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Abstract

Using discrete kernel approach an analytical solution has
been obtained to determine temporal variation of discharge of a
flowing well in a confined aquifer of finite areal extent. The
quantities of water that remain in the aquifer storage at any time
after the onset of flow, which will be subsequently drained by the
flowing well, have been quantified. Type curves have been prepared
to enable determination of aquifer parameters, such> as: storage
coefficient, transmissivity ,distance of the no flow boundary from
the flowing well, and the initial hydraulic head.

Introduction
When a permeable bed sandwiched in between impermeable strata

is warped into synclinal fold with the permeable bed exposed at
the surface along an out crop, condition favourable for flowing
well may develop. Recharge due te precipitation to the aquifer may
take place along the out crop and the permeable layer may contain
water under artesian condition. In such a case when a well is sunk
to the permeable bed a flowing well can be obtained. Flowing wells
are uncommon occurrence resulting from erratic geological process.
Discharge characteristics of a flowing well and certain spring are
comparable. An artesian aquifer is drained by a flowing well. The
discharge of a flowing well depends on the difference between the
elevation of the pilezometric surface in the vicinity of the
flowing well and the elevation of the flowing well's threshold. A
flowing well's discharge is derived from the water stored in the
aquifer. Hence, piezometric head in the aquifer gradually declines
and the flowing well’s discharge slowly reduces to 2zero.

In the present paper an analysis of discharge of a flowing
well in an aquifer of finite areal extent has been made. Using the
solution it is possible to predict the temporal dynamic storage
and the time at which the discharge from a flowing well becomes

insignificant.
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Review

Many investigators have analysed the unsteady flow associated
with a flowing well. Notable among them are Nicholson, Smith,
Goldstein, Carslaw and Jaeger (vide Glover,1974). Assuming that up
to a finite distance b from the centre of +the flowing well the
excitation has not propagated, the following solution +to the
differential equation
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for the initial condition s(r,o)=o, r>rw, and for +the boundary
condition s=s_ at r=r_ for t>o, has been given (vide Glover,1974):
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are Bessel’s function of the first and the second kind of

zero order respectively.

The flow from the well is given by
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When the excitation propagates to the farthest boundary, the above
solution will be no longer valid for aquifer of finite areal
extent.

Analysis of unsteady flow to a well in an agquifer of finite
areal extent has been presented by Muskat(1937) and Kuiper(1972).
The differential equation (1) has been solved for the following
boundary and initial conditions:
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in which "a” is the radial distance to the impermeable boundary, Q

is the constant pumping rate. The solution that has been given by

=-Q/(2nT) , and

Muskat is
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(ama) values,m=1,2,3....,are zeros of Jl‘ the Bessel s function of
the first kind and of first order. (ama) values have been
tabulated for values of m up to 20 (Abramowitz and Stegun, 187@).
(ama) values for higher values of m can be evaluated using the
following formula. of McMahon s expansions for large zeros:
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in which; 105(873) CL(3)

£ = (m+ % )r, and H=4.

In case of a flowing well the discharge rate, Q, varies with
time and drawdown at the well point is constant and equal to the
difference between the initial piezometric level and level of the
flowing well s threshold. The solution given by Muskat can be used
to solve the unsteady flow to a flowing well in an aquifer of
finite areal extent.

Statement of the Problem

A schematic section of a flowing well in a confined aquifer
of finite areal extent is shown in figure 1. The level of the
flowing well’s threshold is at a height H, above the datum. Prior
to the sinking of the well, the piezometric level was at a height
H,. The time is reckoned from the instani the well is sunk and it
starts flowing. It is required to determine (i) discharge of the
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flowing well at various time,(ii) temporal and spatial variationm

of drawdown in piezometric surface, and (iii) quantities of water

that remain in the storage of the aquifer.
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Fig.1-5CHEMATIC SECTION OF A FLOWING WELL

Analysis

The following assumptions have been made 1in +the analysis:
i) The time parameter is discrete. Within each time step, the
discharge of the flowing well is constant but it varies from step
to step.
iiYThongh the -aguifer near the out crop is unconfined, the entire
aguifer has been assumed to be confined and the position of the
no flow boundary is assumed to be stationary.

The solution of differential eguation (1) ne=ds to satisfy
the following initial and boundary conditions for the flowing
well under consideration:

s(r,o)=o

s(rw.t):Hi— Hz

o,

ér'r=a”

Let K(t) be the drawdown in pieszometric surface of a confined
aquifer of finite areal extent at a radial distance r from the
well due to a unit step excitation. Expression for K(t) can be
obtained from equation(2) substituting @ by 1. Let ér(N) be the

regponse of the aguifer at the end of time step N due to a unit




pulse excitation. ér(N) is recognised as discrete kernel (Morel

Seytoux, 1975) and it has the following relation with unit step
response:

6r(N) = K(N) - K(N-1) oL (4)
Substituting for K(N) and K(N-1) in eguation (4) and simplifying,
the following expression for discrete kernel for drawdown for N 1

in a confined aquifer of finite areal extent ig obtained:
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For N = 1, ér(l) is given by
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ot QlF); ¥ 52 1880504, I, be the discharge of the flowing

well during time step ». The drawdown in piezometric surface at
the end of time step I at any point in the aguifer is governed by
the discharges of the flowing well up to time step I. The relation
between drawdown at flowing well and the well discharge is

s(r,, 11 = f? Q)6 (T-r+1) .01

The discrete kernel coefficient érw(.) can be obtained from

equations (5) and (6) replacing r by Yo

Since the drawdown at the flowing well at. any time step ia

Hi-H,, therefore,
4 - = I & -
H1 H2 = 5:1 Q(r).rw { T~ptll) - = wl(8)

Equation (8) can be rewritten as
Hl_HZ =T T Q(r)érw (I-p+1)+ Q(I)&(1) « (19

Thus, the discharge of the flowing well during Lime step I is

given by




QL) = zriy [Hy-H, - igi Q)6 (I-7+1)] ... (10)
Q(I) can be found in succession starting from time step 1.

In particular for time step 1, Q(1) = {Hl—Hz]/é(l). Once Q(I)
values are known the drawdown at any point can be evaluated using
the relation I

sy, ) = % Q(r)ér(I—r+1) S ey

r=1
Results and Discussion

The discrete kernel coefficients ér{I) are generated for r
equal to r and for other radial distances at which drawdown
calculations are ‘sought for a known set of aquifer parameters T,
¢ and radial distance “a’. The large zeros (ama) of the Bessel’'s
function J,(.) required for the evaluation of discrete kernels
have been obtained making use of equation (3). The first one
hundred zeros(m=129) have been considered for evaluation of
discrete Lkernel coefficients. A plot of ér(I) versus I is
presented in Fig.2 for different values of r. Since the discrete
kernels are the response of the aquifer to = unit withdrawal
during the first time period, and the aguifer has =& finite radius
equal to "a’, at large time step I, 6r(I) tends to a limiting
value equal to 1/(naz¢). After generating the discrete kernel
coefficients, the discharge of the flowing well Q(I) have been
solved in succession starting from time step 1. The variation of
dimensionless discharge rate Q(t)/{T(Hi—Hz}} with nondimensional
time factor ¢ rz/(4Tt) is shown in Fig.3 for values of a/rW

A 5x10?, Fig.3 shows that at large value of

ranging from @.5x10
@ r;/(4Tt) i.e in the beginning when the well starts flowing, the
graphs for two different values of a/rw merge with each other
indicating that the presence of +the no flow boundary has not
affected the well discharge until the +time of merger. The
discharge of the flowing well decreases with time and reduces to a

negligible quantity at large time.
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The variation of dimensionless discharge with non dimensional
time, 4Tt/(¢ r.), is shown Fig.4 in a log-log scale. Fig.4 shows
that larger the value of “a” longer is the 1life of the flowing
well. For a/rW 2194, at nondimensional tiﬁe 3.4x109; the
dimensionless discharge is @.1. For a/rw = 2x190 and 5x18 . the
corresponding time \is 15.8x12° and 95.2x10° respectiveiy.

The variation ;f dimensionless drawdown, s(r,t)/(H{HZ), with
¢ r2/(4Tt) is shown in Figs 5(a) and 5(b) for a/rwzl.@xle‘ and
\5.®x1@4 for a set of r/a. s(r,t)/(H;Hz) can be regarded as the
well function for a flowing well in an aquifer of finite areal
extent. The type curve presented in Figs.5(a) and 5(b) can be used
to find the parameters (H1-H2),T/¢, a, and B If the variation of
drawdown with r’-t at a piezometer plotted in a log -log paper
which has the same scale as that of the type curve presented in
Figs.5(a) and 5(b) matches with any of the +type curves, it is
then possible to estimate the parameter (Hi-Hz),T/¢, a,r.. If the
discharge of the flowing well is measured and its variation with
time is plotted in a double log paper T and ¢ can be. estimated by
matching this graph with the curve presented in Fig.4.

The total quantity of water that can be drained by the
flowing well is equal to ma’¢ (H,- H)). In Fig.6 the variation of
the ratio of cumulative discharge to the total discharge of the
flowing well with time has been presented. The graph also shows
the the quantity of water that remains in the aquifer storage at
any time to be drained by the well.

Conclusion

A solution of unsteady flow to a flowing well in a confined
aguifer of finite areal extent has been obtained by discrete
kernel approach using Muskat’'s basic solution of unsteady flow to
= well in a confined aquifer of finite areal extent. The temporal
sariation of the flowing well’s discharge has been predicted.
Type curves for prediction of the parameters, and radius of the
circular aquifer, and the head difference which causes the flow
have been presented. The quantity of water that remains in the
aquifer s storage at any time has been assessed,
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