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ABSTRACT: A stochastic diffusion jump model in response to extreme flows is proposed herein to describe the movement of
sediment particles in surface waters. The proposed particle tracking model classifies the movement of particles into three
categories—a drift motion, a Brownian type motion due to turbulence in the flow field for example, and jumps due to the
occurrence of extreme events. In the proposed model, a random term mainly caused by the fluid eddy motions is modeled as a
Wiener process. In addition, the occurrence of the extreme flow event is modeled as a Poisson process. The magnitude of
particle movement in response to extreme flow events, characterized as the Poisson jump, depends on the characteristics of
the extreme events and the properties of sediment particles. The frequency of occurrence of the extreme events in the
proposed model can be explicitly accounted for when evaluating the movement of sediment particles. As such, the proposed
particle tracking model, when coupled with an appropriate hydrodynamic model, can assist in developing a forecast model to
predict the movement of particles in the presence of extreme flows. The mean and variance of particle trajectory can be

obtained from the proposed stochastic model via simulations.

INTRODUCTION

Stochastic approaches have been widely implemented
in biological, chemical and environmental engineering
fields. McNair et al. (1997) developed a stochastic
diffusion model for organic particle transport by
considering both the molecular diffusion and
turbulence eddies. A Lagrangian Stochastic (LS)
model for the dispersion and deposition of submicron-
size particles in turbulent air flows was presented by
Reynolds (1999). A Stochastic Differential Equation
(SDE) of particle displacement in a spatially homo-
eneous porous medium was developed by adding a
stochastic term to Darcy’s equation (Verwoerd and
Kulasiri, 2003). Recently, Dean and Russell (2004)
developed a numerical framework approximating the
dispersivity of solute transport in porous media.
Another widely used category of stochastic transport
models is known as Random-walk Particle Tracking
Models (PTMs), in which mass is transported as
discrete particles. For instance, Dimou and Adams
(1993) applied the Fokker-Plank equation to develop
the PTMs for well mixed estuaries and coastal waters.
Particle tracking algorithms are popular for modeling
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transport in various fields (Reimus and James, 2002;
Pederson et al., 2003; Perianez, 2004). Here we will
develop a conceptual stochastic diffusion jump model
based on similar stochastic principles of the particle
tracking models. However, in addition to keeping the
intrinsic advantages of particle tracking models, the
proposed model has a potential to account for the
frequency of the extreme events.

GOVERNING EQUATION

A stochastic process is defined as a spatial or temporal
process involving probability (Yen, 2002). Movement
of sediment particles in a water system can be
characterized as a stochastic process. The displacement
of a suspended particle in natural rivers is considered
to follow a stochastic jump diffusion process consisting
of a drift term &, a diffusion coefficient o, a driving
Wiener process B, and a Poisson process F,, as shown
in Equation (1) (e.g. Hanson, 2005),

dX, =u(t,X,)dt + (1, X,)dB, + h(t,X)dP, ... (1)

-
drift term

~ ~
random term Jjump term

where X(f) is the trajectory of a particle, a three-
dimensional vector, expressed as X; = [x(?) y(¢) z(1)]"; h
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is the jump amplification factor; B, is a three-
dimensional vector of the Wiener process. B, — B, has a
normal distribution with a zero mean and a variance of
(o6”) (¢t — 5) for s < 1, , which is independent of X,
Parameters #, ¢ and A are all continuous functions
related to the characteristics of the transport process.
The drift term # and the diffusion coefficient o can be
obtained by the heuristic method (e.g. Hunter et al.,
1993; Dimou and Adams, 1993; Heemink, 1995:
McNair et al., 1997; Man and Tsai, 2007) by comparing
the Fokker-Planck equation with the advection-diffusion
equation,

U(t,x,y,z)+ oD, /ox
V(t,x,y,2)+8D, /by . (2)
W(t,x,y,z)— w,+0D, /0z

ut,X,)=

where w, is the particle settling velocity; U is the
mean streamwise fluid velocity; ¥ is the mean
transverse fluid velocity; and W is the mean normal
fluid velocity. D,, D, and D; are the turbulent
diffusivity in the streamwise, transverse and vertical
direction, respectively. If the coordinate system is
aligned with the flow, then o(#,.X,) is a 3 x 3 diagonal

matrix. Herein, the diffusion coefficient tensor is
treated as a diagonal matrix as,

o, 0 0
o,X)=| 0 oy O .. 3)
0 0 033

The relationship between the diffusion coefficients and
the turbulent diffusivities can be expressed as,
l(ccT), =D, . (4)
2 i
The jump amplification factor % is related to the
physical characteristics of extreme flow events such as
tsunamis, floods and large flow perturbations in the
environmental engineering field, whereas the Poisson
process P, can be characterized to reflect the frequency
(or the return period) of the extreme event occurrence.

MODELING EXTREME FLOW EVENTS AS A
POISSON PROCESS

The frequency of the occurrence of the extreme event
can be modeled as a Poisson process, dP(z).
Incorporating the frequency of an extreme event in the
modeling of particle movement offers a more
comprehensive evaluation of an effective risk of
sediment concentrations exceeding a designated level
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of protection. Furthermore, the proposed approach
classifies the movement of particles into three
categories—drift motion, a Brownian type motion due
to turbulence in the flow field for example, and jumps
due to the occurrence of extreme flow events, as
shown in Equation (1). The frequency of the extreme
event, dP(f), behaves as an indicator function of the
number of extreme event occurrences with a negligible
error O°( A dr). For instance, dP(f) = 0 with an
asymptotic probability (1 — Adf) if there is no jump;
and dP(t) = | with an asymptotic probability (A df) if
there is one jump, while the probability of multiple
simultaneous jumps are likely to be negligible. The
Poisson process dP(f) can then be simulated by the
Monte Carlo simulation. Based on the stationary
property of the incremental Poisson process, we have,

dP(t) = P(t + At) - P(1) sus {D)

Y (nat)t
k!

where Pr denotes the probability and A represents the
average number of extreme event occurrences. Let 7,
represent the j” jump time, then the distribution of the
inter-jump time A7, = T;.; T} conditioned on 7} is
exponentially distributed,

Pr{dP(t) = k] = .. (6)

PHAT; < Af|T;]=1- ¢ oo )

where T = 0. The exponential random variable can be
generated from a uniform random distribution. Let U
be a uniform (0, 1) random variable,

X, =—pIn(U) .. (8)

in which X, is exponentially distributed with the mean
p where p = 1/A. Equation (8) can be used to generate
an exponential distribution from a uniformly
distributed pseudo-random number generator to
simulate the Poisson process. The small time
increment process can be numerically simulated by a
standard uniform number generator and the method of
acceptance-rejection (Fleming and Rishel, 1975;
Hanson, 2005) such that the open interval (0, 1) is
partitioned into a centered interval of length Ads and
the complement of (0, 1).

The jump amplification factor % is related to the
particle property and its ambient environment,
reflecting the effect of the extreme event on particle
movement. The magnitude of the jump amplification
factor can be obtained beginning from the SDE of
particle trajectory. Equation (1) can be rewritten as,

dX, =[a(t,X,) +o(t,X,)dB, / dt + h(t,X,)dF, | dt]dt ... (9)
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The particle velocity ¥V, can be approximately
expressed as (Oksendal, 1998),

Vp =%=E(z,X,)+G(t,X,)dB,/dt+h(t,X,)dP,/dt
.. (10)

The particle velocity herein is categorized into two
parts; the first part is the particle velocity in regular
flow environments including a mean drift term and a
random term, and the second part is the difference of
the particle velocity gained or lost in the presence of
the extreme event. According to Newton’s second law
of motion,

av,
HTPE—:F;‘ +Fe

L (1)

where mp is the mass of the particle and F denotes the
summation of all the forces acting on the particle. F, is
the external force acting on the particle in the absence
of the extreme event, while F, is the transitional force
to move the particle from a regular flow state to an
extreme flow state. The additional force F, needed for
the particle to move from one state to the other state
can be expressed as,
u-V,
F,=m, awsilC12)

Ty

where u is the mean flow velocity in the presence of

extreme events. T, is the relaxation time, defined as

P
the time needed for a particle to move from the regular
flow state to the extreme flow state. In analogy to
Zaichik et al. (1997), the relaxation time for a
sediment particle to move from its original state to the
other in response to an extreme flow event can be
obtained based on the force balance equation.

In regular flows, the particle follows the fluids
exactly except for the settling velocity. Note that T is
the duration of the extreme event. Integrating Equation
(11) with the help of Equations (12) and (13) over the
entire extreme event duration 7T gives,

T Tu—VP
Vy =Vt [(E)/mydu+ | —Ld .. (13)
0 0

p

Where V), is the particle velocity immediately before
the occurrence of the extreme event. In other words, it
is the particle velocity in regular flow conditions; the
second term on the right hand side is the change of
particle velocity due to the regular flow force during
extreme events; and the third term is the change of
particle velocity due to the occurrence of extreme flow
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events. The first two terms are the particle velocity in
regular flow environments, which are related to the
mean drift and randomness terms. The third term is the
particle velocity change occurring mainly due to the
extreme flow event within time t,. Now, integrating
Equation (13) over the entire extreme event duration
gives the particle movement during the extreme event,

= t+T +T % TU—VP
ax, = [ Vydi= | VPO+J(F,.)/det+JT—pdt dt

. (14)

When the event duration is relatively small compared
to the overall simulation time, it is assumed that the
impact of the extreme flows is reflected mainly on the
jump term during the extreme event. By comparing
Equations (10) and (13), we can obtain,

T
(1, X,)+ o(t.X,)dB, /dt =V, + [(F)/m,dr ... (15)
0

If exactly one extreme event occurs within a time
interval [¢, ¢ + df], dP,= 1. One can compare Equations
(1) and (15) during the extreme event period from ¢ to ¢
+ T and obtain,

T~V
ne,x)= " [ 2dx |dr
v 0o p

.. (16)

For a very fine particle (i.e., d, — 0) to move from one
state to the other in response to an extreme flow event,
the relaxation time 1, approaches zero. We assume that
such an immediate response time be modeled by the
reciprocal of the Dirac-delta function, i.e.

1
—=98(T/2
T, ( )

(1)

Following the fundamental property of the delta
function, we can obtain,

Tu-v

T
—Ldr= [-V,)5(T12)di=u=V, ..(18)
o Tp 0

As a result, the stochastic jump model for fine particles
can be described as,

T
dX, =7(t, X,)dt +o(t,X,)dB, +[ L” (u—V,)d1\dP,
.. (19)
where dP, is the number of extreme event occurrences

+T i
within a time interval [, ¢ + dr]. jf (u—Vy)dt is the

average magnitude of an extreme event effect within
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the time interval [f, # + df]. For finer particles, Equation
(19) describes the particle trajectory composed of two
parts: one related to regular flow (the first two terms
on the right hand side), and the other due to the
occurrence of extreme flow events (the last term on the
right hand side).

ILLUSTRATIVE EXAMPLE

Here we present one example to illustrate the impact of
the Poisson jumps in the presence of extreme flow
events. We assume that the Poisson process and
Wiener process are two independent stochastic
processes for these examples. For simplicity, the
duration of extreme event is set as the computational
time step in the following example.

The example shows modeling of the particle
trajectory in a one-dimensional flow field. Two
different cases are presented here for a prismatic
rectangular channel with a bed slope of 0.2% and the
cross-section width of 3 m, and the Manning
roughness coefficient of 0.03. One case shows a
particle in a stationary flow # = 0 m/s. The other
illustrates that the particle in a regular flow with a
water depth of 0.05 m, corresponding to a constant
mean drift velocity, # = 0.2 m/s. In order to test the
Jump term effect and for simplicity, the diffusivity in
both cases is assumed to be o= 0.1 m%s. Both cases
are subject to extreme flow events with an average
number of occurrences, A = 10. Assuming the
occurrence of a flood event in this example, has
increased the flow rate to 8.2 m%s. As such, the
corresponding water depth is 1.97 m and flow velocity
is 1.39 m/s. The jump term in Equation (19) is set as
1.2d1 in this example, i.e. the mean drift velocity in the
extreme event has increased to # = 1.39 m/s if the
duration of the extreme event is df. The time step in
this example is 0.2 s and the simulation time is 100
seconds.

Figure 1 illustrates sample realizations of particle
trajectory as well as their ensemble mean (based on
5000 simulations) in the aforementioned two scenarios
respectively. It is noted that in the absence of extreme
events, the particle moves randomly but stays in
average in its original position in stationary flow, as
shown in Figure 1. Note that the relative time herein is
defined as the time normalized by the total simulation
time. It is shown from this example that the impact of
extreme flow event occurrences on the particle
trajectory can be quantified given the frequency of
extreme flow event occurrences and the mean drift
flow characteristics of extreme flows. As can be
observed from Figure |, the particle movement in
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response to an extreme flow event is subject to a
translocation jump that deviates significantly from the
movement of a particle in stationary flow in the
absence of the extreme event.

Total simulation time is 100 Seconds
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Fig. 1: Sample realizations and ensemble of particle
trajectory inflow with a zero drift term, diffusivity
= 0.1 m%/s and the flow drift = 1.4 m/s in extreme flows

Total simulation time is 100 Seconds
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Fig. 2: Sample realizations and ensemble of particle
trajectory with flow mean drift = 0.2 m/s, diffusivity = 0.1
m*/s and the mean flow drift = 1.4 m/s in extreme flows

Figure 2 shows simulation of scenario 2 that the
particle initially locates in a one-dimensional flow with
a mean drift velocity of 0.2 m/s. The sample
realizations of particie trajectory inflow without jumps
(solid line) and with jumps (dashed line) are illustrated
in Figure 2. It is shown in Figure 2 that the particle
subject to jumps moves further downstream compared
to that without jumps, as the occurrence of the extreme
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flow events in this example results in an increased mean
flow drift velocity. The variance of particle trajectory
for the first scenario in the example is illustrated in
Figure 3. It can be seen from Figure 3 that the difference
of particle trajectory between the regular flow and the
extreme flow can be quantified. Such variances are
increasing with respect to time. The source of such
variations can be attributed to both the randomness of
particle movement and the uncertainty of the extreme
event occurrence. Figure 4 presents the variance of
particle trajectory for the second scenario. Comparing
Figure 3 and 4, it can be concluded that the variance in
both scenarios is not affected by the mean drift.

Total simulation time is 100 Seconds
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Fig. 3: Variance of particle trajectory in flow with a zero
drift term, diffusivity = 0.1 m%s and the flow drift = 1.4 m/s
in extreme flows

Total simulation time is 100 Seconds
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Fig. 4: Variance of particle tra 2Jec:tory with flow mean drift

= 0.2 m/s, diffusivity = 0.1 m“/s and the mean flow drift

= 1.4 m/s in extreme flows
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CONCLUSIONS

A stochastic particle tracking model simulating
suspended sediment movement in surface water flows
is proposed herein. The proposed model takes into
account both the randomness of particle movement
caused by turbulence and the stochastic jumps in the
presence of extreme flow events. In the proposed
model, a random term mainly caused by the fluid eddy
motions is represented by a Wiener process and the
occurrence of the extreme event is modeled as a
Poisson process. The magnitude of the Poisson jump
can be quantified using the flow characteristics of the
extreme events and the property of sediment particles.
It is demonstrated from the examples that the particle,
when subject to positive jumps due to extreme flow
events, travels further and faster downstream and also
is subject to more frequent resuspensions due to flow
accelerations incurred in extreme flow events. Both the
ensemble mean and variance of particle trajectory can
be quantified using the proposed stochastic diffusicn
jump model. Compared to the particle tracking models,
the proposed model here can be capable of
incorporating the frequency of the extreme flow event
occurrence in modeling the particle trajectory, which is
a step forward in building a forecast model to analyze
the movement of particles in flows when there are
random extreme flow events.

This paper formulates and presents an alternative
approach as opposed to the traditional sediment
modeling of movement of sediment particles in both
regular flows and during extreme flows. However,
more work is needed to refine the proposed method
such as incorporation of the large eddy simulation
model to better quantify the flow randomness and
collection of detailed flow and particle movement data
to further validate the proposed particle tracking model.
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