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SEEPAGE LOSSES FROM CANALS
BY
G.C. MISHRA

Steady seepage from canals

Steady state seepage from a canal, when-the water
table is at large depth has been anmalysed by a number of
investigators for various boundary conditions. Kozeny (1931)
has shown that, if the shape of a ditch or canal conforms |

to the equation [x o cos—l(y/H)]2+ y2= Hz, where Q is

K" °
the seepage réte, x and y are cartesian coordinates with
origin at the centre of water surface and H is the maximum
depth of water in the canal, the maximum width of shzet of
water seeping down into the porous medium is equal to (B+2H);
B being the width of canal at water surface, According to
Kozeny, the seepagé quantity from such a canal is K(B+2H),
where, K is the coefficient of permeability. The result holds
good if the pocrous medium is of very large thickness so fhat
the seeping water cen maintain its vertical downward movement
indefinitely. This requirement prohibits the applicability
of the solution to cases where the ground water table is. at
shallow depth. Muskat (1946) has compared the wvalues of see-
page discharge for three different shapes of canals and quanti-
fied that the extreme variation in seepage, due to the eff
effect of shape of canal.or ditch, is about 10 percent.
Wedernikov (1937) obtained an exact solution for seepage

from channels of triangular and trapezoidal shape with ground

water table at infinite depth.
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Unsteady seepage from canals when water table is at

large depth

When the water table is at large depth, the canal
is not hydraulically connccted with the agquifer, and the
seepage from canal is independent of the location of water
table. In such a situation, there are three main aspects
of the flow process, viz., the movement of water threugh
the unsaturated zone till it reaches the deep water table,
recharge to the aquifer after the wetting front reaches the
water table, and evolution of water table after the onset

of recharge.

According to Morel-Seytoux and Khanji (1974), un-
til the wetting front reaches the water table, the infiltra-
tion rate can be represented adecuately by a modified Green
Ampt equation given below:

K (8-6) [H(t)+H_]J+w(t)
Lee) = €

where,
H(t) = depth of water above soil,

w(t) = cumulative volume of infiltration expressed

as depth,
K = hydraulic conductivity at normal saturation,
H, = effective capillary drive,
=) —~ water content at natural saturation, and
91 - initial water content.

According to Abdul-razzak and Morel-Seytoux(1983),

the seepage rate from a canal is not the rccharge rate at
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the water table at all time. With the wetting front position
between the canal bed and initial water table position, and
for initially dry soil, the seepage rate varies in time,

but the recharge rate is constant and zero. Even after hy-
draulic connection is established, unless the soil column
between canal bed and initial water table position is satu-
rated, the two rates will be different. When the depth of
water table from canal bed is large, by the time the wetting
front reaches the saturated zone it travels at a velocity
approximately equal to the saturated hydraulic conductivity,

K. Bouwer (1969) states that for the case of seepage from

a canal for the shape of chammel given by Kozeny, the verti-
cal downward flow and maximum width of the flow system are
essentially reached at a depth of 1.5 (B+2H) below the bed
of the canal. The rate of recharge at the time the wetting
front meets the ground water table is equal to the seepage

rate and remains constant equal to K(B+2H).

An efficient yet accurate hydrologic model on the

interaction between river (canal) and the alluvial aguifer

hns been developed by Morel-Seytoux and Daly(1975).The flow from
the canal to the aguifer can be assumed to be lincarly
dependent on the difference of potentials at the periphery

of the canal and in the aquifer near the canal. The follow-

ing relation has been used by Morel-Seytoux:

Q.(n) = - {lo (n) - S ()]
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in which,

f; = the constant of proportionality known as reach
transmissivity,
Gr(n) = draw down of the water level in the eanal ™

during nth time period measured from a high
datum, and

S_(n) = drawdown of the water teble in the aquifer
measured from the same datum in the vicinity of

the canal.

Using a simple potentinl treory Morel~-Seytoux et al
(1979) have cerived the following exvression of reach trans-
missivity for a canal embedded in a porous medium underlain

by an impervious layer [Fig. 2 8 4
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in which,
Lr = length of canal reach,
T = transmissivity of thc aquifer,
Wp = wetted perimeter of the canal, and
e = saturated thickness bziow the canal bed.

Herbert (1970) has relatcd “he flow from a parti-
ally penetrating river, having sevnicircsular cross section
[Fig., 3 ], to the potentinl diffcr nce between the river
and in the aquifer below the river bed. The expression

is given by:
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Q. = =L, K (e ho)/loge(0.5 m/rr)

in which,
Lr = length of river reach,
hr = potential at the r iver boundary,
ho = potential in the aquifer below the river bed,
m = saturated thickness of the aquifer, and
s radius of the semicircular river eross

section.

The reach transmissivity which could be obtained from

from above equation is:

. = nL K/log (0.5 m/r )

Estimation of seepage from a canal when watertable is at

shallow depth below the canal bed:

Let the time span be discretised by time steps of
uniform size., According to the linear relationship, the

seepage rate during time step 'n' could be expressed as

Q,(n) = - [ [o.(n) - 5 (n)] .+ (1)

in which, o _(n) is the drawdown to the water level in the

canal measured from a high datum during nth unit time period,

and Sr(O,n) is the drawdowvn in the aquifer under the canal

th

measured from the same datum during n unit time step.

According to Herbert (1970), the reach transmissivity,r}g

per unit length of canal is given by



r; = mK/log_(0.5 ne/wp) . olZ)

in which, e is the saturated thickness below the canal bed,
wp is the wetted perimeter of the canal, K is the coefficient
of permeability. According to Poluborinova~Kochina (1962)
the water table rise at time t after the onset of recharge
at o distance x from the centre of the strip due to continuous
recharge taking place at a uniform rate of R m3 per unit time

per unit area from a strip source of width B is given by

Sl(x,t)

i

+ Z0(x40.58) B0t (5557 - (x-0.58) “Ere (52®) |

Y a4a

L}f.‘."q‘u‘.—?.ril _ {x~0.3B !2

+ F2{T(~ [(X+O SB) 4ot o (X—O.5B)G dot ]
r X2l
- for x ¢ - B/2 .. (3)
and x > B/2
RBY (%)

= F(X,B,R,t}- - ..(4)

2

For - B/2 < x < B/2, the rise is given by

2
Sl(x,t) = F(x,B,R,t) - g% (x2+ %f) w0 D)

If unit recharge takes place from unit length of
the strip, the rechargerate R will be equal ¥o a8 LT
recharge continues at this rate, the rise in watertable
height can be computed with the help of equation (3) and (5)

depending on the value of x.
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Let unit recharge take place from unit length of the
strip during the first unit time step and let no recharge
take place after that. Let the corresponding rise in water
table be designated as d(x,B,n), 9(x,B,n) coefficient can

be computed from the following relationship:

d(x,B,n) = F(X,B,%,n} - F(X,B,%,nml) + «06)
3(x,B,1) = F(X,B,%,l) = é%&(x ) for x £ - B/2 e (7 )
% 3 o B/2
1 3 0 B
= F(x,B,E,l) ~ 557 (x +-Zw) for —Bf2<x(BI2 .. (8)

Let it be assumcd that the seepage rate and the re-

charge rate are equal. When a canal conveys the water,
the recharge takes place at a varying rate. Let QR(Y),
[y=1,2,....n] be the scepage rate during time step vy.
The rise in water table height at the end of time step n for
a variable recharge rate is given by

n
Sl(x,n) = % o(x,B,n-y+1) QR(Y) ..(9)

y=1
Referring to Fig.4 the depth to water table height below

the canal bed can be expressed as

s.(0,n) =D, - H -

0(0,B,n-v+1) Qg(¥) .. (10)
Y
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Replacing Sr(O,n) in equation (1) with the help of eguation
(10), and rearranging
Qr(n) n

= dr(n) - D; + H+ £ 9(0,B,n-v+1) Q-(y) o g lely)
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Splitting the temporal summation into two parts, one part

th
)

comprising the summation uptc (n~1 time step, and the

©h
second part consisting of the ccntributicn of the n time
step, and solving for Qr(_n).e

-1
a.(n) = [D; - H - o (n) ~ Yil (C,B,n-y+1), Q.(y)]

[ & + 0(0,B,1)] L.(12)
T

Qr(n) can be solved in succession starting from time step 1.
1f the depth of water in the canal remains constant, the
term Di;ﬁ"dr(n) will be constant and equal to the depth to
initial water table position below the canal bed. The dem
creasing secpage rate can be computed for a straight canal
reach from equation (12).

A typical variation cf unsteady seepage with time is
shown in Fig.4. The seepage rate is more in the beginning and
it decreases with time. In the very beginning the seepage rate
is equal to the product of reach transmissivity and initial

potential difference,
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