REGIONAL GROUND WATER BALANCE

KAMAL SCIENTIST NIH, ROORKEE

1.0 INTRODUCTION

Groundwater remains in dynamic condition and the block boundaries do not form the hydrologic boundaries. To carry out groundwater balance, considering block boundaries as boundaries would need intense monitoring of water level along the periphery of each block or district. As the continuous monitoring of water level along the boundary of the block do not exist, a methodology has been developed to assess the monthly groundwater availability in a block considering the inflows due to abstractions and outflows due to recharge at different points.

The groundwater potential of an area depends not only on the recharge in the area, but also on the inflow and outflow in that zone. In the present method, these quantities have also been considered keeping the dynamic nature of the groundwater in mind.

2.0 ESTIMATION OF RECHARGE AND DRAFT

The details of the water balance components which are considered in the groundwater assessment are described below:

- 2.1 Monsoon Recharge
- a) Monsoon Recharge due to rainfall

Let n be the total number of blocks in the study area. Considering the ith block, let

- (i) Geographical area of the ith block = A(i)
- (ii) Total number of wells in the ith block = P
- (iii) Maximum depth to water table in jth year at pth well
 - $= a_{\text{max.p}}(i,j)$
- (iv) Minimum depth to water table in jth year at pth well = b_{min,p}(i,j)
- (v) Period for which the groundwater hydrographs are available = N years

The temporal average maximum depth to water table below ground level at pth well has been computed as:

$$\overline{a}_{\text{max,p}}(i) = \frac{a_{\text{max,p}}(i,1) + a_{\text{max,p}}(i,2) \dots + a_{\text{max,p}}(i,N)}{N}$$

The temporal average minimum depth to water table below ground level at pth well has been computed as:

$$\overline{b}_{\min,p}(i) = \frac{b_{\min,p}(i,l) + b_{\min,p}(i,2) + \dots + b_{\min,p}(i,N)}{N}$$

The average temporal water table fluctuation at pth well in the ith block has been computed as:

$$c_p(i) = \overline{a}_{max,p}(i) - \overline{b}_{min,p}(i)$$

The average spatial and temporal water table fluctuation in the ith block which has P number of wells has been computed as:

$$C(i) = \sum_{p=1}^{P} c_{p}(i)/P$$

- (vi) Non-monsoon raintall in i th block = NNM(i)
- (vii) Yearly rainfall in the ith block = YR(i)
- (viii) Monsoon rainfall in the ith block = I(i)
- (ix) Total draft $= D_{T}$
- (x) Gross kharif draft (ham), which has been assumed to be $0.20D_T$, in the ith block = D(i)

The monsoon recharge due to rainfall only has been found as:

Monsoon Recharge due to rainfall

=
$$[A(i).Y(i).C(i)+D(i)-E(i)-F(i)-G(i)]$$

in which

- Y(i) = specific yield of the ith block
- F(i) = Recharge due to surface water irrigation during monsson
- G(i) = Recharge due to groundwater irrigation during monsoon = 0.3D(i)

This recharge can be considered at a point at the centre of the block.

- b) Monsoon Canal Seepage

 This quantity is given by
- E(i) = length of the canal (m). wetted perimeter of the canal (m). $F_s/10^6$. running days of canal during monsoon
- Fs = Seepage factor for canals = 15 to 25 ham/day/106sq.m. of wetted perimeter

It can be taken at the centre of the canal command area for mathematical simplicity.

- c) Monsoon Recharge due to irrigation

 This recharge can be calculated as
- F(i) = Area irrigated (ha). Average water depth(m).f(i)/100 where f(i) is the percentage infiltration factor. The recharge can be considered at the centre of the block.

Monsoon recharge is divided into four monsoon months according to the rainfall in each month.

- 2.2 Non-monsoon Recharge
- a) Non-monsoon rainfall recharge from the ith block has been estimated using the following relation:

Non-monsoon rainfall recharge from the ith block = A(i).NNM(i).f(i)/100

It can be taken at the centre of the block.

- b) Recharge from Surface Sources
- (i) Non-monsoon Recharge From Canals

The recharge from canals during non-monsoon period has been computed in the following manner:

Non-monsoon recharge from canals = Length of the canal(m).

wetted perimeter(m).

F /106.running days

ddring non-monsoon

which can be considered at the centre of canal command area.

(ii) Recharge From Surface Water Irrigation During Non-monsoon The recharge from surface water irrigation depends upon crop type. It has been computed as: Seepage from surface water irrigation during non-monsoon = Area irrigated(ha).Average water depth(m).f_t/100

It can be taken at centre of canal command area because irrigation during non-monsoon is done only in canal command area.

Non-monsoon recharge may be sub divided into 8 non-monsoon months, if monthly data is not available.

2.3 Recharge from tanks

Let the water spread area of the i^{th} tank(ha) = $A_t(i)$

Seepage factor for the i^{th} tank in the block = $f_t(i)$

(cm/year)

Duration of storage in the i^{th} tank in days = $d_s(i)$

Total number of tanks $= n_{t}$

Recharge from all the tanks in the pth block

= $\sum_{i=1}^{\infty} A_{t}(i).f_{t}/100.d_{s}(i)/365$

which is taken at the centre of block.

- 2.4 Potential Recharge
- a) Recharge from Flood Prone Areas

Let the flooded area during the i^{th} flood = $A_f(i)$

in a year in pth block (ha)

Seepage factor for the flooded area(cm/year) = f

Duration of flood days for the i^{th} flood = d(i)

Total number of flood $n = n_f$

Recharge from the flood area = $\sum_{i=1}^{1} A_{f}(i) \cdot f/100 \cdot d(i)/365$

b) Recharge from Shallow Water Table Areas

Potential recharge from shallow water table areas (ham)

has been computed as (permissible depth to water table-premonsoon depth to water table). A'(i).y(i), where, A'(i) is the area in the ith block in which water table is whin 5m depth below ground level. The permissible depth to water table has been taken as 5m. The total potential recharge is summation of item (a) and (b), and is considered at the centre of the block. Potential recharge may be added to those months when the flood occurs.

The total annual recharge = Monsoon Recharge + Nonmonsoon Recharge + Recharge from Tanks + Potential Recharge.

Check on Water Table Fluctuation Assessment:

Monsoon rainfall recharge = Monsoon recharge computed by water

table fluctuation approach (ham)

seepage from canals and surface

water irrigation during monsoon(ham).

Monsoon rainfall recharge calculated by ad-hoc norms (ham)

= Geographical area(ha). IMD normal monsoon rainfall(m).recharge factor/100

Let

a = (monsoon rainfall recharge computed by water table
 fluctuation approach - monsoon rainfall recharge
 computed by ad-noc method - gross kharif draft)

Percentage variation = a/monsoon rainfall recharge on ad-hoc norms.100

If percentage variation <20, water table fluctuation approach

has been recommended for assessment of monsoon rainfall recharge. If percentage variation >20, ad-hoc norms approach has been recommended for assessment of monsoon rainfall recharge.

3.0 STATMENT OF THE PROBLEM

It is intended to find the temporal groundwater availability in a particular area considering the dynamic nature of groundwater, i.e. all the inflows from the adjacent aquifers and outflows to the adjacent aquifers due to withdrawal and recharge of groundwater are taken into account.

The monthly availability of groundwater is to be assessed using the given recharge and withdrawal data.

3.1 METHODOLOGY

The area of the district is approximated by circular zones. The centre of the each circle defines a local origin of a polar co-ordinate system (Fig.1). Let the radius of the circular zone be R. Let A_i be an abstraction point whose polar co-ordinates are (r_i, θ_i) . The inflow to the aquifer from the adjacent area across the circle at time t due to a continuous withdrawal at unit rate at point A_i is given by

$$-\left[R^{2}+r_{i}^{2}-2Rr_{i}Cos(\theta_{i}-\theta)\right]$$

$$K(r_{i},\theta_{i},R,t) = \int\limits_{0}^{t}\int\limits_{0}^{2\pi}\frac{e}{2\pi}\frac{e}{\left(R^{2}+r_{i}^{2}-2Rr_{i}Cos(\theta_{i}-\theta)\right)}\left[R-r_{i}Cos(\theta_{i}-\theta)\right]dxd\theta$$
 where

$$\beta = \overset{\mathrm{T}}{\varnothing}$$

T = transmissivity of the aquifer

 \emptyset = storage coefficient

Integrating with respect to

$$\begin{split} \text{K}(\textbf{r}_{i}, \textbf{\theta}_{i}, \textbf{R}, \textbf{t}) &= \int\limits_{0}^{2\pi} \ \frac{\textbf{R} \textbf{d} \textbf{\theta}}{2\pi} \ \frac{\left[\textbf{R} - \textbf{r}_{i} \textbf{Cos}(\textbf{\theta}_{i} - \textbf{\theta})\right]}{\left[\textbf{R}^{2} + \textbf{r}_{i}^{2} - 2\textbf{R} \textbf{r}_{i} \textbf{Cos}(\textbf{\theta}_{i} - \textbf{\theta})\right]} \\ &- \frac{\textbf{C}}{\textbf{t}} \\ &[\textbf{t} \ \textbf{e} \ -\textbf{C} \ \textbf{E}_{l}(\frac{\textbf{C}}{\textbf{t}})] \end{split}$$

where

$$C = \frac{R^2 + r_i^2 - 2Rr_i Cos(\theta_i - \theta)}{4\beta}$$

and
$$E_1(\frac{C}{t}) = \int_{\frac{C}{t}}^{\infty} \frac{e^{-u}}{u} du$$

If unit withdrawal takes place at the first unit time, and no withdrawal after that, the flow at the end of n^{th} time step, across the circle, is given by

$$\delta_{\text{Ii}}(n) = K_{i}(r_{i}, \theta_{i}, R, n) - K_{i}(r_{i}, \theta_{i}, R, n-1)$$

and

$$\delta_{\text{Ii}}(1) = K_{i}(r_{i}, \theta_{i}, R, 1)$$

The inflow at the end of $n^{\mbox{th}}$ time-step across the circle due to varying abstraction is given by

$$Q_{PI}(n) = \sum_{\gamma=1}^{n} Q_{Pi}(\gamma) \mathcal{E}_{Ii}(n-\gamma+1)$$

 $\textbf{Q}_{\mbox{Pi}}(\gamma)$: quantity of withdrawal during $\gamma^{\mbox{th}}$ time-step at ith point.

If there are M no. of abstraction points, then total inflow due to withdrawal is expressed by

$$Q_{PI}(n) = \sum_{i=1}^{M} \sum_{\gamma=1}^{n} Q_{Pi}(\gamma) \delta_{Ii}(n-\gamma+1)$$

>

Similarly, total outflow from the circular zone due to recharge $Q_{\rm Rj}(\gamma)$ during $\gamma^{\rm th}$ time-step at N points of recharge at the end of nth time-step is

$$Q_{RO}(n) = \sum_{j=1}^{N} \sum_{\gamma=1}^{n} Q_{Rj}(\gamma) S_{Oj}(n-\gamma+1)$$

If the number of abstraction points and recharge points inside the circular zone are $\rm M_c$ and $\rm N_c$, respectively, then the amount of draft and recharge at the end of n $^{\rm th}$ time-step will

De
$$Q_{p}(n) = \sum_{j=1}^{N} \sum_{\gamma=1}^{Q_{p_{i}}(\gamma), \text{ respectively.}} Q_{p_{i}}(\gamma)$$

The groundwater availability in that particular circular zone at the end of nth time-step can be expressed by

$$\begin{aligned} \text{GW}(n) &=& \mathbb{Q}_{R}(n) - \mathbb{Q}_{P}(n) - \mathbb{Q}_{RO}(n) + \mathbb{Q}_{PI}(n) \\ \text{or} & \\ \mathbb{Q}_{W}(n) &=& \sum_{\substack{j=1 \\ j=1 \\ j=1 \\ \gamma=1}}^{N} \mathbb{Q}_{Rj}(\gamma) - \sum_{\substack{j=1 \\ i=1 \\ \gamma=1}}^{N} \mathbb{Q}_{Pi}(\gamma) \\ &-& \sum_{\substack{j=1 \\ j=1 \\ \gamma=1}}^{N} \mathbb{Q}_{Rj}(\gamma) \delta_{0j}(n-\gamma+1) \\ &-& \sum_{\substack{j=1 \\ i=1 \\ \gamma=1}}^{N} \mathbb{Q}_{Pi}(\gamma) \delta_{Ii}(n-\gamma+1) \end{aligned}$$

Which is the required solution to the problem.

Similar solutions for all the circular zones, by which the area is approximated, is obtained and the algebraic addition of all these will give the required groundwater availability of the district, or block.

Fig.1. Geometry of Circular Zone for the Model

```
C
        Ground Water Availability Study
C
        CHARACTER *15 BLNAME
        CHARACTER *7 MONTH
        CHARACTER *10 INPUT, OUTPUT
        DIMENSION RABST(50), THABST(50), RRECH(50), THRECH(50),
        1QP(50,20),QR(50,20),SUMQP(20),SUMQR(20),SUMQPI(20)
        1, SUMORO (20), GAVAIL (20), DELP (50,20), DELPF (50,20)
        2,DELR(50,20),DELRF(50,20),MONTH(20),BLNAME(20),BLAREA(20)
        3, BLWATER (20)
        WRITE (5,30)
30
        FORMAT (4X, ' INPUT FILE NAME:
        READ(5,29) INPUT
         WRITE(5,31)
        FORMAT (4X, OUTPUT FILE NAME:
31
        READ(5,29) OUTPUT
29
        FORMAT(A)
        OPEN(UNIT=1, FILE=INPUT, STATUS='OLD')
        OPEN(UNIT=2, FILE=OUTPUT, STATUS='NEW')
        READ(1,*)NABSTP, NRECHP, NTIME, NFPC, NLPC
         READ(1,*)R,T,PHI,AVFL,NBL
        R:radius of the zone
         T:transmissivity of the aquifer
         PHI:storage coefficient
        PPHI=PHI*100.
        PAI=4.*ATAN(1.)
        AREA=PAI*R*R/1000000.
        READ(1,46) (MONTH(N), N=1, NTIME)
        DO K=1, NBL
        READ(1,42)BLNAME(K),BLAREA(K)
        ENDDO
        READ(1,*)(RABST(I), I=1, NABSTP)
        READ(1,*)(THABST(I), I=1, NABSTP)
        DO 1 I=NABSTP
        THABST(I)=THABST(I)*PAI/180.
1
        CONTINUE
        READ(1,*)(RRECH(I), I=1, NRECHP)
        READ(1,*)(THRECH(I), I=1, NRECHP)
        DO 2 I=1, NRECHP
        THRECH(I)=THRECH(I)*PAI/180.
        CONTINUE
        DO I=1, NABSTP
        READ(1,*)(QP(I,J),J=1,NTIME)
        ENDDO
        SUM1=0.
        SUMZ=0.
        DO 50 I=NFPC, NLPC
        DO 51 J=1,4
        SUM1=SUM1+QP(I,J)
51
        CONTINUE
        DO 52 J=5,12
        SUMZ=SUMZ+QP(I,J)
52
        CONTINUE
50
        CONTINUE
```

```
QMP=SUM1
        QNMP=SUM2
        DO 4 I=1, NABSTP
        DO J=1,NTIME
        QP(I,J) = QP(I,J) * 10000000.
        ENDDO
        CONTINUE
        DO I=1.NRECHP
        READ(1,*)(QR(I,J),J=1,NTIME)
        ENDDO
        SUM1=0.
        SUMZ=0.
        DO 53 I=NFPC, NLPC
        DO 54 J=1,4
        SUM1=SUM1+QR(I,J)
54
        CONTINUE
        DO 55 J=5,12
        SUM2=SUM2+QR(I,J)
55
        CONTINUE
53
        CONTINUE
        QMR=SUM1
        CNMR=SUM2
        DO 5 I=1, NRECHP
        DO J=1,NTIME
        QR(I,J)=QR(I,J)*1000000.
        ENDDO
        CONTINUE
        WRITE(2,32)AVFL
        WRITE(2,33)AREA
        WRITE(2,34)PPHI
        WRITE(2,35)T
        WRITE (2,36) QMR
        WRITE(2,37)QNMR
        WRITE(2,38)QMP
         WRITE(2,39) ONMP
        WRITE(2,40)
         WRITE (2,41)
        WRITE(2,28)
         WRITE(2,26)
         DO 6 I=1, NABSTP
        THETA=THABST(I)
        AAR=RABST(I)
        DO 7 J=1,NTIME
         AJ=J
         CALL DEL (THETA, AAR, AJ, R, T, PHI, RES)
        DELP(I,J)=RES
        CONTINUE
        CONTINUE
        DO 8 I=1, NABSTP
         DELPF(I,1) = DELP(I,1)
        DO 9 J=2,NTIME
        DELPF(I,J)=DELP(I,J)-DELP(I,J-1)
        CONTINUE
        CONTINUE
         DO 10 I=1, NRECHP
```

```
THETA=THRECH(I)
        AAR=RRECH(I)
        DO 11 J=1,NTIME
        AJ=J
        CALL DEL (THETA, AAR, AJ, R, T, PHI, RES)
        DELR(I,J)=RES
11
        CONTINUE
        CONTINUE
10
        DO 12 I=1, NRECHP
        DELRF(I,1)=DELR(I,1)
        DO 13 J=2,NTIME
        DELRF(I,J)=DELR(I,J)-DELR(I,J-1)
13
        CONTINUE
        CONTINUE
12
        DO 14 N=1, NTIME
        SUM=0.
        DO 15 I=1, NABSTP
        DO 16 NGAMA=1.N
        SUM=SUM+QP(I,NGAMA) *DELPF(I,N-NGAMA+1)
16
15
        CONTINUE
        SUMQPI(N) = SUM
14
        CONTINUE
        DO 27 N=1,NTIME
        SUM=0.
        DO 17 I=1, NRECHP
        DO 18 NGAMA=1.N
        SUM=SUM+QR(I, NGAMA) *DELRF(I, N-NGAMA+1)
18
17
        CONTINUE
        SUMORO(N) = SUM
27
        CONTINUE
        DO 19 N=1, NTIME
        GAVAIL(N)=0:
19
        DO 20 N=1.NTIME
        SUMOP(N)=0.
        SUMQR(N)=0.
        DO 21 I=NFPC, NLPC
        SUMQP(N) = SUMQP(N) +QP(I,N)
21
         DO 22 I=NFPC, NLPC
22
        SUMQR(N)=SUMQR(N)+QR(I,N)
         CONTINUE
20
        DO 23 N=1,NTIME
        SUM=0.
        DO 24 NGAMA=1,N
        SUM=SUM+SUMQPI(NGAMA)-SUMQRO(NGAMA)-SUMQP(NGAMA)+SUMQR(NGAMA)
24
        CONTINUE
        GAVAIL (N) = SUM/1000000.
        WRITE(2,25)N, MONTH(N), GAVAIL(N), SUMQR(N), SUMQP(N), SUMQRO(N),
        1 SUMQPI(N)
23
        CONTINUE
        WRITE(2,47)
        DO 99 K=1, NBL
        WRITE(2,43)BLNAME(K)
        WRITE(2,48)
         WRITE(2,45)
```

```
DO 98 N=1,NTIME
        BLWATER(N) = GAVAIL(N)
        BLWATER(N) = BLWATER(N) * BLAREA(K) / AREA
        WRITE(2,44) MONTH(N), BLWATER(N)
        CONTINUE
        WRITE(2,47)
99
        CONTINUE
        FORMAT(X,12, X, A5, 2X, F8.3, 4(2X, E10.3))
25
        FORMAT (17x, '(mcm)', 8x, '(cum)', 9x, '(cum)', 9x, '(cum)', 9x, '(cum)'//)
26
        FORMAT(X,'N',2X,'MONTH',2X,'WATER BALANCE',3X,'RECHARGE',5X,
28
        1'WITHDRAWAL', 7X, OUTFLOW', 7X, 'INFLOW')
        FORMAT(ZX, 'Average water level fluctuation=',X,F5.2,X,'m',/)
32
        FORMAT(29X, 'Area='X, F7.2, X, 'sq.km.',/)
33
        FORMAT(14X, Storage coefficient=', X, F5.3, X, percent',/)
34
35
        FORMAT(19x, Transmissivity=', X, F7. 2, X, 'sqm/month',/)
36
        FORMAT (17X, 'Monsoon recharge='X,F7.3,X, 'mcm',/)
        FORMAT(14X, Nonmonsoon recharge='X,F7.3,X, mcm',/)
37
        FORMAT (20X, Monsoon draft= 'X, F7.3, X, mcm',/)
38
        FORMAT(17X, Nonmonsoon draft= ', X, F7.3, X, mcm',/)
39
        FORMAT (2x, TEMPORAL GROUNDWATER AVAILABILITY: 1)
40
        FORMAT(2x,34("*"),/)
41
42
        FORMAT (A10, F8, 2)
        FORMAT (26X, BLOCK: ,X,A10)
        FORMAT(24X, A7, 4X, F10.5)
45
        FORMAT(24X, 'Month', 5X, 'WATER BALANCE(in mcm)',/)
        FORMAT (12A5)
46
47
        FORMAT(/)
        FORMAT (25x, 18('*'))
48
        STOP
        END
C
        *****************
C
                            Numerical Integration
C
C
        SUBROUTINE DEL (THETA, AAR, AJ, R, T, PHI, RES)
        PAI=4.*ATAN(1.)
        N=100
        A=0.
        B=2.*PAI
        H=B/FLOAT(N)
        CALL EVAL (A, THETA, AAR, AJ, R, T, PHI, FINAL)
        FA=FINAL
        CALL EVAL (B, THETA, AAR, AJ, R, T, PHI, FINAL)
        FB=FINAL
        SUM=FA+FB
        NN=N-1
        DO 10 K=1.NN
        X=A+FLOAT(K) *H
        CALL EVAL (X, THETA, AAR, AJ, R, T, PHI, FINAL)
        SUM=SUM+2.*FINAL
10
        CONTINUE
        RES=H*SUM/2.
        RETURN
        END
```

```
00000
```

C

C

C+

25

RETURN

```
Computation of the Integrand
***************
SUBROUTINE EVAL (TH, THETA, AAR, AJ, R, T, PHI, FINAL)
PAI=4.*ATAN(1.)
F1=AAR*COS(THETA-TH)
F2=R*R+AAR*AAR
F3=R-F1
F4=F2-2.*R*F1
BETA=4.*T/PHI
F5=F4/(BETA*AJ)
CALL EXI(F5, EXFN)
F6=AJ*EXP(-F5)-EXFN*F5*AJ
F7=R*F3/(2.*PAI*F4)
FINAL=F7*F6
RETURN
END
Computation of Exponential Integral
******************
SUBROUTINE EXI(X, EXFN)
IF(X-1.0)1,1,22
EXFN=-ALOG(X)-0.57721566+0.99999193*X-0.24991055*X**2
1+0.05519968*X**3-0.00976004*X**4+0.00107857*X**5
GO TO 3
CONTINUE
IF(X-80.)5,4,4
CONTINUE
EXFN=((X**4+8.5733287*X**3+18.059017*X**2+8.6347608*X
1+0.26777373)/(X**4+9.5733223*X**3+25.632956*X**2
2+21.099653*X+3.9584969))/(X*EXP(X))
GO TO 3
EXFN=0.
CONTINUE
```

```
18,18,12,8,16
41250.,9000.,0.0277,3.77,4
                                                                                                     APR
                                                                                                               MAY
                                                                                                                         JUN
          JUL
                    AUG
                            SEP
                                        OCT NOV
                                                            DEC
                                                                                 FEB
JUN
                                                                       JAN
                                                                                           MAR
        LALPUR
                      1075.6
JAMJODHPUR
                        1084.2
      KALAVAD
                        1244.5
    JAMNAGAR
                        1226.2
107750.,85000.,55750.,53000.,45750.,47750.,53500.,34750.,20500.,31500.,
31250.,27750.,21000.,23500.,20250.,26500.,48750.,71000.
177.0,194.5,180.5,185.0,217.5,222.0,244.5,173.0,180.0,260.5,142.5,137.5,
82.0,69.0,26.0,347.5,42.0,60.5
107750.,85000.,55750.,53000.,45750.,47750.,53500.,34750.,20500.,31500.,
31250.,27750.,21000.,23500.,20250.,26500.,48750.,71000.
177.0,194.5,180.5,185.0,217.5,222.0,244.5,173.0,180.0,260.5,142.5,137.5,
82.0,69.0,26.0,347.5,42.0,60.5
0.845, 0.897, 0.553, 0.865, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.586, 1.5
3.587,2.990,2.087,3.325,5.998,5.998,5.998,5.998,5.998,5.998,5.998,5.998,5.998,5.998,3.587
1.455,1.197,0.913,1.356,2.455,2.455,2.455,2.455,2.455,2.455,2.455,2.455,1.455
5.348,4.392,3.154,4.217,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,8.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9.558,9
3.683,3.156,2.649,3.151,6.321,6.321,6.321,6.321,6.321,6.321,6.321,6.321,6.321,6.321,3.683
4.680,4.057,3.627,3.848,8.113,8.113,8.113,8.113,8.113,8.113,8.113,8.113,8.113,8.680
5.644,4.035,3.896,4.755,9.165,9.165,9.165,9.165,9.165,9.165,9.165,9.165,9.165,9.165
3.628,3.189,2.613,2.630,6.024,6.024,6.024,6.024,6.024,6.024,6.024,6.024,6.024,6.024,3.628
2.605,2.320,1.185,2.019,4.064,4.064,4.064,4.064,4.064,4.064,4.064,4.064,4.064,4.064,2.605
0.736,0.655,0.466,0.643,1.251,1.251,1.251,1.251,1.251,1.251,1.251,1.251,1.251,0.736
1.438,1.438,1.438,1.438,0.637,0.637,0.637,0.637,0.637,0.637,0.637,0.637,0.637,0.6
100,1.109,1.109,1.109,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.0.0
0.336,0.336,0.336,0.336,0.275,0.275,0.275,0.275,0.275,0.275,0.275,0.275,0.275,0.0
0.995,0.995,0.995,0.995,0.665,0.665,0.665,0.665,0.665,0.665,0.665,0.665,0.665,0.
2.708,2.708,2.708,2.708,3.443,3.443,3.443,3.443,3.443,3.443,3.443,3.443,3.443,0.0
17443,1.443,1.443,1.443,1.772,1.772,1.772,1.772,1.772,1.772,1.772,1.772,1.772,0.0
0.56,0.56,0.56,0.56,1.249,1.249,1.249,1.249,1.249,1.249,1.249,1.249,1.249,0.0
```

Average water level fluctuation= 3.77 m

>

Area = 5345.62 sq.km.

Storage coefficient= 2.770 percent

Transmissivity= 9000.00 sqm/month

Monsoon recharge= 90.746 mcm

Nonmonscon recharge= 59.232 mcm

Monsoon draft= 59.241 mcm

Nonmonsoon draft= 236.984 mcm

TEMPORAL GROUNDWATER AVAILABILITY:

N MONT	H WATER BALANCE (mcm)	RECHARGE (cum)	WITHERAWAL (cum)	OUTFLOW (cum)	INFLOW (cum)
1 JUN 2 JUL 3 AUG 4 SEP 5 OCT 6 NOV 7 DEC 8 JAN 9 FEB 10 MAR 11 APR 12 MAY	-4.17600 2.99601 23.75027 31.50703 9.29396 -12.91113 -35.10373 -57.27896 -79.43216 -101.55968 -123.66007 -145.73483	0.1346E+08 0.2161E+08 0.3354E+08 0.2214E+08 0.7404E+07 0.7404E+07 0.7404E+07 0.7404E+07 0.7404E+07 0.7404E+07 0.7404E+07	0.1764E+08 0.1444E+08 0.1279E+08 0.1438E+08 0.2962E+08 0.2962E+08 0.2962E+08 0.2962E+08 0.2962E+08 0.2962E+08 0.2962E+08 0.2962E+08	-0.4382E-03 -0.7384E+01 -0.2608E+03 -0.1811E+04 -0.6380E+04 -0.1587E+05 -0.3225E+05 -0.5747E+05 -0.9328E+05 -0.1410E+06 -0.2012E+06 -0.2740E+06	-0.5398E-10 -0.3189E-02 -0.1850E+01 -0.5373E+02 -0.4487E+03 -0.1960E+04 -0.5847E+04 -0.1371E+05 -0.2747E+05 -0.4952E+05 -0.8260E+05 -0.1297E+06

BLOCK: LALPUR ********

Month	WATER E	BALANCE	(in mem)
JUN	-0.8	34026	
JUL	0.6	50283	
AUG	4 . 7	77883	
SEP	6.3	33958	
OCT	1.8	37005	
NOV	-2.5	59787	
DEC	-7.(8529	
JAN	-11.5	52519	
FEB	-15.9	98267	
MAR	-20.4	43499	
APR	-24.1	88184	
MAY	-29.	32354	

BLOCK: JAMJODHPUR

*

Month	WATER BALANCE(in	mcm)
JUN	-0.84698	
JUL	0.60765	
AUG	4.81704	
SEP	6.39027	
OCT	1.88500	
NOV	-2.61864	
DEC	-7.11975	
JAN	-11.61734	
FEB	-16.11046	
MAR	-20.59838	
APR	-25.08079	
MAY	-29.55800	

BLOCK: KALAVAD ************** Month WATER BALANCE(in mcm)

Month	MAICK DALANCECTH II	CIII
JUN	-0.97220	
JUL	0.69749	
AUG	5.52924	
SEP	7.33507	
	2.16370	
OCT		
NOV	-3.00581	
DEC	-8.17241	
JAN	-13.33498	
FEB	-18.49241	
MAR	-23.64387	
APR	-28.78900	
MAY	-33.92817	

BLOCK: JAMNAGAR

K K K K K K K K	X X X X X X X X X X X X	
Month	WATER BALANCE (in mcm)	
FILM	-0.95791	
JUN		
JUL	0.68724	
AUG	5.44794	
SEP	7.22721	
OCT	2.13189	
NOV	-2.96161	
DEC	-8.05224	
JAN	-13.13889	
FEB	-18.22048	
MAR	-23.29619	
APR	-28.36567	
MAY	-33.42927	