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Abstract

Interference of seepage from two parallel canals, which are
hydraulically connected with an aquifer, has been investigated
using discrete kernel approach. Results of interference of two
parallel canals have been presented when both the canals run
continuously. From the study the following conclusions have been
drawn: (i) the unsteady seepage losses from +the canals and the
reductions in seepage due to interference are linearly
proportional to the initial potential difference that causes the
flow; (ii) in case of two continuously running parallel canals,
the reduction in seepage from one canal due to interference of the
other is zero in +the ©beginning of seepage, the interference
increases with time, attains a maximum value and then decreases
and the decrease is monotonic at large time; (iii)the maximum
reduction in seepage due to interference decreases with increase
in the spacing between the canals; (iv) the occurrence of maximum
interference is delayed for canals with larger spacing;(iv) in
case of two unequal parallel canals the interference of the larger
canal on the smaller one is more than that of the smaller canal on
the larger one,

Introduction

Canals continue to be the major conveyance system for
delivering water for irrigation in most parts of the world. The
main canals, in an irrigation project, are designed keeping in
view the water availability and the irrigation water requirement
in the canal command areas. It is observed that in some canal
systems in Northern India, the capacities of the main canal are
inadequate for conveying the required irrigation water for paddy
and sugar cane crops during the months of May to October. Since,
during this period, additional water is available in +the rivers
from which the canals take off, parallel canals have been
constructed along the existing canals to augment supplies +to the
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respective command areas. If the water table is present at a
shallow depth, the seepage from a parallel canal system would
remain in an unsteady state condition. The difference between
seepage loss from a canal of the parallel canal system and the
seepage loss from the same canal had the other canal not been
present quantifies the interference of the latter on the former.
In the present paper,the interference of seepage of +twoe parallel
canals, which are hydraulically connected with the aquifer, has
been analysed using a discrete kernel approach.
Statement of the Problem

Two parallel canals have been constructed in a homogeneous,
isotropic, porous medium of finite depth and infinite lateral
extent. The widths of canals at water surface during an nthtime
reriod are Bi(n) and Bz(n) and the depths of water in the canals
are Hl(n) and Hz(n) as shown in Fig.(1). The depths Hlin) and
Hz(n) may vary with time n depending on +the supply from the
source. The canal section being trapezoidal,Bl(n) and Bz(n) vary
with Hl(n) and Hz(n) respectively. Initially the water table is at
equilibrium condition and it is at a shallow depth below the canal
beds. The canals get hydraulically connected with the underlying
aquifer soon after the water is conveyed in them. It is required
to find the variation of seepage from the canals with time and the
evolution of water table after the the onset of seepage
Anlysis

The following assumptions have been made in the aralysis,
(1)The time span is divided by uniform time-steps. (ii) Within
each time-step the seepage rate from each canal is a constant but
it varies from step to step. (iii) The seepage rate from a canal
reach, which is hydraulically connected with the underlying
aquifer, is linearly proportional to the difference in the
potentials at the periphery of the canal reach and in the aquifer
below the canal bed (Herbert,1970; Morel-Seytoux, 1975 ; Besbes et
al.1978; Flug et al.1980).

Let Ql(n) and'Qz(n) be the seepage rates per unit length of
the first and the second canal andAFl(n) and Fz(n) bz the reach



transmissivity constants of +the first and the second canal

respectively. The reach transmissivity of a canal is the constant
of proportionality between seepage per unit length of a canal and
the potential difference. Let the origin be chosen at the centre
of the first canal and the drawdown, s(x,n), be measured from a
high datum. According to the linear relationship Ql(n) and Qz(n)
are given by (Morel-Seytoux,1875):

Q[(n) =-T';(n)[oy(n)-5(0,n)] os (1}

Q,(n) =-Fy(n)[og(n)-5(D,n)] o G20

in which, D = the distance between the canals,and GI{n): the depth

to water surface in the Ith

canal from the high datum.
The reach transmissivity constants per unit length of canal

reaches are given by (Herbert,1970):
1"I(l’l) = hk/loge{(eI+HI(n))/(2 rIr)} =l 2 ccans: (GO}

in which, k is the hydraulic conductivity, ey and e, are the
saturated thicknesses below the first and the second canal, and
Ty, +T5, are the radii of the equivalent semi circular section of
the first and the second canal respectively.

The drawdown s(0,n) and s(D,n) can be expressed in terms of

recharge as:
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Ep which, Di=depth to impervious stratum from the high datum,
H=the initial saturated thickness of +the aquifer. The discrete
kernel coefficients for rise in water table are given by:
6I[O,BI(N),M I =F [O,BI(N),M ] -F [O,BI(N),M—I];Izl,Z; Mz2
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a =T/¢; T=transmissivity, and ¢ =storativity of the aquifer. The
discrete kernel coefficients are the response of a linear system
to a unit pulse excitation given to the system during the first
unit time-step. In the present case, the coefficients are the
values of rise in water table height at a point due to the
recharge that takes place at a unit rate per unit length of a
canal during the first time step. The discrete kernel coefficients
can be derived from the response of a linear system to a unit step
excitation yK(t), using the relation, &(n)=K(n)-K(n-1).
Polubarinova Kochina (1962) has derived an expression of the
response function to a step excitation for a straight recharging
strip which has been used for deriving the discrete kernel
coefficients.

Incorporating Equations (4) and (5) in Equations (1) and (2)
respectively, Ql(n)and Qz(n) are solved which are given by:

Q,(n)
i . -1
[Qz(n)] = [A] ~. [C] ol KB

The elements of the matrices are:

A1,1) = —1/r1(n)h51{n,31(n),1]; A2 = -52E-D=Bg(n):13;



A(2,1) = -6,([D,B;(n),1]; A(2,2) = -1/T5(n)-6,(0,B,(n),1];
C(1,1) = oy(n) - D, ¢ & +y§?_191(r)61[0,B1gr).n-r+l}
n-1
r=1
n-1
C(2,1) = o5(n) - Dy + H + z Q(¥)8[D,By(¥),n-y+1]
n-1 wel
* T Qy(2)8,00,By(r),noy1].

Once the seepage losses at different times are obtained, the
rise in water table can be computed by making use of the eguation

given below:
— n
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Results and Discussion

Numerical results have been presented for interference of two
parallel canals which run continuously with constant depth of
water in them. It has been assumed that their beds are at same
level. Making use of the solution presented here, results could be
obtained for canals in case their beds are at different levels and
they run intermittently with varying depth of water. The results
for seepage losses and water table rise have been obtained for
assumed canal dimensions, aquifer parameters, Kk, —H, ¢, and an
initial potential difference between the canals and the aquifer.
The discrete kernels for water table rise have been generated for
assumed values of canal dimensions, spacing between +the canals,
and the aguifer parameters. Since both the canals run continuously
with constant depth of water, and the widths of the canals at
water surface do not change with time, the reach +transmissivity
constant for each canal also doegs not change with time. The
seepage losses have been solved in  succession, starting from

time-step 1, using equation (8).

o
(&)



The unsteady seepage losses from one of the two identical
parallel canals for B, /H=B,/B=0.03, H, /H=H,/H=0.003,D/H= 0.18 and
for initial water table positions, H/H =0.005 0.007 and 0.009,
are presented in Fig.(2). The seepage loss from a canal at time
t=0 is a finite gquantity and it is given by the product of the
corresponding reach transmissivity and the initial potential
difference. The seepage loss from one canal that would ocepr: 4if
the other canal is at D=, has also been shown in the figure. The
difference between seepage loss from a canal of the parallel canal
system and the seepage loss from the same canal, 1if +the other
canal does not exist, quantifies the interference of the latter on
the former. It could be seen from the figure, that in the
beginning, the reduction in seepage 1in each canal due to
interference of the other is zero; the interference increases with
time and attains & maximum value,

The variations in reduction of seepage with time due to
interference for different values of initial rotential difference,
are also shown in Fig.(2). It could be seen from the figure that
the interference between the parallel canals, at any time.
increases with increase in the initial potential difference. At
nondimensional time factor,kt/(2¢ E)ZO.SO, for (H—ol)/ﬁ:0.004, the
reduction in seepage due to interference is 0.180. If the initial
potential difference, (H—&l)/ﬁzﬂ.OOB, the corresponding reduction
due to interference is 0.360. It could be seen that the
interference is linearly proportional to the initial potential
difference. At non-dimensional time factor 0.5, the reductions in
seepage losses due to interference are 0.360, 0.270, and 0.180 for
(H—al)/E:0.00B, 0.006,and 0.004 respectively. The ratios of +the
reduction in seepage due to interference and the corresponding
initial potential difference are equal to 0.045. Thus the
reduction in seepage from any canal due to interference of the
other is linearly proportional to the initial potential
difference.

The reduction in seepage loss due to interference at large

times for various distances between two identical canals has been




shown in Fig.3, in a semi log plot, for Blfﬁzo.ﬂs.lt is seen from

the figure that the reduction in seepage due to interference
reaches a maximum value at very large time and then decreases.The
reason for the decline is as follows:

The seepage from a canal decreases with the decrease of the
potential difference between the canal and the aquifer. In a
parallel canal system the potential difference under a canal
decreases with time partly due to its own seepage and partly due
to seepage from the other canal. Ultimately, the seepage loss from
a canal at large time would tend to zero whether it runs alone or
it runs along with the other canal. Since the seepage loss tends
to zero in either case, the reduction in seepage loss due to
interference will also tend to zero. Because the interference
ultimately tends to zero, it would decline after reaching a
maximum value.

It is seen that the occurrence of maximum interference 1is
delayed for larger spacing between the canals. For D/ﬁ;0.0B, the
maximum interference occurs at kt/(2¢ H7=0.80. For D/E:O.lﬂ the
maximum interference occurs at kt/(2¢_H)=O.90. The maximum value
of interference declines with increase in spacing between the
canals. It could be seen from the figure that for v/H=0.08, the
maximum value of interference is 0.480, where as for D/H=.48, the
maximum value of interference is 0.430

The variation of reduction in seepage due to interference for
two unequal parallel canals, which run continuocusly , is presented
in a semi log plot in Fig.4 for different values of D/H for
B,/H=0.06,B,/H=0.03, H,/H=H,/H=0.003, and H/H=0.009. The figure
shows that, at any time, the reduction in seepage from each canal
due to interference is more for smaller spacing between the
canals. The reductions in seepage due to interference attain
different maximum values at different times for a given spacing
between the canals. After reaching a maximum, the interference
reduces with time. The occurrence of maximum reduction in seepage
‘due to interference takes place at earlier time for the larger

canal. For example, for D/E:O.24, the maximum reduction in seepage
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for.the first canal, which is larger, occurs at kt/(2¢ H)= LI (o
whereas, for the smaller canal the maximum interference occurs at a
nondimensional time 1.3. The effect of the larger canal on the
smaller canal is more than the effect of the smaller canal on the
larger one. For example, the maximum reduction in seepage from the
larger canal due to interference of the smaller canal is 0,403 for
D/E:D.24, whereas,the maximum reduction in seepage . from the
smaller canal,due to interference of the larger one, is 0.432.

The rise in water table due +to seepage from two equal
parallel canals have been evaluated at different locations across
the canals for Bl/ngz/E:O.Q6, Hl/ﬁsz/ﬁ:0.003, initial potential

difference.(H~a1)/§ =0.008, and D/EZO.IS_ The results are shown in
Fig.(5).1It could be seen from the figure that in the beginning of
seepage, at non-dimensional time 0.005, well defined water mounds
are formed under the centre of each canal. As the time passes, the
ridges get dissipated and the points of maximum rise move +towards
each other, indicating higher fraction of seepage flow from each
canal going towards the outer sides of the canals. The points of
maximum rise of water table, however,do not go beyond a distance
of half the respective width of the canals at the water surface.
Conclusion

Based on the results presented in this chapter, the following
conclusions are drawn :i) The unsteady seepage losses from the
canals and the reduction in seepage due +to interference are
linearly proportional to the initial potential difference that
initiates the flow. 1i) In case of two continuously running
parallel canals,the reduction in seepage from one canal, due to
interference of the other is zero in the beginning of seepage.The
interference increases as the time passes and attains a maximum
value and then decreases. The decrease is monotonic at large
time.iii) The maximum reductions in seepage due to interference
decrease with increase in the spacing between the canals. Also,
the occurrence of maximum interference is delayved for canals
having larger spacing. iv) The interference of a bigger canal on

smaller canal is more than that of the smalier canal on the bigger



one. v) For the parallel canals of equal dimensions, distinct
water mounds of equal height are formed under the canals. In the
peginning of seepage, the ridges 1lie under +the centre of the
canals. With lapse of time, as seepage continues,the points of
maximum water table height move towards each other;but they do not
cross the width of the respective recharging strips. With passage

of time, the zone in between the canals becomes a stagnant zone.
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