3	Runoff hydrograph consequent to a 3 day storm	123
Figure 5.4	Determination of rainfall excess	126
Figure 5.5	Isocrones of relative travel	128
Figure 5.6	Time area concentration diagram	129
Figure 5.7	Time area histogram	129
Figure 5.8	Velocities for estimating overland flow time	130
Figure 5.9	Command area for IGNP and adjoining systems	135
Figure 5.10	Water table evaluation at RD838 with provision of intercepting rain	143
Figure 5.11	Configuration of flow to two parallel intercepting drains	152
Figure 5.12	Surface allegation map of the study area	155
Figure 5.13	Particle size distribution curve and filter design	157
Figure 5.14	Rate of Water table lowering required for effective drainage of land	160
Figure 5.15	Steady flow to two fully penetrating parallel ditches for which Donnan's equation is applicable	165
Figure 5.16	Decomposition of the flow domain made for derivation of HOOGHOUDT's equation	165

Figure 5.17	Nomograph for evaluating approximate drain spacing	168
Figure 7.1	Well drainage - showing the cones of depression in a group of wells	181
Figure 7.2	Raised bed - Sunken bed system	181
Figure 7.3	Variation of soil moisture with respect to depth for a typical soil	188
Figure 7.4	Variation of capillary pressure (hc) with volumetric soil moisture content (θ) for touchet silt loam	194
Figure 7.5	Variation of K_{rw} (θ) with h_c for touchet silt loam	195
Figure 7.6	Variation of non-dimensional salt concentration with time for different reservoirs (layers)	197
Figure 7.7	Variation of non dimensional salt concentration with depth for different time periods	198
Figure 7.8	Break through curves as a function of relative salt concentration and volume of infiltrated water in a different reservoirs	204