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Abstract :World’s climate is showing the changes in a number of components of the hydrological cycle and
hydrological systems. Thus it is very important that scientist try to predict the future climate so that we can
prepare strategies as part of mitigation and adaptation. Global Climate Models (GCMs) are the best tool to
predict future climate but have resolution of hundreds of kilometer. However, many impact applications require
the local scale climate variations. Statistical downscaling is one method to feed the large-scale output of GCM
simulation into a statistical model to estimate the corresponding local and regional climate characteristics. In this
paper, Multi Linear Regression (MLR) and Support Vector Machine (SVM) approaches were applied for
statistical downscaling for precipitation and temperature variables in Roorkee area. The results are encouraging.
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INTRODUCTION

Warming of the climate system is unequivocal and
is already impacting a range of human and natural
systems. Scientists have observed changes in the
timing of seasons; the range of plant and animal
species; regional pattern of precipitation, flooding,
and drought. Sea levels are rising and glaciers and
Arctic sea ice are forging a steady retreat, as is
now evident from observations of increase in
global average air and ocean temperatures,
widespread melting of snow and ice, rising sea
levels. Since 1980s, eleven of the last twelve years
(1995-2006) rank among the twelve warmest years
in the instrumental record of global surface
temperature [1].

The Intergovernmental Panel on Climate Change
(IPCC) has concluded that this warming is
pri-marily the result of human activities [2]. Since
the time of the Industrial Revolution (1850s),
activities including deforestation and the burning
of fossil fuels have released increasing quantities
of greenhouse gases (GHGs) into our atmosphere.
These gases, which in-clude carbon dioxide and
methane, among others, trap heat that would
otherwise escape into space. As such, the gases
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which have accumulated in the Earth’s atmosphere
have intensified the natural effect and now are
causing climate change.

IPCC Special Report on Emissions Scenarios
(SRES) predicts that temperatures will rise by 1.1
to 6.4° C by the end of 21 century, with range
largely dependent on future GHG emissions. The
type and severity of impacts that is associated
with such temperature increases will vary by
region, but on the whole they are expected to be
negative and in some cases disastrous.
Furthermore, the greater the temperature increase,
the greater the impacts we can expect. Fragile
ecosystems, coastal areas and low-lying islands
will be destroyed. Species unable to adapt to
changing conditions will go extinct. Agricultural
pests and vector-borne diseases will spread, and
people will suffer as droughts, floods, and storms
may become more frequent and more intense. The
world’s poor will be hit first, and hardest, as
changing climatic conditions exacerbate problems
of food security, water scarcity, and sanitation [2].

It is almost certain that the world is experiencing
climate change and hence additional risks will arise
in the future. Thus it is very important that
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scientists predict future climate. This is necessary
so that we can prepare ourselves to face the future
climate and make strategies as part of mitigation
planning and adaptation.

General Circulation Model or Global Climate
Models (GCM) have been developed to simulate
the present climate and predict future climatic
change. These are designed to simulate time series
of climate variables globally, accounting for the
effects of GHGs in the atmosphere. GCMs perform
reasonably well in simulating climatic variables at
larger spatial scale, but poorly at the smaller space
and time scales relevant to regional impact
analyses, especially in the important area of
hydrology. Therefore the output from a GCM has
to be downscaled to obtain the information
relevant to hydrologic studies [3]. Downscaling
climate data is a strategy for generating locally
relevant data from GCM. The overarching strategy
is to connect global scale predictions and regional
dynamics to generate regionally specific forecasts.
Basically, downscaling technique is a movement
from large scale to small scale. One way to connect
the GCM large scale with a smaller scale (study
area) is to use Statistical Downscaling (SD)
technique. SD is a process of downscaling where
data on large-scale grids in the period and
particular time is used as the basis for determining
the data on the smaller grid scale.

SUPPORT YECTOR MACHINE

Support vector machine (SVM) is a relatively new
technique to make prediction, both in the case of
classification and regression, which is becoming
very popular lately. The foundation of SVM has
been developed by Vapnik [4] and is gaining
popularity due to many attractive features, and
promising empirical performance. The formulation
embodies the Structural Risk Minimization
principle, which has been shown to be superior
[5] to traditional Empirical Risk Minimization
principle, employed by conventional neural
networks. SRM minimizes an upper bound on the
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expected risk, as opposed to ERM that minimizes
the error on the training data. It is this difference
which equips SVM with a greater ability to
generalize, which is the goal in statistical learning.
SVM was developed to solve the classification
problem, but recently they have been extended to
the domain of regression problems.

The term SVM is typically used to describe
classification with support vector methods and
support vector regression is used to describe
regression with support vector methods. In this
paper, the term SVM will refer to both classification
and regression methods, and the terms Support
Vector Classification (SVC) and Support Vector
Regression (SVR) will be used for specification.

Statistical Learning Theory

This section is a very brief review some of Vapnik’s
statistical learning theory which based on learning
examples. As is the case, learning is a stochastic
process, with the training data being drawn from
two sets of variables: an Input vector x, - X € ®™
and the response or Output y, Y. -

The relationship between X and Y is probabilistic:
an element X does not map uniquely to an element
of Y; rather it defines a probability distribution on
X. Alternatively for x, drawn from every X with
probability P(x,) (called the marginal probability),
the output y, is observed with probability P(y, Ix,)
(called the conditional probability of y, given x)).
In other word, an unknown probability distribution
p(x,y) defined on X x Y determines the probability
of observing a training data point (x,,y,). Therefore
the training data set T = which we have been
using time and again, is actually generated by
sampling the cross space X x Y, Q times in
accordance with the distribution p(x.,y). This
learning problem is searching for appropriate
estimator function f: X Y which can then be used
in predictive mode to generate a value y in output
Lo an unseen input x.
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To solve the regression or classification task, a
learning machine learns an approximating function
Jix,d) (also referred to as a hypothesis) which is a
function of both inputs x and the parameter or
weights d as the notation emphasizes.

Empirical Risk Minimization and Structural
Risk Minimization.

The risk functional is the expected value of the
loss due to the classification or estimation error. It
employs a loss function L to measure the average
error, and then searches out the estimator from
the space hypotheses, that minimizes this risk. If
the desired value is y and the predicted value is
fix, d), then the expected risk is defined as:

R(d) = equation here

i f{x,a))dP(x,y) (1)

[
i v,

=

As the probability P(x,y) is unknown, the risk R(d)
cannot directly be minimized therefore an induc-
tion principle for risk minimization is required. This
inductive principle is called Empirical Risk Mini-
mization (ERM ) which computes the empirical risk
function as:

Rmnp (a) =% E?I:l L(Yi— f (Xi » )) (2)

However this Rgmp(fi) will not able to guarantee a
small actual risk if the number of training examples
(N) is limited. In other words, a smaller error on the
training set does not necessary implies higher
generalization ability (i.e., smaller error on an
independent test data). To make the most out of
limited data, a statistical technique called
Structural Risk Minimization (SRM) has been
developed by Vapnik [4].

The theory of uniform convergence in probability
developed in 1974 by Vapnik and Chervonenkis
(VC) provides bounds on the deviation of the
empirical risk from the expected risk. This theory
shows that it is crucial to restrict the class of
function that the learning machine can implement

369

to one with a capacity that suitable for the amount
of available training data. Ford = #, and N> h, a
typical uniform VC bound which holds with
probability 1 — 7, has the following inductive
principle SRM form:

I 7 P i
(hilog—=—=1)—logi—
Los— 5

R(a)d"R,, (d)+ 3)

ent, i e

i
Here the second term on the right is called VC
Confidence. The parameter h is called the VC
dimension of a set of function and it describes the
capacity of a set function to represent the data
set. When N/h is small, a small empirical risk does
not guarantee a small value of the actual risk. In
this case, to minimize the actual risk R(d), the
inequality on right hand in (3) should be minimized
simultaneously over both terms; the empirical risk
and the VC confidence interval.

The VC confidence term in (3) depends on the
chosen class of the function, whereas the empirical
risk depends on one particular function chosen
by the training procedure. The objective here is to
find that subset of the chosen set of the function,
such that the risk bound for that subset is
minimized. This is done by simply training a series
of machines, one of each subset; where for a given
subset the goal of training is simply to minimize
the empirical risk. One then takes that trained
machines in the series whose sum of empirical risk
and VC confidence is minimal.

Feature Space

In case of non-linear separable data (which become
the base of SVR), SVM formula should modified
by construct a mapping into a high dimensional
feature space. The input x is first mapped onto a
p-dimensional feature space using some fixed
(nonlinear) mapping, and then a linear model is
constructed in this feature space (see figure 1).

Usually feature space have higher dimension from
the input vector (input space), and this makes the
computation in feature space become bigger,
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Fig. 1. Non-linear mapping of input examples into high dimensional feature space.
(Classification case, however the same stands for regression as well)

because there is possibility that feature space has
infinite number of feature. Besides that it is difficult
to know the appropriate transformation function.
To solve this problem, SVM uses “kernel trick”. Kernel
Functions that are commonly used are as follows:

(4)
Polynomial Kernel K (x,,x) = (y :»;;rx +0,>0  (5)
Radial Basis Function (RBF) K (x x)=exp(-Ix - x) >0 (6)
Sigmoid Kernel K (x ,x) =tanh ( x +r) (7)

According to Tripathi [6], the RBF is
computationally simpler than polynomial kernel,
which has more parameters. Moreover, the
advantage with RBF kernel is that it nonlinearly
maps the training data into a possibly infinite
dimensional space, thus it can effectively handle
the situations when the relationship between
predictors and predictand is non-linear.

Linear Kernel: K (x,x) =x'x

Support Vector Regression (SVR)

SVM can be applied to regression problems by
the introduction of an alternative loss function
[7]. The loss function must be modified to include
a distance measure. Figure 2 illustrates four

possible loss functions. Figure 2(a) is the g
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insensitive loss function that ensures existence
of global minimum and at the same time
optimization of reliable generalization bound. In
figure 2(b) is the quadratic loss function which
corresponds to the conventional least squares
error criterion. Huber proposed the loss function
shown in figure 2(c) that has optimal properties
when the underlying distribution of the data is
unknown. Figure 2(d) is a Laplacian loss function
that is less sensitive to outliers than the quadratic
loss function (Figure 2b).

SVR is based on the non-linear SVM that implicitly
apply kernel functions which map the data to a
higher dimensional feature space. A linear solution
in the higher dimensional feature space
corresponds to a non-linear solution in the
original, lower dimensional input space. One
method using the RBF and is called Least Square
Support Vector Machine (LS-SVM) [7]). LS-SVM
is computationally more efficient than the standard
SVM method, since the training of LS-SVM
requires only the solution of a set of linear
equations instead of the long and computationally
demanding quadratic programming problem
involved in the standard SVM [8].
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Fig. 2. Some Loss Function used in SVR

N
In SVR, {x; ) _1';}__ is considered as a training

=1
set, in which x, ¢ R represents a p-dimensional
input vector and Y, is a scalar measured output,
which represents the system output. The goal is
to construct a function y = f{x) which represents
the dependence of output y, on input x.. The form
of this function is:

wig(x)+ b

y &)
where w is known as the weight vector and b the
bias. This regression model can be constructed
using a nonlinear mapping function . By mapping
the original input data into a high — dimensional
space, the non-linear separable problem becomes
linearly separable in space.
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The function : is a mostly non-linear function which
maps the data into a higher, possibly infinite,
dimensional feature space. The LS-SVM involves
equality constraints, and works with a least
squares cost function. The optimization problem
and the equality constraints are defined by the
following equations:

i 1 1 -
minyL (we) =~ wiw+y-ZL, e’ ©

Subjected to equality constraint:

yvi—y=¢,i=1,...,N (10)
Or by substitution in equation (8):
yi=wiglx)+ b+e,i=1...,N (1)



Proceedings WARMICE-2012

Where is the quadratic loss term and is a
regularization parameter in optimizing the trade-
off between minimizing the training errors and
minimizing the model’s complexity. The objective
is now to find the optimal parameters that minimize
the prediction error of the regression model. The
optimal model will be chosen by minimizing the
cost function where the errors are minimized. This
formulation corresponds to the regression in the
feature space and since the dimension of the
feature space is high, possibly infinite, this
problem is difficult to solve. Therefore, to solve
this optimization problem, the following Lagrange
function is given:
mitl L, (1, b.8.0) = Yliw,e) - § 'zf‘ Wale)+bte-1)12)
The solution of equation (12) can be obtained by
partially differentiating with respect tow, b, ¢ and
da,lie.

So=0—-w= TN, @ d(x;) (13)
aL ) ’

5=0 2b=Xza=0 (14)
L ;
6—9:—0—*0.,—1&,1—1. ..N (15)
:T 0 = wio(x)+ b+e -y =0 i=1..N (16)

Finally, the estimated values of band 4 i.c., And,
can be obtained by solving the linear sysu,m and
the resulting LS-SVM model can be expressed as:

y=fx) = I, &K (xx)+b (17)
Where K(x.x)is a kernel function in the non-linear
RBF (equation 6).

The regularization parameter is also necessary in
LS-SVM model and determines the trade-off
between the fitting error minimization and
smoothness of the estimated function. It is not
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known beforehand which and are the best for a
particular application problem to achieve the
maximum performance with LS-SVM models. Thus,
the regularization parameter and the value of from
the kernel function have to be tuned during model
calibration.

STUDY AREA

Roorkee is a city in the state of Uttarakhand. It is
a part of the district of Haridwar and is located
between the rivers Ganga and Yamuna; the Upper
Ganga Canal flows through the city. Roorkee lies
at 29 52 *N Latitude and 77 53 ‘E Longitude (see
figure 3). It has an elevation of 274 meters above
mean sea level. The climate of Roorkee is typical
of Northwestern India. All three predominant
seasons - summer, winter, and monsoon - are
witnessed in Roorkee, with very hot summers and
very cold winters. Being a submontanic district,
with higher latitude than any other portion of the
plains, it has longer spells of cold weather. Though
the heat in May and June is considerable, relief is
occasionally offered by the cooling effect of
moderate Himalayan storms.

In terms of average annual precipitation (103.2 cm),
Roorkee is semi-arid. The South-West monsoon
generally breaks in mid-June and the North-East
during November-December. Winters begin from
October and continue through February. The
coldest months are generally December and
January, when the minimum temperature
approaches zero. A rise in temperature is
experienced (rom the beginning of March, which
heralds the onset of summer. Temperature ranges
from 0" C to 20° C in Winter (December to March),
25° C to 40° C in Summer (April to June) when
warm winds blow frequently and 20° C to 40°C in
Rainy season (June to September). !!

DATA REQUIRED

The data required is divided into two types, the
predictand (Observed data) and the predictors
(GCM data).
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Fig. 3. Administrative Map of Uttarakhand

Predictand (Observed Data)

Observed data from January 1981- December 2010
is taken from Hydrology Department Station of
IIT Roorkee. The observed data that will be used
for downscaling calculation are:

- Mean monthly precipitation.
- Mean monthly minimum temperature.
- Mean monthly maximum temperature.

Predictors (GCM Data)

In this paper the mean monthly data which extends
from January 1981 to December 2040 is extracted
from Canadian Center for Climate Modeling and
Analysis (CCCma) web site http://
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www.cccma.be.ec.ge.ca/. The simulated monthly
climate data is taken from scenario IS92a of the
second generation Coupled General Circulation
Model (CGCM2). The extracted data pertains to 4
grid points whose latitude ranges from 27.83° N to
31.54° N and longitude ranges from 75° E to 78.75°
E covering entire Roorkee Area. The CGCM2 grid
is uniform along the longitude with grid box size
of 3.75° and nearly uniform along the latitude
(approximately 3.75°).

DEVELOPMENT OF DOWNSCALING MODEL

To develop the downscaling model, the available
data set is partitioned into a training set and a test
set. 50% of the available data from 1981-1995 (15
years) is selected for training (calibration) while
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the remaining 50% from 1996 — 2010 (15 years) is
used for testing (validation). The first step in
developing downscaling model is selection of the
predictors; the choice of predictor variables for
downscaling is based on statistical analysis. The
highest r (including negative value) for each type
of predictors is chosen as the candidate predictors.

Selection of Predictors

The predictors were selected by computing the
correlation between the observed and GCM data.
Pearson product-moment correlation coefficient
(PMCC, denoted by r) method was chosen. The r

value can range between +1 and “1. The
interpretation of r value according to Wang [9] is
provided in this table 1. According to Tripathi [6]
the choice of predictors could vary from one region
to another. Since there are no general guidelines
for selection of predictors, a comprehensive search
is necessary. In general, the values of the climate
variables at earth’s surface (which corresponds
to approximately 1000 mb), 850 mb, 500 mb and
200 mb pressure levels are found to be
representative of circulation pattern in the study
region [10]. Table 2 shows the correlation in various
candidate predictors with observed data.

Table 1. The Interpretation of r value

Correlation Coefficient Value

Interpretation

0

Larger than 0 but smaller than 0.500
From 0.500 to 0.699

From 0.700 to 0.999

1

No Relationship

Weak Positive Relationship
Moderate Positive Relationship
Strong Positive Relationship
Perfect Positive Relationship

-1

From - 0.700 to -0.999

From -0.500 to -0.699

Smaller than 0 but larger than -0.5000

Perfect Negative Relationship
Strong Negative Relationship
Moderate Negative Relationship
Weak Negative Relationship

Table 2. The Correlation Coefficient ( r ) value between Observed and GCM data

Correlation With
GCM DATA Observed Mean Observed Mean] Observed Mean
Monthly Precipitation | monthly MIN Monthly MAX

Temp Temp
200 Mb Temp 0.728 0.451 0.39
500 Mb Temp 0.58 0.853 0.686
850 Mb Temp -0.125 -0.481 -0.517
200 Mb GPH 0.643 0.834 0.61
500 Mb GPH 0.425 0.807 0.714
850 Mb GPH -0.714 -0.84 -0.608
200 Mb SpecHum 0.706 0.651 0.38
500 Mb SpecHum 0.651 0.766 0.564
850 Mb SpecHum 0.616 0.822 0.645
200 Mb U wind -0.554 -0.569 -0.406
500 Mb U wind -0.333 -0.437 -0.311
850 Mb U wind 0.376 0.273 0.131
200 Mb V wind 0.169 0.058 -0.075
500 Mb V wind -0.333 -0.437 -0.311
850 Mb V wind 0.235 0.058 0.026
Rainfall -0.116 -
Evaporation -0.092 -
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MLR Model

Multiple linear regression is a form of regression
analysis in which the regression function
establishes the relationship between one
dependent variable y and more than one
independent variables (x, x, x ). A linear
regression equation is in the following form:

y=a+bx +bx,+...+bx (18)

Parameters a (intercept) and b, b,. ... b_(coefficient
of x ) are estimated using the least squares
method. In MLR method, the choice of predictor
variables for downscaling is based on the
statistical analysis. The highest r (including
negative value) for each type of predictors is
chosen as the candidate of predictors. The best
statistic result from the combination predictors in
calibration part is taken as the predictors in
validation model.

SVR Model

Downscaling by SVR was carried out by using
MATLAB LS-SVMLab toolbox Version 1.7. The
data was divided into two periods and the steps
of using the model in this study are given below:
Calibration period

1. Upload the data

2. Downscale calibration data

3. Determine the trial value of gam (gamma) and
sig2 (sigma square).

Train the model to get the value of alpha
and b (bias).

5. Using the values of alpha and b, get the
simulated precipitation.

Check the errors and correlation.

4.

6.

Repeat Steps 3 to 6 until the value of gam and sig2
give the best model (smallest error and biggest
correlation). Now, using the computed values of
gam and sig2, downscale validation period data
and check the errors and correlation.

The length of data series used for the calibration
and validation is the same, 15 years. For the
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calibration, the data is from 1981 — 1995 and for
the validation it is from 1996 -2010. SVR model
from LS-SVMLab toolbox has two parameters
y(gam) and g*(sig2) to be determined. In this
study, their near optimal values were obtained by
a trial-and-error method. For both calibration and
validation periods, the computed variable was
compared to the observed variable and the error

parameter is measured by using correlation
coefficient (r), RMSE and NSE.

Performance Indices

Besides r value, others indices that were used to
measure model performance are Nash-Sutcliffe
Efficiency (NSE) and Root Mean Square Error
(RMSE). NSE is defined as:

TR (0;-Ppt
NEF — 1 — ZizgHi=
NSE= 1 CRIWE (19)
RMSE is defined as:
L}
= 1 .. 5
RMSE = \;;Ef’:ic__ol —BJ* (20)

Where O, is the observed value, P, is predicted
output, O, is the average of measured value and
i equals the number of values and n is the number
of data. For NSE, the closer the value is to 1, the
more accurate the model is.

RESULTS AND ANALYSIS

Precipitation

From the result of various combination of
predictors, 200Mb GCM Temp, 200Mb GPH and
200Mb SpecHum are chosen as the predictors for
downscaling precipitation variable. The correlation
coefficient between the observed and computed
precipitation when MLR model was used was
0.714. NSE and RMSE were also measured in
validation part and the values are 0.492 and 3.002
respectively. From the graph in figure 4, it is clearly
seen that MLR cannot mimic the lower part of

observed precipitation and also for the extreme
precipitation.
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For downscaling of precipitation by SVR model, Minimum Temperature
the best combination for the prediction of

precipiiationis y = 0.33 and o2 = 18 with the From the results of various combination of predictors,

the chosen predictors to downscale minimum
value of r=0.747, RMSE=2.838 and NSE =0.546. temperatures are S00Mb Temp, 850Mb GPH, 850Mb
Even though SVR can make 4.68 % improvement SpecHumand 500Mb V wind. Downscaling of minimum
(see table 3) in correlation (#) and is able to reach temperature by MLR model results in r=0.882, NSE=
lower part in some point, but the upper part or 0.766 and RMSE =3.450. From the graph in figure 6 we
high values still cannot be well replicated by the model can see that MLR overestimated almost all the upper
particularly the extreme precipitation. Figure 5 shows part of observed temperature and underestimated lower
the graph between of observed precipitation and part or small values.

computed precipitation by SVR (SVR PPTn).

MLR DOWNSCALING FOR MEAN MONTHLY PRECIPITATION

—~0Observed PPTn ——MLR PPTn

| &
=
£
E
|
: 3- 2
b B 3 e £
Fig. 4. MLR Graph for Precipitation
SVR DOWNSCALING FOR MEAN MONTHLY PRECIPITATION VARIABLE
5 _— —_— — — — — —
~——0Observed PPTn —SVR PPTn
T S — - — ——
o
=2
E
E 4

Fig. 5. SVR Graph for Precipitation
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MLR DOWNSCALING FOR MEAN MONTHLY MINIMUM TEMPERATURE

-~ Observed MIN Temp

— LR MIN Temp

Fig. 6. MLR Graph for Minimum Temperature

The best combination for the predicted minimum
temperature by SVR model is ¥ =0.45and ¢2=2

with the value of »=0.920, RMSE =2.880 and NSE
=0.837. Again if we compare the r value in table 4,
then SVR makes slight improvement (4.331 %) over
MLR. SVR meodel can reach the upper part of
observed value however in some point but it was

still difficult to predict the higher values. Figure 7
shows the graph between observed minimum
temperature and computed minimum temperature
by SVR (SVR MIN Temp). The results showing
performance indices for downscaling minimum
temperature are provide in table 4.

Table 4. The Performance Measures for Downscaling Minimum Temperature

r value NSE RMSE
ia S o P
Vasubles MIR | svR | = %of MLR | svr | %Of MIR | svr | %of
improvement improvement improvement
Minimum Temperature 0.882] 0.920 4.331] 0.766] 0.837 9.243] 3.450] 2.881 16.504
Maximum Temperature The best combination for the computed maximum

From the result of various combination predictors,
the chosen predictors for maximum temperatures
downscaling are 500Mb Temp, 500Mb GPH,
850Mb SpecHum and 200Mb U wind.

The MLR for maximum temperature validation
results r=0.732, NSE=0.529 and RMSE = 3.941.
From figure 8, we can see that MLR cannot mimic
the low values of observed temperature but better
replicates the upper parts of maximum temperature.
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temperature by SVR method is » =0.9 and 2
0.2 with the value is r=0.838, RMSE =3.171 and
NSE = 0.695. From the comparison of r value in
table 5, the SVR makes better prediction than MLR
and the improvement is 14.44 %. Figure 9 shows
the graph between of observed maximum
temperature and computed maximum temperature
by SVR (SVR MAX Temp). The model well
replicated the upper part but still underestimated
almost all lower part.

|
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—Observed MIN Temp
—SVR MIN Temp

SVR DOWNSCALING FOR MEAN MONTHLY MINIMUM TEMPERATURE
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Fig. 7. SVR Graph for Minimum Temperature
‘ MLR For l.\ﬂean Monthly Maximum Temperatlure
4 —— Observed MAX Temp
——MILR MAX Temp
<0 -
)
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Fig. 8. MLR Graph for Maximum Temperature
Table 5. The Comparison Result of error Measurement for Maximum Temperature Downscaling
r value NSE RMSE
Variables ) 3 A
s MIR | svR | %o MR | sVR | %of | app | svr | %of
improvement improvement Lmprovement
Maximum Temperature (.732] 0.838 14.440] 0.529] 0.695 31.437] 3.941] 3.171 19.541
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Fig. 9. SVR Graph for Maximum Temperature
FUTURE PROJECTIONS Precipitation Projection

To develop future projection, GCM data are divided
into two groups with 15 years span for each group.
The first group is from 2011-2025, second group
from 2026-2040. For SVR model the data are
computed by SVR validated model with the same
value of gamma and sigma for each variable. For
MLR model the data are computed by MLR
validated model with the same formula for each
variable.

Descriptive statistic in table 6 shows that mean
value of SVR projection for precipitation is
between 2.5 - 2.9 mm/day and 2.4 -3.2 mm/day for
MLR model. From total amount of precipitation
per year, one can see that for SVR model there will
be increase of precipitation approximately by 0.5
—2%. This is in accordance with Tritpathi [6] which
predicted that precipitation will increase in North
India (Punjab, Haryana and Uttar Pradesh), while
MLR predicts mixed trend in precipitation.

Table 6. Descriptive Statistic of Precipitation Projection

Descriptive statistic of Observed 1996-2010 2011-2025 2026-2040
precipitation (mm/day) 1996-2010 | MLR SVR MLR SVR MLR SVR
Mean 278 325 252 241 2.88] 2.96 2.92
Standard Error 021 025 021 0.26 0.19( 0.26 0.22
Median 101 161 1.09 0.82 1.39] 1.30 1.35
Standard Deviation 405 3.39 2.83] 3.54 2.60] 3.54 2.94
Range 21.14( 15.26 871 1557 7.87] 14.81 8.84
Minimum 0.00] 0.11 012 -0.94 0.82| -032 0.60
Maximum 2114 15.36 8.83| 14.63 8.69] 1449 9.44
Sum (mm/year) 1048.32( 1191.85 [ 922.63 | 888.18 | 1054.52 | 1084.98 | 1070.174
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Figure 9(a) shows that MLR projections contain The maximum value is always below 10 mm/day.
some negative values and the projection has more Even though there are no negative values in
variation in the values. The maximum value can projection but still SVR cannot well compute the
reach 14 mm/day and the trend line is flat. The lowest amount of precipitation (zero value). The
MLR seems to underestimate the lower part. trend line make small positive slope. The SVR
Figure 9(b) shows less variation in SVR results. overestimate the lower part.
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Fig. 9. Graphical depiction of projected Precipitation. a) Using MLR, b) Using SVR

Minimum Temperature Projection highest prediction from SVR is only 27.68°C, 4°C
lower than observed.
From the projection of mean monthly minimum

Maximum Temperature Projection
temperature by the SVR model, one can see that

there will not be much change in temperature. The From the projection of mean monthly maximum
mean value of SVR in table 7 is between 16.9 - temperature by SVR model, the mean value of the
17.3°C and for MLR, the mean value increases from maximum temperature is between 29.8 — 29.9 °C

18.3°C to 18.8°C. The maximum value of MLR is (see table 8) while for the MLR model, the mean
approximately 31°C (nearby observed value). The value is between 28 —31°C. The SVR predicts that

minimum value is 9°C, 4°C higher than observed the highest value of mean monthly maximum
value. SVR has the minimum value 5-6°C (nearby temperature until 2040 will be 39.25°C, while MLR
the observed value). For the maximum value, the predicts that it will reach 42.44°C.
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Table 7. Descriptive Statistic of Minimum Temperature Projection

Deseriptive Statistic of. |, o ved1666]  1996-2010 2011-2025 2026-2040

minimum temperature 2010
c MLR SVR MLR SVR MLR SVR

Mean 17.75 18.31 17.29 18.50 16.92 18.89 17.32
Standard Error 0.53 0.51 0.53 0.51 0.57 0.53 0.56
Median 18.49 16.70 16.48 16.52 15.81 16.78 16.45
Standard Deviation 7.15 6.81 7.12 6.82 7.63 7.06 7.49
Range 26.55 22.24 20.46 22.31 21.56 23.01 21.24
Minimum 5.18 9.51 6.29 9.41 5.87 9.47 6.44
Maximum 31.72 31.75 26.74 31.71 27.43 32.47 27.68

{a) mean monthly Minlmum Temperature Projectlion by MLR — TrendlLine
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Fig. 10. Graphical depiction of projected minimum temperature. a) Using MLR, b) Using SVR

Fig. 10(a) shows the projections for minimum temperature by MLR. The highest value in projection part reaches 327
and the lowest is around 7°C. The trend line increase 1°C until 2040. Figure 10(b) shows that SVR have more variation
in the upper part. SVR projection shows not much change and the trend line is flat.
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Table 8. Descriptive Statistic of Maximum Temperature Projection

mzic::::i: If/t::;:rcn C;fm observed 1996-2010 2011-2025 2026-2040
1996-2010

temperature °C MLR SVR MLR SVR MLR SVR
Mean 30.20 28.24] 29.95 31.22] 29.81 32.01] 29.96
Standard Error 0.43 0.50] 0.33 0.34] 0.40 0.36] 0.42
Median 32.00 29.00] 31.05 31,58 31.60 32.42] 3135
Standard Deviation 5.76 6.75| 4.44 459 5.30 4.84] 5.61
Range 23.86 23.67| 18.74 20.64| 19.59 20.10] 20.14
Minimum 15.82 15.58] 19.84 21.09| 19.43 22.35] 19.12
Maximum 39.68 39.25| 38.58 41.72| 39.02 42.44] 39.25

(a)Mean Monthly Maximum Temperature Projection By MLR
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(b) Mean Monthly Maximum Tem perature Projection By SVR
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Fig. 11. Graphical depiction of projected maximum temperature. a) Using MLR, b) Using SYR
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CONCLUSIONS

This work has downscaled climate variables in
Roorkee area: mean monthly precipitation,
minimum and maximum temperature by using SVR
and MLR methods. Based on the results, the
following conclusions can be drawn:

The best combination of predictors for
downscaling precipitation for Roorkee area
among the available variables are
temperature, geopotential height, and
specific humidity at 200 mb (this means that
the values refer to approximately 12,000 m
height where the cumulonimbus clouds are
formed). This finding is in accordance with
Gadgil [11] that most of the rain over the
Indian region comes from Cumulus and
Cumulonimbus clouds.

V (Vertical) or Meridional wind influences
the computations when downscaling the
minimum temperatures. This probably
happens because in the summer, south-west
monsoon brings heavy rain between July
and September in Roorkee area. In the winter,
north-east monsoon sweeps down from the
plateaus of Asia and the Himalayas and
brings rain and cooler weather between
October and December.

U (horizontal) or Zonal wind influences the
computation of the maximum temperature.
This probably happens because zonal wind
flows in west—east direction and brings
strong, hot “loo” and dry summer wind from
the large desert regions of the northwestern
Indian subcontinent [12].

The result of downscaling for precipitation
shows that SVR performs better than the
MLR as seen by the improvement of error
measurements which are 4.678 % for r, 10.931
% for NSE and 5.447 9% for RMSE. However,
it can be seen that both MLR and SVR could
not well downscale precipitation in Roorkee
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Area. These results have been obtained
possibly because regression based
statistical downscaling model often cannot
explain entire variance of the downscaled
variable [3]. The other reason could be that,
by nature, precipitation is much more erratic
and dependant on very local factors [13].
Also, for precipitation the spatial variation
is very large and it has very poor temporal
correlation. Downscaling of precipitation is
a challenge and more studies are needed.

. The result of SVR downscaling for minimum
temperature shows a 4.33 % improvement in
r, 9.24 % in NSE and 16.50 % in RMSE as
compared to MLR.

. The result of SVR downscaling for maximum
temperature shows a 14.44 % improvement
inr,31.44 % in NSE and 19.54 % in RMSE as
compared to MLR.

. The results of downscaling show better
improvement in the maximum temperature
when the SVR model is used rather than the
minimum temperature.

. It can be concluded that use of SVR can
improve correlation in the range 4 — 14 %
than MLR, for NSE by 9- 31 % and for RMSE
by 5-19 %.

- Future projection until 2040 for precipitation
by SVR model shows that there will be little
increase of precipitation and the future
projection for temperature shows that there
will not be much change in temperature in

Roorkee area.

. More research is needed to confirm these
conclusions.
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