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CHAPTER-3

FLOOD FREQUENCY ANALYSIS TECHNIQUES

Rakesh Kumar
Scientist-F, Head (Surface Water Div.)
National Institute of Hydrology, Roorkee-247 667

3.0 INTRODUCTION

Hydrological processes are generally chance and time dependent processes.
Probabilistic modeling considers only the probability of occurrence of an event with a given
magnitude and uses probability theory for decision making. As the probabilistic modeling
complete ignores the time dependence of the process it can be used only for design purposes
and not for operational purposes.

Probabilistic modeling or frequency analysis is one of the earliest and most frequently
used applications of statistics in hydrology. Early applications of frequency analysis were
largely in the area of flood flow estimation but today nearly every phase of hydrology is
subjected to frequency analysis is to assume the specific probability distribution which the
event is likely to follow and to proceed to evaluate the parameters of the distribution using
the available data of the events to be modeled. Using the statistically derived sample
estimates, probability levels can be assigned to any specific event and the prediction can be
made for the required probability event. Though the present lecture deals with the frequency
analysis of flood flow only yet the concepts given can be extended for other hydrological

variables also.

In fact, information on flood magnitudes and their frequencies is needed for design of
hydraulic structures such as dams, spillways, road and railway bridges, culverts, urban
drainage systems, flood plain zoning, economic evaluation of flood protection projects etc.
Pilgrim and Cordery (1992) mention that estimation of peak flows on small to medium-sized
rural drainage basins is probably the most common application of flood estimation as well as
being of greatest overall economic importance. These estimates are required for the design of
culverts, small to medium-sized bridges, causeways and other drainage works, spillways of
farm and other small dams and soil conservation works. For this purpose, statistical flood
frequency analysis has been one of the most active areas of research since the last forty to
fifty years. Flood frequency analysis is expected to provide solutions to some of the questions
such as (i) Which parent distribution the data may follow? (ii) What should be the most
suitable parameter estimation technique? (iii) How to account for sampling variability while
identifying the distributions? (iv)What should be the suitable measures for selecting the best
fit distribution? (v) What criteria one should adopt for testing the regional homogeneity? The
procedures of finding better solutions to the aforementioned questions have improved with
the efforts made by the various investigators. The scope of frequency analysis would have
been widened if the parameters of the distribution could have been related with the physical
process governing floods. Such relationships, if established, would have been much useful for
studying the effects of non-stationary and man made changes in the physical process on
frequency analysis. In spite of many limitations, the statistical flood frequency analysis
remains the most important means of quantifying floods in systematic manner.

As such there are essentially two types of models adopted in flood frequency analysis
literature: (i) annual flood series (AFS) models and (ii) partial duration series models (PDS).
Maximum amount of efforts have been made for modelling of the annual flood series as
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compared to the partial duration series. In the majority of research projects attention has
been confined to the AFS models. The main modelling problem is the selection of the
probability distribution for the flood magnitudes coupled with the choice of estimation
procedure. A large number of statistical distributions are available in literature. Among these
the Normal, Log Normal, Gumbel, General Extreme Value, Pearson Type III, Log Pearson
Type I1I, Generalized Pearson, Logistic, Generalized Logistic and Wakeby distributions have
been commonly used in most of the flood frequency studies. For the estimation of the
parameters of the various distributions the graphical method, method of least squares, method
of moments, method of maximum likelihood, method based on principle of maximum
entropy, method of probability weighted moment and method of L-moment are some of the
methods which have been most commonly used by many investigators in frequency analysis
literature.  Once the parameters are estimated accurately for the assumed distribution,
goodness of fit procedures then test whether or not the data do indeed fit the assumed
distribution with a specified degree of confidence. Various goodness of fit criteria have been
adopted by many -investigators while identifying the best fit distribution from the various
distributions fitted with the historical data.

The broad area of flood frequency analysis has been covered in the light of the
following topics:

(i) Definitions

(i1) Assumptions and data requirement

(1i1) Plotting positions

(iv) Commonly used distributions in flood frequency analysis
(v) Parameter estimation techniques

(vi) Goodness of fit tests and

(vii) Estimation of T year flood and confidence limits

3.1 DEFINITIONS

a) Peak Annual Discharge: The peak annual discharge is defined as the highest
instantaneous volumetric rate of discharge during a year.

b.) Annual flood series: The annual flood series is the sequence of the peak annual
discharges for each year of the record.

c¢.) Design Flood: Design flood is the maximum flood which any structure can safely pass.
It is the adopted flood to control the design of a structure.

d.) Recurrence interval or return period: The return period is the time that elapses on an
average between two events that equal or exceed a particular level. For example, T year
flood will be equaled or exceeded on an average once in T years.

e) Partial flood series: the partial flood series consists of all recorded floods above a
particular threshold regardless of the number of such floods occurring each year.

f) Mean: Mean is a measure of central tendency. Other measures of central tendency are
median and mode. Arithmetic mean is the most commonly used measure of central

tendency and is given by
= N
x= Y 5 /N | (3.1)
i=1

where x; is the ith variate and N is the total number of observations.
g) Standard Deviation: An unbiased estimate of standard deviation (Sy) is given by

S, =3 (- IN -1 (6.2)
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Standard deviation is the measure of variability of a data set. The standard deviation
divided by the mean is called the coefficient of variation and (C,) is generally used as a
regionalization parameter.

h.) Coefficient of skewness (Cs) : The coefficient of skewness measure the assymtry of the
frequency distribution of the data and an unbiased estimate of the C; is given by

N‘Z\f:(x‘ ~x)°
C. == i=]
O (N-DWV -2,

(3.3)

i)  Coefficient of kurtosis (Cy) : The coefficient of kurtosis is Cx measures the peakedness
or flatness of the frequency distribution near its centre and an unbiased estimate of it is
given by

N -
NZZ(;C, ~x)*
i=|

= 3.4
(N -1)(N -2)(N-3)S,’ S

k

j)  Probability paper : A probability paper is a specially designed paper on which ordinate
represents the magnitude of the variable and abscissa represent the probability of
exceedance or nonexceedance. Proability of exceedance, P(X = x), probability of non
exceedance, P; (X < x) and return period (T) are related as

P(X>x)=1-P(X<x)
PX>x)=UT
Plotting position formulae are used to assign probability of exceedance to a particular
event.

3.2 ASSUMPTIONS AND DATA REQUIREMENT

3.2.1 Assumptions:
The following three assumptions are implicit in frequency analysis.

(1) The data to be analyzed describe random events,
(i1) The natural process of the variable is stationary with respect to time and
(iii)  The population parameters can be estimated from the sample data.

3.2.2 Data Requirement:

For flood frequency analysis either annual flood series or partial duration flood series may be
used. The requirements with regard to data are that

(i) It should be relevant,
(ii) It should be adequate and
(iii) It should be accurate.

The term relevant means that data must deal with problem. For example, if the problem
is of duration of flooding then data series should represent the duration of flows in excess of
some critical value. If the problem is of interior drainage of an area then data series must
consist of the volume of water above a particular threshold.

The term adequate primarily refers to length of data. The length of data primarily
depends upon variability of data and hence there is no guide line for the length of data to be
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used for frequency analysis. Generally a length of 30 — 35 years is considered adequate for
flood frequency analysis.

The term accurate refers primarily to the homogeneity of data and accuracy of the
discharge figures. The data used for analysis should not have any effect of man made
changes. Changes in the stage discharge relationship may render stage records
nonhomogeneous and unsuitable for frequency analysis. It is therefore preferable to work
with discharges and if stage frequencies are required then most recent rating curve is used.

3.3 PLOTTING POSITIONS

In order to see the fit of the distribution, the sample data is plotted on various
probability papers. The plotting position formulae are required to assign probability of
exceedance or nonexceedance to a particular event. The general plotting position formula is
given by

m-—a
X>X)=——
P ) N+1-2a (33}

Where p(x > x) is the probability of exceedance, m is the rank of the event when
arranged in descending order and N is the total number of observations. For the largest value
m will naturally be 1 while for the lowest value it will be equal to N. Varies plotting position
formulae have been proposed in the literature. Given below are some of the formulae and the
values of a in the formula

Fomula Value of a
Weibull 0

Blom 3/8
Gringortan 0.44

Weibull is the most commonly used formula while Blom and Gringortan have been
recommended for Normal and Gumbel distributions respectively. NERC (1975) recommends
a = 0.4 for plotting position formula to be used for Pearson type III and log Pearson type III

distributions.

Probability papers for normal, log normal and Gumbel distributions are given in
fig3.1, 3.2 and 3.3 respectively.

3.4 COMMONLY USED DISTRIBUTIONS

In flood frequency analysis the sample data is used to fit probability distribution
which in turn is used to extrapolate from recorded events to design events either graphically
or analytically by estimating the parameters of the distribution. Some of the probability
distributions which are commonly used in frequency analysis are explained in brief in
subsequent sections.

3.4.1 Normal Distribution

The normal distribution is one of the most important distribution in statistical
hydrology. This is a bell shaped symmetrical distribution having coefficient of skewness
equal to zero. The normal distribution enjoys unique position in the field of statistics due to
central limit theorem. This theorem states that under certain very broad conditions, the
distribution of sum of random variables tends to a normal distribution irrespective of the
distribution of random variables, as the number of terms in the sum increases. The PDF and

CDF of the distribution are given in Appendix.
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3.4.2 LOG NORMAL DISTRIBUTION

The causative factors for many hydrologic variables act multiplicatively rather
additively and so the logarithms of these variables which are the product of these causative
factors follow the normal distribution.

If Y = log.(x) follows normal distribution, then x is said to follow log normal
distribution. If the variable x has a lower bound xg, different from zero and the variable Y =
log(X-xo) follows normal distribution then X is log normally distributed with thee
parameters.

3.4.3 PEARSON TYPE III DISTRIBUTION

Pearson Type 111 distribution is a three parameter distribution. This is also known as
Gamma distribution with three parameters. The PDF and CDF of the distribution are given in

appendix.
3.4.4 LOG PEARSON TYPE III DISTRIBUTION

If Y = log(X) follows Pearson type III distribution then X is said to follow log Pearson type
III distrigution.

In 1967, the U.S. Water Resources Council recommended that the log Pearson type III
distribution should be adopted as the Standard flood frequency distribution by all U.S. federal
government agencies.

3.4.5 GUMBEL (EXTREME VALUE TYPE 1) DISTRIBUTION
One of the most commonly used distributions in flood frequency analysis is the

double exponential distribution (known as Gumbel distribution or extreme value typel or
Gumbel EV1 distribution). The CDF of EV-1 distribution is defined as

F(x) = exp (-exp( - (x — u)/a )) . (3.6)

Where u and o are the location and scale parameters of the distribution. Using method of
moments, u and o are obtained by following equation.

x=u+0.5772a and

Sy = TPa/6 ' (3.7)
Above equation can be written in the reduced variate form as

F(x) = exp (-exp) (-)) (3.8)
where

y = (x-u)/ a

The reduced variate y can be written in terms of return period, T, also by replacing F(x) by 1-
1/T as

Y = - In(-In (1-1/T)) (3.9)




= In (In (TAT-1) )

or

Xr=u- o lnln (TAT-1)) (3.10)
For Gumbel distribution coefficient of skewness is equal to 1.139.

3.4.6 General Extreme value Distribution (GEV)

Jenkinson (1969) suggested a single equation of following type for the GEV distribution.
F(x) = exp (-(1-k((x-u)/a))™), for k=0 (3.11)
f(x) = exp (-exp(-(x-u)/a ) fork=0

In the above equation, u, o and k are location, scale and shape parameters
respectively. The shape parameters (k) and coefficient of skewness are interrelated. For EV1
distribution k is 0.0 and coefficient of skewness is equal to 1.139. for EV2 distribution k is —
ve and C, is greater than 1.139 for EV3 distribution k is +ve and C, is letter than 1.139.

3.4.7 WAKEBY DISTRIBUTION

Houghton (1978) found that a significant majority of high quality flood records
cannot be modeled adequately by conventional distributions and so advanced the Wakeby
distribution for fitting food records. The Wakeby distribution defined implicity in inverse

form as
x=m+a(1-F) —c (1-F (3.12)

where
F is the nonexceedance probability of x,
a, b, c and d are positive constants and
m is a location parameter. The parameters a and b govern the left hand tail (drought)

while parameter m, ¢ and d govern flood flows.

Being a five parameter distribution, the Wakeby distribution can span regions of
distribution function space inaccessible to the conventional two or three parameter
distributions, besides span regions occupied by the conventional distributions. This implies
that the Wakeby distribution can mimic the form of those two parameter distributions whose
inverse form exist. Wakeby distribution is currently becoming popular in USA among
researchers due to its capability to model both the tail ends of the data separately.
Hydrologists and engineers in the past years have occasionally felt the need to go beyond
three parameters but it was recognized that the use of moments higher than the third would
introduce too much error into the estimation process. The estimation procedure development
for the Wakeby distribution circumvents this problem. Main features of the Wakeby

distribution over the traditional distributions are
(i) In traditional estimation procedures, the smallest observation can have a substantial

effect on the right hand side (large observations) of the distribution. But the left hand
side/small observations do not necessarily add information to an estimation of quantile
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on the right hand side. Since floods are not known to follow any particular distribution,
it seems intuitively better to model the left and right hand tails separately.

(i) None of the traditional distributions have properties to reflect the nature of their left
tails accurately. If in reality, the low observations follow the left hand tail of the low
skewed distribution and highest observation follow the right hand tail of highly skewed
distributions. then none of the conventional three parameter distributions will be able to
model it accurately. They lack enough kurtosis for any given skew. Fitting a three
parameter curve to a five parameter nature would distort the whole fit including the
higher quantiles.

(iii) The separation effect which refer to the differences appear between samples of
synthetic stream flow data and natural streamflow data when the standard deviation of
skew is plotted versus the mean of skew for regional data, is explained by Wakeby
distribution.

(iv) Given the correct choice of parameters, the Wakeby distribution can generate synthetic
flows in the pattern of most of the conventional distribution.

3.5 PARAMETER ESTIMATION TECHNIQUES

Various parameter estimation techniques which are in current use include

(i)  Graphical method

(ii) Least squares method

(iii) Method of moments

(iv) Method of maximum likelihood

(v) Method based on principle of maximum entropy and
(vi) Method based on probability weighted moments.

For further details lecture notes of Workshop on ‘Flood Frequency Analysis’, NIH
(1987-88) may be consulted.

For GEV and Wakeby distributions method based on probability weighted moments
has proved to be the most robust method of parameter estimation.

3.6 GOODNESS OF FIT TESTS

The validity of a probability distribution function proposed to fit the empirical
frequency distribution of a given sample may be tested graphical and analytical methods.
Graphical method are usually based on comparing visually the probability density function
with the corresponding empirical density function of the sample under consideration and/or
the model CDF with the empirical CDF. Often these CDF plots as a straight line. An example
of this is the Gumbel paper. If the Gumbel CDF is plotted on Gumbel paper it follows a
straight line. If the empirical CDF well approximates a straight line on the Gumbel paper, it is
an indication that the Gumbel distribution may be a valid distribution for the data at hand.
Often, graphical approaches for judging, how good a model is, are quite subjective. A number
of analytical tests have been proposed for testing the goodness of {it of proposed distributiog.
Some of the commonly used tests are (i) chi-square test, (i) Kolmogorov-Smirnow test, and
(iii) D-index powerful in the sense that the probability of accepting the hypothesis when it is
in fact false is very high when these tests are used. In this light D index test is bit better and
hence given in subsequent section.

38




3.6.1 D-Index test

The D-index for the comparison of the fit of various distributions in upper tail is given as
_ 6
D index = (1/x))_ 4bs(x, - %,) (3.13)
=1

where x; and X, are the ith highest observed and computed values for the distribution. The
distribution giving the least D-index is considered to be the best fit distribution.

3.7 ESTIMATION OF T YEAR FLOOD

T year flood estimated can be obtained either graphically or analytically. Graphically
approach is applicable only for normal, log normal and Gumbel EV1 distribution as for other
distributions probability papers are not readily available. The main drawback of graphical
method is that different engineers will get different estimates fo T year flood. Analytical
approach of estimating T year flood for following cases is given in subsequent sections.

(i)  Normal distribution (parameter estimation by MOM)

(i) Lognormal distribution (parameter estimation by MOM)
(iii) EVI distribution (parameter estimation by MOM)

(iv) Pearson Type III (parameter estimation by MOM)

(v) Log Pearson Type III (parameter estimation by MOM)

3.7.1 NORMAL (mom)

T year flood Xr is given by

Xr=x +KrSx (3.14)
where,

x = sample mean

Sx = sample standard deviation

Ky is frequency factor corresponding to probability of exceedance = 1/T and C; of
skewness equal to 0.0. The Ky is the obtained from table of frequency factors

(Appendix) adopted from WRC (1981).

3.7.2 Log Normal Distribution (MOM)

X = g ¥ +Krs) (3.15)
Where

J—u= mean of log (base ¢) transformed series

Sy=  standard deviation of log transformed series

K= is frequency factor corresponding to prob. of exceedance equal to 1/T and Cs
equal to 0.0 (Appendix)

3.7.3 EV1 Distribution (MOM)

Xr=u+a.Yr (3.16)

Where
u=x-05772cx
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o= (V6/m) Sx
Y= reduced variate
= -In (-In(1-1/T)

3.7.4 Pearson Type III (MOM)

Xr= x+K71 Sk (3.17)
where

Ky= frequency factor corresponding to Cs of original series and prob. of
exceedance = 1/T (Appendix).

3.7.5 Log Pearson Type III (MOM)

XT - e(}-’-h’(-, S (318)
where
Kt = frequency factor corresponding to Cs of log transformed series and prob. of
excee=1/-F,

3.8 DETERMINATION OF CONFIDENCE ITNERVALS

Hydrologic variables such as annual peak floods or rainfalls do not occur in a set
pattern and are mostly random. In modeling these events, the help of frequency analysis is
taken such that the estimate of these hydrological variables for a desired return period can be
estimated with a reasonable accuracy. The estimates, usually, arrived from a single set of
sample data are variable because of randomness associated with these events and the size of
the sample used for arriving at the estimates.

Moreover, the sample under consideration is assumed to have resulted from a specific
parent population and is random. This results in the fact that there are many equally likely
possible samples that can originate from this assumed population. If estimates of the variables
for all such samples for the desired return period are plotted against the return period, they
seem to follow a normal or t-distribution with its mean as the expected value of the variables
at that return period (Fig3.4). This therefore indicates that due to sampling variation there can
be many estimates and therefore, should be defined through a continuous run of estimates
rather than single or point value of the estimate. This range is defined as confidence interval

and can written as
Prob (xtL £xr<xty)=1-a {3.19)

Where x7 and xqy are lower and upper confidence limits of the estimate xt s that the
interval 7. to xqu is the confidence interval and 1-o. is the confidence level (o= significant
level). This can also be graphically represented as in fig3.5.

However, the confidence level based on probability values give rise to the limits on
cither side of curve developed by frequency analysis to indicate the reliability of the estimates

as well as the fit.

3.9 DEVELOPMENT OF CONFIDENCE BAND

The confidence limits are computed using the following steps :




)

(i)
(iii)
(iv)
(V)

(vi)

(vii)

3.10

Choose a statistical distribution for modeling the annual peak flood data at the given
station.

Estimate the parameters

Compute the quantiles for the desired return period using the estimated parameters.
Compute the standard error [Se(xt)] of the estimates (Appendix).

Compute the t-statistics for the desired confidence level (i.e. 1-a/2, considering o/2%,
significance on both sides) and (N-n) degrees of freedom where N=sample size and n =
no. of parameters in the distribution selected.

Compute the upper and lower confidence limits of the quantiles (xr) as

XTU = XT HN-n)(1-0/2).Se(XT) (3.20)

XTL=XT-tN-n)(1-ar2). Se(XT) (3.21)

Plot them on either side of the plot of quantiles and join the points on the upper and
lower region to given the confidence band.

SHAPE OF CONFIDENCE BAND

The upper and lower confidence limits computed as per pervious section when plotted

against various return periods show the minimum difference near the mean values with a
diverging trend away from it.

The interval between them for a particular return period increase with the decrease of

sample size. This is mainly because of large sampling variance and hence because of large
standard errors.
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APPENDIX

STANDARD ERRORS FOR COMMONLY USED DISTRIBUTIONS

Normal Distribution

Standard error of quantile estimate Xy is given by

SE (x1) = (S YN) (1 + 0.5 K%)%? (1)
Log Normal Distribution

The standard error of quantile estimate in log transformed domain is
SE (y; (S,/V(1+0.5K,")0.5 2)

The average standard error in natural domain is given by
SE (X7) = [X1{eF Y -1} -Xre®F V) -1}]2 (3)
Gumbel EV1 Distribution
SE(X7) = (/VN) (1.170+0.196 Y + 1.099Y+%) *° (4)
Where o and Y scale parameter and reduced variate respectively.
Probabilistic Modelling — Case Study

Example

Compute 500 and 100 years return period floods for river Narmada at Garudeswar

assuming that annual flood series (given in Table 1 alongwith statistical parameters) follow:-

(a) log normal distribution (b) log Pearson type III distribution and (c) Gumbell EV-1
distribution. Based on D index test also determine the distribution of the peak floods series.

Table 1 : Annual flood series (cumecs) from 1948 to 1970 for the river
Narmada at Garudeswar

23890 26810 45630 10380 13290 17100 28650 29150 12910 26700
19700 38800 21250 43360 38880 14250 19560 15250 13000 22670
58100 31170 69400 18980 47980 61350 27300 33750 19500 22700

34260 38200

Statistical Parameters

Original series Log transformed series
Mean 29556.9 10.179
Standard deviation  14864.4 0.488
Cs 1.052 0.1

Solution




Log Normal Distribution

The calculations for 500 and 1000 years flood are shown in table given below :

Return period Prob. of Frequency  Xryinlog Xtin orig.

(years) exceed. Factor, Kt domain domain
(P=1/T)

500 002 2.87816 11.5835 107312.5

1000 ; 001 3.09023 11.687 119014.43

The frequency factors have been taken from Appendix II corresponding to P = .002
and .001 and coefficient of skewness equal to zero.

D Index
The highest six observations are 69400, 61350, 58100, 47980, 45630 and 43360

cumecs respectively.

The calculation of D index

Rank X Pr=m/N+1 Ky z Abs(xi-xi)
1 69400 1/33 1.886 66129 3271
2 61350 2/33 1.5678 56618 4732
3 58100 3/33 1.3476 50850 7250
4 47980 4/33 1.1882 47044 936
5 45630 5/33 1.0549 44081 1549
6 43360 6/33 0.9216 41350 2055
> 9793

D index = 19793 / 29556.9 = 0.67

Log Pearson Type 111 Distribution

Return Prob. of Frequency  Xrin log Xr in orig.
Period exceed. Factor, Kt domain domain
(years) (P=1/T)

500 0.002 2.99978 11.6428 113868.5
1000 0.001 3.23322 11.7568 127618.4

The frequency factors halve been taken from Appendix II corresponding to P = 0.002
and 0.001 and coefficient of skewness equal to 0.1.

D-index

Rank Xi Probability — Kr X, Abs(xi-x, )
P =m/m+l

1 69400 0.0303 1.9348 67723 1677

2 61350 0.606 1.6193 58059 3291

3 58100 0.909 1.3683 51366 ‘ 6734

4 47980 0.1212 1.1961 47226 754
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5 45630 0.1515 1.0576 44139 1491
6 43360 0.1818 0.9191 41255 2105

2 16052
D index = 16052 / 29556.9 = 0.543

Gumbel EV1 Distribution
The parameters u and a of EVI distribution are estimated from the following
equations :

u= x-0.5772 o

a=(6/m) Sk

a=11589.725

u=22867.3

Yr=-In(-In (1-1/T))

Ys00 = -In (-In (1-1./500. ))
=6.2136

Xso=u +ta¥Yr

Xso0 = 22867.3 +6.2136 x 11589.725

=04881.21 cumecs
Y1000 = 6.9072

X1000=102919.81 cumecs

D-index
Rank X Prob. T % | Xi- X,
P=m/n+1

1 69400 1/33 33 63213 6187
) 613500 2/33 16.5 55997 5353

3 58100 3/33 11 50110 7990
4 47980 4/33 8.15 46584 1396
5 45630 5/33 6.6 42593 3037
6 43360 6/33 5.5 41481 1879

25842
D-index = 25842/ 29556.2
D-index is minimum in case of log Pearson type III distribution and hence on the

basis of D index test it can be assumed that log Pearson type III distribution fits the data well
in the upper tail.
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