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ABSTRACT: Satellite observations of the terrestrial biosphere cover a period of time sufficiently extended to allow reliable
climatologies to be determined. The latter is particularly relevant for studies of vegetation response to climate variability. This
chapter reviews work done by the authors since the late 80-s on the use of time series analysis techniques to extract concise
information from extended time series of large area multispectral satellite data. Two basic methods have been used: the Fast
Fourier Transform, especially in the earlier studies, and Harmonic Analysis in more recent work. Since our first study we have
been relying on the global radiometric data collected by AVHRR and later on MODIS. The studies reviewed in this chapter
have been preformed in different continents. The main applications documented by published results are: (a) identification and
mapping of zones characterized by a similar response of terrestrial vegetation to environmental forcing; (b) determination and
characterization of the response of terrestrial vegetation to climate variability over any period of time covered by available time
series of satellite data; (c) early warning on anomalies in vegetation development of terrestrial vegetation using indicators of
photosynthetic activity such as NDVI and fAPAR. These applications span a range of temporal and spatial scales, consistently
with the nature of processes observed. We have shown, using data at low spatial and temporal resolutions, that at continental
scale spatial patterns in vegetation types and their average pehenology are determined by climate, in particular dryness. The
response of vegetation phenology to interannual climate variability required observations at significantly higher spatial and
temporal resolutions. Finally, monitoring and early warning on drought related anomalies in vegetation development required
observations at even higher spatial and temporal resclutions, while still covering large areas continuously.

INTRODUCTION The study of vegetation cover types, phenology and
climate conditions by applying NOAAAVHRR NDVI
imagery at regional scale has been successful (Town-
shend and Justice 1986, Justice et al. 1985, 1986). Potter
and Brooks (1998) explained 70-80% of the spatial
variability in the NDVI seasonal extremes for different
plant functional types by means of climate indices
involving temperature and rainfall. Henricksen and
Durkin (1986) demonstrated that the start and the end
of the growing season in Ethiopia, assessed with NDVI
images, were strongly related to a moisture index. Also
the integrals of NDVI for each growing season were

Climate variability has a very significant impact on the
evolution of vegetation cover. This relationship can be
analyzed using observations of climatic forcing factors
and of vegetation response, using in both cases global
data sets such as re-analysis data generated by means
of atmospheric models and spectro-radiometric data
collected by satellites. Available re-analysis data span a
period of more than 40 years and the spectro-
radiometric satellite data more than 25 years, sufficient
to carry out studies of climatological relevance. Early

examples of time series analysis of satellite data to
study terrestrial vegetation and its response to climate
variability were perfomed in the late 80s (Menenti
etal., 1991 and 1993).

found to be closely correlated with rainfall for the
Sudanese savanna (Hielkema ef al, 1986). A strong
linear relationship was found between NDVI and
annual rainfall in the range of 150-1000 mm for the
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western Sahel (Malo and Nicholson 1990). More
recently, Anyamba and Tucker (2005) expanded the
analysis of NDVI data on Sahelian vegetation dynamics
as a proxy for the response of land surface to rainfall
variabililiy for the period 1981-2003 and detected
drought and ‘wetter’ conditions in agreement with the
recent region-wide trends in rainfall. Justice et al.
(1991) found a general relationship between rainfall
estimates from Meteosat data and NOAA-AVHRR
NDVI where the time lag between rains and NDVI
was particularly noticeable where rainfall was the
limiting factor for growth. Different authors demon-
strated the usefulness of applying NOAAAVHRR
NDVI to detect the effect of droughts in Ethiopia
(Henricksen and Durkin 1986, Henricksen 1986) and
in Sahel (Tucker er al, 1986). Recently, NOAA-
AVHRR NDVI series have been applied to study the
interannual variability produced by ENSO events (Liu
and Negron Juarez 2001, Seiler and Kogan 2002,
Gurgel and Ferreira 2003, Poveda and Salazar, 2004)
to the point that Liu and Negron Juarez (2001) could
model high anomaly values of NDVI and ENSO
indices to predict drought onset in Northeastern Brazil
four months in advance with 68% success.

The novelty of our method is the simultaneous
characterization of three aspects: spatial and temporal
variability of vegetation cover and its dynamic response
to forcing factors. This result is made possible by
analysing time series for each image element (pixel).
Analyses of the relationship between climate vari-
ability and photosynthetic activity were performed in
Africa (Azzali and Menenti, 1999 and 2000), South
America (Azzali and Menenti, 1999; Gonzalez-
Loyarte and Menenti, 2008; Gonzalez-Loyarte er al.,
2008), Europe (Verhoef et al., 1996; Roerink et al.,
2000) and China (Jia and Menenti, 2006). The impact
of rainfall anomalies on vegetation phenology, in
terms of timing (phase) and intensity of greenness, was
studied by using Fourier series to fit a time series of
NDVI observations. The study was performed in the
northern semiarid region of Argentina where rainfall is
the driving factor of vegetation phenology (Gonzalez-
Loyarte and Menenti, 2008).

We have used this approach to study three different
but related aspects:

o characterization and mapping of climate-soil-
vegetation complexes (Menenti e al., 1993; Azzali
and Menenti, 1999 and 2000);

» quantitative analysis of the response of vegetation
phenology to climate variability (Verhoef ez al., 1996;
Roerink et al., 2000; Gonzalez-Loyarte and Menenti,
2007);
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e early detection of drought—related anomalies in
vegetation phenology (Jia and Menenti, 2006).

Mapping Climate-Soil-Vegetation Complexes

The objective is to characterize and map areas wherein
vegetation development is similar due to a unique
combination of climate, soil and association of vegetation
species. We have used the concise notation “isogrowth
zones” to refer to these zones in our work. Isogrowth
zones are mapped by applying classical numerical
classification ~algorithms to maps of Fourier
coefficients obtained by modeling the time series of
NDVI observations for each pixel. The results of the
classification are then analyzed and documented by
correlation with soil maps and climate data. In all
studies performed a clear correlation was observed
between isogrowth zones and a measure of aridity such
as the Budyko ratio.

Vegetation Phenology and Climate Variability

Climate forcing is accounted by using observations of
net radiation and precipitation, more precisely their
ratio (Budyko index), which is a measure of excess
radiant energy at the land surface relative to available
water and, therefore, of drought hazard. The response
of vegetation as characterized by photosynthetic activity
is obtained by estimates of the fraction of Absorbed
Photosynthetically Active Radiation (fAPAR). These
estimates are obtained with multispectral radiometric
data collected by a family of imaging radiometers
installed on satellites operated from 1979 onwards. The
results summarized in this review were obtained with
data collected by the’ Advanced Very High Resolution
Radiometer (AVHRR) and by the Moderate Resolution
Imaging Spectroradiometer (MODIS).

Early Detection of Drought—Related Anomalies

The analysis of annual time series of NDVI observations
shows (Jia and Menenti, 2006) that deviations of current
year observations from the reference (average) year
can be detected rather early in the growing season and
that, once detected, provide useful information to
predict the peak magnitude of anomalies well in
advance of the actual occurrence of a drought spell.
Modeling of NDVI time series by means of Fourier
series or other techniques is used to fill gaps in the
time series, including the ones due to clouds, to
remove noise and to extrapolate in time using a moving
window to compute the Fourier transform. The accuracy
of the prediction increases with decreasing lead time,
but the advance warning of an impending anomaly is
by itself a useful information to deal with drought
impacts, particularly on agriculture.
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APPROACH the frequency of periodic functions can be selected by
the user. The method has been described by Menenti
et al. (1991, 1993 and 1995), Verhoef et al. (1996),
The Fast Fourier Transform (FFT) algorithm used in  A...1i and Menenti (1999 and 2000), Roerink et dl.

this study allows to decompose the time profile of the (2000 and 2003). This algorithm is a curve-fitting
NDVI series for each pixel, in an average signal plus

N/2 sinusoidal components, with N being the length of
the time series expressed as the number of images
(Azzali and Menenti, 1996). The average signal is the
mean NDVI value for the whole time series of
observations and the periodic (sinusoidal) components s ; .
are characterized by a?nplitude and phase. All opf them, vz'llue corr_lposmng The Harm_omc Analysis of NDVI
mean NDVI, and amplitude and phase for each period, Time Ser 1e5 (HANTS) a‘g‘” ithm allows the user i
are called in this paper Fourier parameters. Amplitude ~ Select dominant frequencies, e.g. on the basis of a
and phase are associated with a given period, e.g. 12 preliminary FFT analysis and applies a least squares
and 6 months in our analysis. The amplitude value  fitting procedure based on the selected harmonic
represents a measurement of the maximum variability =~ components. Filters can be defined to identfy and
of NDVI at a given period, and phase is the timelag of =~ remove anomalous observations (Figure 1), due to e.g.
this maximum in relation to the initial point of the  clouds: this yields a time series of irregularly spaced
series. The decomposition of a complex time series of ~ observations, which may be different for each pixel.
NDVI images into simpler periodic signals allows to  Although this flexibility comes at a price in terms of
understand the relative weight of different periodic  processing time, it does allow to maximize the number
climate processes like rainfall and temperature on  of valid chservations and, therefore, of information
vegetation complexes (Azzali and Menenti, 2000) as  extracted from the time series. Once the valid
well as foliar seasonality (Fuller and Prince 1996) in  observations are fitted by the final Fourier series, the
Southern Africa. latter can be used to fill gaps in the observations for

The Harmonic Analysis algorithm used in this study  each final to obtain a cloud-free image of the area
allows the use of irregularly spaced observations and  observed (Figure 2).

Fast Fourier Transform and Harmonic Analysis

procedure based on harmonic components and it can
be considered a generalisation of the maximum value
compositing normally applied to generate NDVI data
products. In practice time series of NDVI contain
cloud—contaminated observations even after maximum
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Fig. 1: Schematic description of the HANTS algorithm: (left) identification and removal of
outliers and (right) resulting Fourier parameters of the filtered time series

{a} origin, max-NDVI composite (b) r ed cloudfree NDVI image 050

Fig. 2: Weekly composite NDVI image of Europe and North Africa: (left) original image with
standard radiometric corrections and cloud flagging and (right) after removal of cloud
contaminated observations and gap-filling using the HANTS algorithm
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Large Area Mapping of Climate-Soil-Vegetation
Complexes

Isogrowth-Zones

The most obvious feature of large area vegetation
processes is the dynamics of land cover. Even without
a precise definition of measurable parameters to
characterize it, land cover dynamics is an integrated
response to a variety of climate, biotic, physiographic
and anthropic processes (Reichle, 1973; Lugo, 1974;
Aber and Melillo, 1991; Swanson et al., 1992; Walker,
1993; Turner et al, 1994). It is this integrating
function of land cover dynamics that provides a key to
the description and understanding of large area
ecosystems (Gosz, 1991; Johnson, 1990; Delcourt and
Delcourt, 1992; Neilson 1986 and 1987). The use of
temporal records of vegetation properties to characterize
terrestrial ecosystems is a traditional research technique
to understand the influence of weather and climate on
vegetation (Leith, 1984; Reed et al., 1994). Vegetation
phenology is an extremely sensitive indicator of response
to climate, soil and land management. The ability to
study the timing of vegetation (green foliage) develop-
ment and senescence with frequent and conistent
observations is a powerful tool for the study of natural
and agricultural environments. Examples of large-area
phenological classification of vegetation using NOAA
AVHRR NDVI data were given by Justice et al.
(1985), Justice (1986), Lloyd (1990), Turcotte et al.
(1993) and Running et al. (1994). The challenge was
to develop an efficient approach to extract concise
information from large amounts of data. Use of formal
time series techniques provides a parsimonius description
of phenology as shown by Menenti et al. (1991; 1993
and 1995), Eidenshink and Haas (1992), Eastman and
Fulk (1993), Lambin and Strahler (1993), Viovy and
Saint (1994) and Olsson and Ekhlund (1994).

Classification Algorithms

Both the FFT and the HANTS algorithms provide
maps of Fourier coefficients, i.e. pixelwise values of
amplitude and phase for all frequencies considered,
thus providing maps of quantitative measurements of
vegetation phenology. Such maps provide attributes of
terrestrial vegetation that can be used to identify
“isogrowth zones” in the sense explained above. To
this end numerical classification procedures, such as
generally used with spectral attributes of vegetation,
can be applied. Contrary to classical numerical classi-
fication of spectral attributes at high spatial resolution,
however, it is in general not feasible to define a-priori
large area “isogrowth zones™ and, therefore, classical
supervised (hard) classification algorithms cannot be
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applied. Unsupervised and fuzzy classification techniques
have in this context a significant potential. We have
evaluated several alternate classification strategies and
algorithms and two solutions have emerged:

(a) Apply first an unsupervised classification algorithm
(see e.g. Tau and Gonzalez, 1974) to define classes
and construct alternate sets of signatures; this is
followed by the application of a supervised classi-
fication algorithm and using performance indicators
(D’Urso and Menenti, 1996; Ayala and Menenti,
2002) to select the best definition of classes and
associated signatures;

(b) Apply first an unsupervised classification algorithm,
as above, followed by a fuzzy -classification
procedure; this strategy assigns membership values
to each pixel for all classes considered, rather than
assigning each pixel to a class only.

Both strategy (a) and (b) require an ex-post analysis on
the basis of ancillary information such soil and vegetation
maps to understand what each class actually means. The
climate-soil-vegetation complexes or “isogrowth zones”
can be then interpreted in terms of a combination of
known attributes (Azzali and Menenti, 1996 and 2000).

Response of Vegetation Phenology to Climate
Variability

Work done towards mapping the “isogrowth zones”
documented a very close relationship between the results
of vegetation mapping, done as described above, and
aridity measured by using the Budyko ratio. These results
document the correlation of spatial patterns. The next
question is whether a similar relationship exists between
temporal patterns or, in other words, whether the
response of vegetation phenology, measured using time
series of NDVTI observations, can be related to climate
forcing, measured by time series of the Budyko ratio.

The approach proposed is summarized by the diagram
in Figure 3. To characterize vegetation phenology we
have used the same data: time series of AVHRR and
MODIS NDVI and fAPAR data products in a range of
temporal and spatial resolutions. To obtain time series
of maps of the Budyko ratio we have used re-analysis
data generated by ECMWF and NCEP at a spatial
resolution significantly lower than the spatial resolution
of satellite data products. We assume that the latter
describe the effect of spatial heterogeneity (soils,
physiography and land management) within the larger
grid cell for which re-analysis data are available.

The re-analysis data generated with atmospheric
models have a spatial resolution (40 km ECMWF, 200
km NCEP) much lower than satellite data (14 km).
Daily data on net radiation and precipitation have been
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integrated over time to obtain data with the same
temporal resolution as satellite NDVI and fAPAR data:
from the 8 days of MODIS data to the 30 days of the
AVHRR data used in our earlier studies. As mentioned
the ratio of net radiation to precipitation is a measure
of dryness and fAPAR (or NDVI) is a measure of
photosynthetic ~ activity. Given the significant
difference in spatial resolution of the data on climate
forcing respectively vegetation response, we have
assumed that climate forcing is known and constant for
a large area, while within it the spatial variability of
vegetation response can be characterized using the
higher resolution satellite data. In the earlier studies
(Menenti er al., 1993) the Normalized Difference
Vegetation Index (NDVI) has been used as a surrogate
of fAPAR. Vegetation response to dryness has been
studied by using Fourier series to model the time series
of the Budyko ratio respectively of fAPAR. This
approach does also lead to identify the dominant
periodic components in the observed signals.

Once the dominant frequencies have been identified, it
becomes possible to study the phenological response of
vegetation to drought, as measured by the time series of
the Budyko ratio. This has been done by looking at
both spatial and temporal correlation of Fourier
coefficients, mainly the amplitudes of dominant
components, with the yearly average of the Budyko
ratio (Roerink ez al.,, 2003). The analysis has been also
extended to interannual variability of phenology by
evaluating the ratio of changes in Fourier coefficients
to the corresponding changes in the Budyko ratio.

Early Detection of Anomalies in Vegetation
Conditions

Very recently (Jia and Bastiaanssen, 2007) we went one
step further: after studying stable spatial patterns of
vegetation type and average aridity conditions and
steady state yearly patterns of phenology and drought,
we can now explore the use of time series analysis to
model and predict observations and finally early
detection of drought-related anomalies in vegetation
phenology.

Vegetation response to drought can also be evaluated
by analyzing the trends in time series of vegetation
conditions observed by satellites. The trends in vegetation
response can provide a measure of drought impact as
well as a measure in drought evolution with time.
These trends are fundamental for preparing short term
predictions of biomass production and assess drought
impact on crop yield and vitality of natural ecosystems.

For this purpose we have used data describing
photosynthetic activity (e.g. the MODIS fraction of
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Absorbed Photosynthetic Active Radiation-fAPAR-
data product, the Land Surface Temperature, vegetation
indices, etc.) to provide a measure of the response of
vegetation productivity (agriculture and forest) to
drought.

Climate Impact ] [ Human Impact j [ Other Impact ]
Measurahies: Measurables: Measurables:
- precipitation - crop type - land cover
- net radiation - imigation - sail type
- temperalure - fertilisation - altitude
- eteo, - el -elc,

Vegetation
Performance

Time Series of

fAPAR images /

HANTS analysis q

y

[ Climate Indicator '

Cl = LP/Rn
- Phase

\/

Quantified relationship
between climate variability
and vegetation dynamics

- Frequency
- Amplitude

Fig. 3: Schematic description of the approach proposed
in this paper to study the response of terrestrial vegetation
to climate variability; Cl is the ratio of precipitation times
the latent heat of evaporation to net radiation
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Fig. 4: Modeling fAPAR time series using Fourier analysis:
observations for 2001 are modelled (squares) and compared
with the average year for the period 1999-2006 (conti-
nuous line); on DOY 121 the modelled time series over
the previous 12 months is used to predict the peak
anomaly on DOY 185

The approach builds up on the concepts and methods
described above. Given a multi-annual time series of
observations, e.g. 8 days MODIS fAPAR, the Fourier
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analysis is performed independently for each year. This
gives a gap-filled, noise-filtered time series for each
year in the data set and the average (reference) year.
Occurrence and magnitude of drought-related anomalies,
i.e. lower than average fAPAR and concurrent higher
than average Budyko ratio, is evaluated first. Then
modeling of a yearly time series is used to extrapolate
in time the observations past the earliest observed
anomaly, i.e. beyond the moment when the lower than
average fAPAR is first detected (Figure 4).

Work on prediction of time series using a model
determined on a moving segment of observations up to
the date of prediction has just started and we expect to
explore alternate methods (Fourier series, wavelets,
Markov chains, etc) to model the time series of
observations for each individual pixel. It should be
noted that this approach yields maps of observed and
predicted anomalies and of their magnitude.

METHODS

Fast Fourier Transform and Harmonic
Analysis

For general information on Fourier series, Fourier
transform and its applications in earth sciences the
reader is referred to Fourier (1818), Box and Jenkins
(1970), Brandt and Damen (1989) and Main (1990).

A time series of NDVI or fAPAR images will be
indicated as I(x, y, ), where x is pixel number or
longitude, y is line number or latitude and 7 is time in
dekades (10 days) or days. (x, y, 7) can be expressed as
a linear combination of elementary periodic functions,

165, 3,0= 3 A, )y ox Dt = 8(x. ¥), (1)

where w, is frequency, 4 is amplitude and g is phase
angle; the frequency is related to the period P, as w,
=2n/P,. The maps A(x, y), and g(x, y), for the
dominant terms in Eqn. (1) represent very concisely
the information contained in the time series of image
data I(x, y, ).

The Fast Fourier Transform (FFT) algorithm.

A time series of equidistant data points of length N
can be represented by a vector  of dimension N. The
Fourier transform consists of finding the amplitude
vector a, such that,

I=Ua .. (2)

Where U is a N x N matrix, which contains complex
numbers u on the unit circle in the complex plane.
Matrix U can be organized in such a way that each
element u, ; is given by,
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Hes g :exp{2n(r—l)(k—l)—;}} .. 3)

Where r respectively & are the row respectively column
number, and i = |-1. By multiplying the data vector I
by the complex conjugate of U, U we obtain,

UI=U Ua )
and finally,
a=[UU'UI .. (5)

Since in the special case of the Fourier transform the
matrix U is square and U*U is diagonal and equal to
NI, where I is the identity matrix, the solution in this
case is simply,

1Y, .
a(jv—]UI ... (6)

The mixed radix FFT algorithm implemented and
applied for the investigations described in this Chapter
is very fast because it calculates the matrix-vector
product very efficiently by breaking it up in FFT-s of
smaller dimensions. This is especially effective when
N can be factored into many small (radix) numbers. In
the present implementation of the algorithm the
supported radix numbers are 2, 3, 4 and 5, which
allows processing time series of such lengths (number
of data points) as 12, 36 or 360. The latter allows the
analysis o multi-annual data at e.g. dekadic temporal
resolution.

A disadvantage of the FFT is that data points must
be equidistant in time and that misisng data points are
difficult to deal with. It would be desirable to weigh
the input data to avoid missing data to have a large
impact on the results. This has been implemented as
detailed below.

The Harmonic Analysis algorithm.

To assign weights to the input data the Eqn. 2 must
be rewritten as,

Wi=WUa i {7}

Here the matrix U does not contain complex numbers
anymore, but rather the associated sine- and cosine series.
In this case multiplying by the transposed of U, U*
gives,

UWI=UWUa .. (8)
with the solution,
a=[UWU'U WI .. (9)

where W is the diagonal matrix of weight factors.
Because of these weight factors the matrix U*WU is
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not diagonal and its inverse must be determined in
order to find the amplitudes.

This algorithm is the solution of a generic weighted
least squares fitting problem and therefore it is applicable
to a range of problems much wider than the FFT.

In the HANTS algorithm, as implemented, the
matrix U has N rows and 2M + 1 columns, where M is
the number of frequencies to be considered above the
zero frequency, except if M = N/2, in which case the
number of columns is equal to V.

Large Area Mapping of Climate-Soil-Vegetation
Complexes

Isogrowth—Zones

The areas wherein the phenology of terrestrial vegetation
is similar were first identified then documented by
going through the following steps:

(a) A multi-annual data set was prepared: we used ten
years monthly NDVI data from August 1981 through
July 1990 extracted from the archive created and
maintained by the Global Inventory Monitoring and
Modeling Systems team at NASA/GSFC. These are
Global Area Coverage data reprojected to an equal
area projection and re-sampled to obtain a 7.6 km x
7.6 km spatial resolution. These monthly composites
are produced by first screening cloud-contaminated
observations by using Thermal Infrared Radiance
in the AVHRR Channel 5 and then searching for
maximum NDVI within each month (Holben,
1986). This 10 years time series was constructed
with radiometric data collected with three different
AVHRR sensors and an intercalibration procedure
was applied to remove sensor-related artifacts and
trends (Los, 1993).

(b) The FFT mixed radix algorithm described above
was applied to the time series of 108 monthly
images. The images of mean NDVI and of the
amplitudes of the 6 months, 1 year, 4.5 and 9 years
components were retained for further analyses.

(¢) The selected mean value and amplitude maps provide
concise measurements of vegetation phenology and
were used as attributes to identify homogeneous
zones with the numeric classification procedures
described below.

Classification Algorithms

Mapping of isogrowth zones (D’Urso and Menenti,

1996; Azzali and Menenti, 1996, 1999 and 2000) was

done by going through the following steps:

(a) Most significant attributes were selected using a
measure of separability (signature divergence);
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(b) An unsupervised classification algorithm was used
to construct alternate class definitions;

(c) Different alternate classification rules were applied;

(d) A measure of classification performaice (IP) was
constructed and used to compare the relatively
large number of alternate classification procedures
arisng from combinations of (a), (b) and (c). This
indicator is based on normalized measures of
reliability, separability and accuracy of classification.

(e) The highest value of IP leads to the best classi-
fication procedure.

The isogrowth zones, obtained by numeric unsupervised
classification procedures, need to be documented on
the basis of ancillary information on soils, climate and
vegetation type. Climate was characterized using long
term averages of net radiation and precipitation to
construct maps of the mean Budyko ratio.

We have applied a fuzzy classification algorithm to
gain some insights into a truly novel classification
problem: classes could not be defined a-priori and maps
of Fourier coefficients were to be used for the first
time ever as class attributes. A fuzzy c-means (FCM)
algorithm (Dunn, 1973; Bezdek et al., 1984; Kent and
Mardia, 1988) was coded and applied to explore how
to best deal with this challenge. This method is a
generalization of the hard c-means clustering
algorithm: instead of assigning each pixel to a single
class, it computes a measure of class membership for
each pixel and for all classes. An initial set of classes
is needed. The algorithm yields a map where each
pixel is assigned to the class with the highest
membership and one membership map for each class
and all pixels.

The membership was evaluated as,

g2
if : 5
my=—"——i=1 ., M;M<N

b= M i
~2(¢-
2.y
J=1

where, m; = membership of pixel i for class j; d; =
distance of pixel i/ from centroid of class j; ¢ =
fuzziness exponent in the domain (0, ); ¢ = 1 gives a
hard classification, ¢ = o gives uniform membership
for all classes.

The objective of the tests with the FCM algorithm
was to explore alternate ways to define classes. Cases
where pixels have a large membership value for a
single class and much lower values for the remaining
classes suggest a feasible definition of classes. On the
contrary, rather uniform membership values suggest
that class definition is challenging.

... (10)
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Response of Vegetation Phenology to Climate
Variability

The same data as described in Sect. 3.2 were used to
characterize sensitivity of terrestrial vegetation to
climate variability. The measurements of vegetation
phenology provided by the Fourier coefficients were
used to characterize vegetation response to climate
characterized by the Budyko ratio. We have performed
both a spatial and temporal analysis of the relation of
vegetation phenology with aridity, as measured by the
Budyko ratio.

The spatial analysis was done by correlating the
maps of Fourier coefficients (mean value and amplitudes
of dominant components) with the map of mean
Budyko ratio.

The temporal analysis was done by computing
ratios of interannual changes, such as,

Ad, A, (year;) —(year, )

{3 3)..., 3
P ¥ (year-1) P (year—k)

Where R, is net radiation, P is precipitation, year; and
year, are any paired years in the data set.

The correlation of spatial patterns of 4, and (R,/P)
for any given year k yields reationships of the kind,

An sz (%J

If this analysis is repeated for each annual data set, it is
possible to evaluate the response of vegetation phenology
to interannual variability of climate (dryness),

(%)
o4, __Ofy \P
ot a(fl J ot
P
where the temporal derivative is computed over any

two years k and I. It should be noted that Equations 10
and 12 evaluate temporal response of vegetation

(1)

2 (12)

.. (13)
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phenology to interannual variability of dryness in two
fundamentally different ways. Equation 12 assumes
that the interannual variability of Fourier coefficients
(amplitude in this case) can be computed as the product
of the spatial dependence of 4, on (R,/P) at constant ¢
and the interannual change in (R,/P). Equation 10 does
not assume any spatial dependence of 4, on (R,/P) and
treats each pixel observation as independent.

We will evaluate whether Equations 10 and 12 lead
to the same observed response of phenology to inter-
annual variability in dryness by analysing extended
time series of AVHRR data.

Early Detection of Anomalies in Vegetation
Conditions

Time series analisis of NDVI and fAPAR image data
has also been applied to detect drought-related anomalies.
This requires modeling annual time series at weekly
resolution or better, removing noisy and erroneous
observations and filling resulting gaps.

The first step is to obtain a set of high quality
annual time series, L%, y, t) and the time series for the
average year, i.e. the time series of the mean value of
Ii(x, y, t) for all available observations on the same
DOY over all available years,

(%, 9, 1), e In(x, 3, D} 2I(x, 9, 1)

Once this has been obtained, it becomes possible to
define anomalies Dy(x, y, f) as,

Dk(xaya f):[fk(an’a t)_f(xe Y, 1] . (15)

This procedure gives results as shown in Figure 4,
which suggests that such smooth time series might be
predictable by modeling a segment of the time series,
from the date of the desired prediction backwards, and
using the model to predict the time series forward.

.. (14)

RESULTS

The results reviewed here have been obtained in the
context of several case studies (Table 1).

Table 1: Overview of Case-Studies on Fourier Analysis of Time Series of AVHRR—NDVI and MODIS fAPAR

Region Period S’gzg?l Te'rqnggral Method Data
Southern Africa August 1981 — July 1990 7.6 km x 7.6 km 30 days FFT AVHRR—NDVI
South America July 1982 — June 1991 7.6 km x 7.6 km 30 days FFT, HANTS | AVHRR—NDVI
Argentina January 1982 — June 1992 7.6 km x 7.6 km 30 days HANTS AVHRR—NDVI
Europe January 1995 — December 1997 1 km x 1 km 10days | HANTS AVHRR—NDVI
China January 2000 — December 2006 1km x 1km 8 days HANTS MODIS—APAR
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Large Area Mapping of Climate-Soil-Vegetation
Complexes

Southern Africa

A preliminary analysis of the significance of Fourier
coefficients led to choose the mean NDVI, the
amplitudes of the components with periods of 9, 4.5, 1
and 0.5 years and the phase of the of the components
with periods of 1 and 0.5 years as most significant
attributes of isogrowth zones.

The following elements were chosen to apply and
evaluate alternate classification procedures to map the
isogrowth zones:

e three sets of attributes;

e inclusion or exclusion by masking of ocean and
inland water;

¢ normalization of numeric range of attributes;

o four different sets of signatures all including 20
classes, obtained by applying unsupervised classi-
fication;

o three different clustering rules for the supervised
classification step.

Each combination of these elements yields a different
classification procedure. For each procedure we evalu-
ated the Reliability, Separability and Accuracy indicators
and finally the overall Cclassification performance
indicator, IP. Out of all procedures, six had similar

high IP values and were evaluated in more detail
(Table 2).

A detailed, qualitative assessmefit of procedures
S2, S6, S7 and S12, all obtained using the maximum
likelihood Bayesian decision rule, was performed by
correlation with ancillary data. Although a comparably
high performance was also obtained with procedure S1,
we preferred to consider S2 in order to compare
procedures based on the same decision rule.

The evaluation was done by overlaying each map of
isogrowth zones with a map of the Budyko ratio, B,
and the White (1983) map of the vegetation of Africa.
At this stage all classes have been determined by
numerical classification of the Fourier coefficients, so
their significance needs to be understood and
documented. A detailed analysis of these results was
presented by Azzali and Menenti (1999 and 2000),
here only a brief overview is given.

Isogrowth zones, as obtained with S2, correlate
rather well with both the Budyko ratio (Figure 5a) and
the White vegetation map (Figure 5b). The isoline of
B = 2 for example describe rather well the transition
zone between arid and semi-arid vegetation over a
broad latitude range from the southern tip of Africa
towards the sub-sahelian region. The agreement with
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the White vegetation map is also rather good, especially
if we take into account that the White classes are broad
association of species. Our isogrowth (or isophenology)
map may define narrower vegation types. This is best
documented by looking in some more detail at the
features associated with each isogrowth zone.

Table 2: Reliability, Separability, Accuracy and Overall
Performance Indicator, IP, for the Best Six Classification
Procedures

Procedure | Reliability | Separability | Accuracy P
S1 0.71 1.40 0.85 0.885
S2 0.70 1.40 0.87 0.884
S6 0.65 1.395 0.92 0.884
S7 0.68 1.40 0.74 0.85
S9 0.70 1.405 0.48 0.79

S12 0.74 1.405 0.78 0.88

The maps in Figure 5 include 20 isogrowth zones:
Azzali and Menenti described in detail the full legend
of these map with a detailed analysis of the Fourier
spectra, reconstructed NDVI(t) and the relative
abundance of the White classes within each one of the 20
zones. Here we will give a few examples to document
the correlation between increasing aridity (i.e. higher
values of B), Fourier spectrum (amplitudes of different
periodic components), the NDVI(t) reconstructed
using the Fourier series and vegetation types as
defined and mapped by White (1983).

Class 6 (and class 10) have the highest mean NDVI
value in Southern Africa and Budyko values close to 1,
thus showing a near equilibrium of evaporative demand
(R,) and water supply (P). Mean annual rainfall is
2000 mm. This class is located in the dense equatorial
forest areas n Central Zaire, Congo and Gabon.
According to White (1983) the vegetation is classified
as wetter and drier Guineo-Congolian rain forest (Types
la and 2, Figure 5b), swamp forest (type 8), mosaics of
la and 8, mosaics of la, 2 and secondary grassland
(11a). Class 6 (and class 10) is the only class having a
dominant 6 months component and the reconstructed
NDVI(t) shows a very well defined bimodal character.

Class 5 has a mean NDVI = 0.37 and B = 2. Mean
annual rainfall varies overall between 800 mm and
1200 mm, while it is 500 mm in Kenya where B = 3.
The vegetation consists of Somali-Masai Acacia—
Commiphora deciduous bushland and thicket (White
types 42, 16a and 1la). The NDVI(t) follows the
rainfall pattern with a main peak in late fall. The 12
months component is dominant, although the 6 months
component is still significant.
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Fig. 5: Map of isogrowth zones (soil-climate-vegetation complexes) obtained by numeric classification (S2 in Table 2) of
Fourier coefficients: a) overlain by isolines of the Budyko ratio and b) overlain by the White (1983) vegetation classes

Class 9 has a mean NDVI = 031 and B = 2.5. It is
characterised by seasonal rainfall during the austral
summer and a peak in January, with mean annual rainfall
of 700 mm. The vegetation consists of high-yield
grassland (type 58) and afromontane scrub forest (29c,
d and e; 19a) according to White (1983). The sharp
boundary between isogrowth zone 9 and zone 2 is
most likely due to the higher fertility of soils within zone
9. The 12 months component is largely dominant and the
amplitude is comparable with the mean NDVI. The
significant amplitudes of the 9 and 4.5 years components
suggest an influence of the middle Limpopo river on
water supply to vegetation.

South America

The FCM method provides an alternate solution to the
challenge of mapping vegetation at a spatial scale where
it is not possible to define vegetation types precisely.
As in the previous case-study on Southern Africa a
subset of the Fourier coefficients obtained with the
FFT were used as attributes to identify homogeneous
zones. The NDVI(t) time series included the period
19821991 (see Table 1). The attributes were the mean
NDVI, the amplitudes of the terms of the Fourier
series with periods of 9, 4.5, 1 and 0.5 years and the
phase values of the terms with periods of 1 and 0.5
years. Likewise the previous case, an unsupervised
classification algorithm was used in a first step, but
signatures were constructed for six classes only. Next,
the membership of all pixels for the six classes was
evaluated using Eqn. 10.

The FCM yields classification results as a set of
maps: a first one where each pixel is assigned to the
class for which membership is highest and M maps of
the membership values of all pixels for each one of the
M-classes. Part of this information can be merged into
a single map (Figure 7), where colour indicates the
class of highest membership and intensity its actual
value.

The advantage of the FCM method is that it
provides both broader map units and information on
internal variability through the membership value. This
is evident for example for the grasslands in south—
eastern Argentina (Figure 7) where this broad
vegetation type appears in magenta, with significant
changes in intensity indicating subtler differences in
the combination of species and vegetation conditions.

Response of Vegetation Phenology to
Climate Variability

The relationship between vegetation type and aridity
documented by the correlation of isogrowth zones with
the Budyko ratio (see e.g. Figure 5) can be further
analyzed by evaluation interannual variability of
vegetation phenology and of climate. This relationship
is confirmed by the dependence of both mean NDVI
and the amplitude of the 1 year component on the
value of B (Figure 8).

The values in Figure 8 were obtained by computing
first the Fourier transform using HANTS for two
yearly time series (1996 and 1997), then averaging the
values of mean NDVI and amplitude obtained in each
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Fig. 6: Legend of the map in Figure 5 for isogrowth zones representative of the response of vegetation type to a broad
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d) NDVI(t) reconstructed using the Fourier series and e) fractional abundance of White classes; classes 6, 5and 9

Fig. 7: Map of isogrowth zones in South America showing
classes 4, 5 and 6 of six fuzzy classes obtained with the
FCM method (see text for details); colours indicate the
class of highest membership and intensity indicates the
membership value

year for all pixels and finally sampling the resulting
maps to carry out the regression analysis. Scatter in
data points clearly increases with decreasing number

of pixels at increasing values of (1/B). The latter
indicator of climate conditions was used, instead of B,
because of the wetter climate conditions in Europe
compared with the previous case-studies in Southern
Africa and South America.

The relationships in Figure 8 can be used to
estimate the sensitivity, S, of vegetation phenology to
water availability by computing,

04
=1 .. (16
y d(P/R,) (16)

where (1/B) = (P/R,) is used instead of B taking into
account the relatively wetter conditions of Europe.

This provides a straighforward measure of sensitivity
to drought. Interesting is the difference in sensitivity
between the mean NDVI and the 1 year amplitude.
The value of S becomes negligible at P/Rn ~ 1 for
mean NDVI and at P/Rn ~ 1.5 for the 1 year
amplitude. Even more interesting is the difference
between the value of S obtained using data over spatial
patterns at given 7, or data at different times for a given
pixel, as in Eqn. 11.
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Fig. 8: Mean NDVI, (a), and amplitude of the 1 year component, (b), vs. (1/B); Europe and North Africa,
AVHRR NDVI 1996-1997, 10 days composites at 1 km x 1 km resolution

A regression analysis on the data as in Figure 8 was
performed to obtain the following relationship,

A,=a+b(PIR,)+cd ™" wis LI

Where the coefficients @, b, ¢ and d depend on the
order » of the periodic component under consideration.
Since the Eqn. 17 has been obtained with data on spatial
patterns at given #, this gives the dependence of
vegetation phenology on spatial patterns in water
availability. The sensitivity S can be computed using
Eqn. 18, given Eqn. 17, obtaining a first derivative as a
function of P/R,.

We have used the Eqn. 11 to evaluate the sensitivity
to temporal changes in water availability at a given
location. It is rather evident that different functions
S(P/R,) are obtained when either spatial patterns or
interannual variability is considered (Figure 9).

Most interesting is the fact that S becomes negligible
at significantly lower values of P/R, in the case of
interannual variability as compared with the case of

spatial patterns: P/R, = 0.3 for mean NDVI and PIR, ~
0.8 for the 1-year amplitude.

The value of S provides two different informations
when computed in the time respectively space domain.
In the time domain it provides a measure of the phenol-
logical response of vegetation established in an area with
a given climate, i.e. a specific value of B, to a temporary
and usually rather limited interannual change in B.
We could, therefore, consider the value of S computed in
the time domain, S, as a mesure of resilience of
vegetation.

In the space domain, conversely, it provides a measure
of differences in phenology of vegetation types
established under different mean climate conditions,
i.e. different mean B-values. This information may be
interpreted as a measure of vulnerability of vegetation
in the presence of long term changes in climate, i.e.
such as to affect in a permanent way water availability
at the locations considered to compute S in the space
domain, S,.
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AVHRR NDVI 1995, 1996 and 1997, 10 days composites at 1 km x 1 km resolution
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Early Detection of Anomalies in Vegetation
Conditions

Timely and reliable detection of anomalies in vegetation
conditions requires accurate removal of anomalous
observations, filling gaps in the annual time series and
robust modeling of the valid observations.

The result (see Eqn. 14) is a set of noise-free (or
nearly so) annual time series and the time series for the
reference year obtained all available observations for
the same 8 days period. This provides a straight-
forward way to determine (Eqn. 15) and visualize
anomalies. A case-study (Jia and Menenti, 2006) on
the Qinghai-Tibet Plateau using MODIS fAPAR data
products for the period 2001-2005 illustrates how
anomalies are detected and evaluated (Figure 10).

This illustrates the basic principle of the approach:
although the overall shape of the fAPAR signature
remains a simple periodic function, subtle differences
in timing of minimum and maximum values and in the
overall yearly amplitude are observable. Such differences
are measured by using the Fourier parameters
determined with HANTS.

Over vast and complex regions like the Qinghai-
Tibet Plateau significant differences in interannual
variability and phenology may occur and be observed.
Anomalies may occur in some areas only, such as the
case illustrated here. The driest (i.e. 2001) and the
wettest (i.e. 2005) years were considered, but
differences were almost negligible in the southeastern
portion of the Plateau and very large, i.e. 8(R,/AP) =
13, in the northeastern Plateau where 6fAPAR= —12.
This example underscores the value of the approach
described here: time series of spatial data on dryness
conditions and concurrent vegetation conditions are
essential to observe and understand the impact of
climate variability on terrestrial vegetation. The latter
is particularly relevant when observing extensive
agricultural lands with the objective of monitoring and
forecasting crop yields.

The latter has been the objective of a case-study on
the severe 2006 drought in Sichuan and Chongging,
China.

This drought event was internationally widely
reported. By 15 August 2006, natural disasters had
killed 2,006 people, affected more than 316 10° others
and caused economic losses of 160 10° yuan or 20 10°
US$ (Jia and Bastiaanssen, 2007).

The analysis of MODIS fAPAR observations
(Figure 11) shows that an anomaly was detected in the
western part of the province as early as June 2™ 2006,
which agrees with the rainfall anomaly detected with
TRMM data in the same area and period of time. The
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improvement in spatial resolution obtained with the
MODIS data, however, is very significant and of
evident relevance to identify areas where drought
remedial interventions are most needed. Moreover,
while seasonal forecast of precipitation is a demanding
challenge, the fAPAR anomaly develops as a smooth
function of time (Figure 12), thus suggesting an easier
prediction of trends and anomalies at different
moments through the growing season.
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Fig. 10: Observed fAPAR annual time series at a randomly
selected pixel in the Tibetan Plateau; each observation is
a 8 days composite; Terra/MODIS, 2001-2205
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Fig. 11: Anomalies in the Fraction of Absorbed Photo-
synthetically Active Radiation (fAPAR) observed by the
MODIS satellite at 8 days intervals; anomaly is defined as
difference between each 8 days value in 2006 and the
corresponding average in the five year period 2001-2005;
pixel size is 1 km x 1 km; Sichuan and Chongging
Provinces, China
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The relevance of the method described here to
drought early warning may become clearer by looking
at temporal evolution of the anomaly for an individual
pixel (Figure 12). Lower than average fAPAR values
were observed as early as May 31% 2006 and this
anomaly kept increasing until August 31" when
recovery started. Although the anomaly was rather
small in late spring, the smoothness of the signal and
the memory of the process combine to yield a robust
early warning information. The time series of maps of
the anomaly (Figure 11) provides both the extent and
severity of the event and might be used to identify
areas requiring drought relief well in advance of
reaching the peak severity of the anomaly. The maps
indicate that an anomaly was first observed in early
June in the central zone of Sichuan, but this anomaly
receded during June and July. On the contrary the first
signs of the more severe event in the zone across the
border between Sichuan and Chongqing were observed
in early August, while the anomaly peaked in early
September.

Prediction of the anomaly by forward extrapolation
of the time series is a possibility (see Figure 4), but
work is in progress to evaluate alternate methods to
model a segment of the time series from the point in
time when the extraplotaion is required backwards,
then using the model thus determined to extrapolate
the time series forward.

Doy

Fig. 12: Fraction of Absorbed Photosynthetically Active
Radiation (fAPAR) observed by the MODIS satellite at
8 days intervals for a single pixel: five years(2001-2005)
average (blue) and 8 days observations during 2006;
pixel size is 1 km x 1 km; Sichuan Province, China

DISCUSSION

Large Area Mapping of Climate-Soil-Vegetation
Complexes

The map of soil-climate-vegetation complexes (iso-
growth zones) is a new type of map focussing on
phytophenology and including for each class (complex)
associations of different vegetation types. A straight-
forward comparison of our map with vegetation maps
such as the one by White (1983) and with the map of the
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Budyko aridity index map obviously shows some
differences.

It should be noted that the main mapping units in
the White map represent climax vegetation of different
regions of endemism (White, 1983). The vegetation
formations used in this context are usually rather
broad, including large geographical locations and
several lithological varieties, under climatic conditions
that are also broadly defined.

The images of Fourier coefficients and associated
statistics indicate that this new approach is very well
suited to study phenology of terrestrial vegetation over
large areas. Moreover the approach is useful in that
temporal phenomena such as the seasonality of the
vegetation can be displayed and understood in terms of
4 or 5 images instead of a large number, like the 108
AVHRR-NDVI images used in the Southern Africa
and South America case-studies and the more than 250
MODIS-FAPAR images used in the China case study.
Thus, the temporal behaviour vegetation communities
manifested over many growing seasons may be
summarized in a way that is potentially less cumber-
some than other approaches (e.g. Malingreau, 1986).

The utility of the approach presented here to analyze
multitemporal NDVI images may extend beyond mere
description and summarization of foliar rythms observed
at regional scale. For example, the 9-years amplitude
image, which appears to relate to interannual variability
of leaf display, may serve as a measure of resilience, an
important functional response of vegetation to climatic
change (Walker, 1991). In particular areas of high
amplitude at low frequencies (i.e. those with periods of
9 and 4.5 years), such as Acacia woodland-bushland of
the Kalahari, would suggest greater resilience to heigh-
tened climatic variation predicted for southern Africa
under greenhouse warming. scenarios (Pittock and
Sallinger, 1991). Conversely, zones where the low
frequency components showed small amplitudes, such
as the miombo woodlands, would tend to indicate
vegetation highly resistant to climatic changes. Of the
two types of behaviour, it is likely that communities are
able to adjust leaf display rapidly in response to changes
in available resources (i.e. resilient forms) will be
favoured under conditions of heightened climatic
variations.

Response of Vegetation Phenology
to Climate Variability

The results of the case-study carried out on Europe and
North Africa presented here cover just three years, too
short period of time to draw generic conclusions on the
response of phenology to interannual climate variability.
On the other hand a strong correlation has been found
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between the Fourier coefficients and the ratio of
precipitation over net radiation. The inverse of the
Budyko ratio has been used in the study of Europe,
because of the wetter conditions in comparsion with
Southern Africa and South America. Among the
amplitude and phase coefficients, the mean NDVI and
the 1-year amplitude were the most sensitive indicators
of vegetation response to climate variability.

The sensitivity of the Fourier amplitude and phase
coefficients to climate variability was evaluated both
in the time and spatial domain. In both cases the
sensitivity decreased with increasing wetness (i.e.
PIR,). When considering changes in the spatial domain,
the sensitivity S of mean NDVI becomes negligible at
P/R, ~ 1.5, while the S value for the 1-year amplitude
becomes negligible at P/R, = 2.5.

It is worth noting that negative S-values were obtained
for the l-year amplitude at P/R, = 0.5, i.e. that the
|-year amplitude decreases with increasing wetness.
This apparently contradictory result can be explained
by considering that under semi-arid conditions, an
increase in rainfall may increase minimum NDVI more
than the maximum NDVI during the year, thus leading
to smaller 1-year amplitudes.

Early Detection of Anomalies in Vegetation
Conditions

The advance information on impending drought may -

be confirmed by concurrent observations of other land
surface state variables, such as the Land Surface
Temperature (LST). For the Sichuan and Chongging
case-study the LST anomaly anticipated the appearance
of the fAPAR anomaly by a few weeks, but it was
smaller throughout the period end of April 2006—end
of August 2006. On the other hand, the LST anomaly
once it appeared, it did not disappear, thus providing
additional and useful information on the impending
drought event, well in advance of the time of peak-
severity (August 2006).

Moreover, both fAPAR and LST seem to respond
consistently to climate forcing. An evaluation of
fAPAR and LST response to rainfall, as estimated with
TRMM data, was done by Jia and Bastiaanssen (2007).
Although the very different spatial and temporal
resolution of these rainfall (TRMM) and fAPAR
(MODIS) observations does not allow a precise
comparison, it is clear that the observed fAPAR
anomaly responds rather well and correctly to the
observed rainfall anomaly. The latter supports the use
of fAPAR observations for detection and prediction of
drought-related anomalies in the development of
vegetation. Finally, it should be noted that in the
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Sichuan and Chongging case-study anomalies and
trends detected with diverse measures of water
availability and of the response of terrestrial vegetation
did add up to a coherent picture of the developing
drought event about 2 months in advance of the time
when anomalies reached their peak values in late
August.

CONCLUSIONS

The l-year and 6-months amplitudes, the 9-years
amplitude and the 6-months phase images appear to
relate to the distribution of vegetation types and thus
these may be useful for developing image classifications
based on temporal dynamics of the vegetation. Overall,
aridity is a strong determinant of both vegetation type
and of vegetation phenology. This was confirmed by a
detailed correlation analysis of Fourier coefficients and
Budyko index. The highest correlation coefficients
were obtained for the 1-year and 6-months amplitude
values. This information, combined with the agreement
between the White (1983) vegetation map and our map
of isogrowth zones, leads to the conclusion on the role
of aridity, as measured by the Budyko ratio, in
determining both phenology and vegetation type.

This conclusion is further strengthned by the fact
that the map of isogrowth zones was obtained by a
two-steps classification procedure: classes have been
defined first by using an unsupervised classification
algorithm to construct signatures in terms of Fourier
coefficients, then the map proper has been produced.
This implies that classes are entirely based on
similarity of phenology as measured by the Fourier
coefficients. Finally, the correlation of Fourier
coefficients with B provides further evidence in
support of the statements given earlier on the role of
even small changes in aridity to determine subtle
differences in vegetation types and, particularly, in the
association of vegetation species.

The dependence of the NDVI Fourier spectra on
climate variability in time and space has been established
quantitatively. The correlation in the spatial domain
was stonger than in the temporal domain, suggesting a
measure of resilience of vegetation to interannual
variability rather than adaptation to stable differences
in dryness. Only under very dry conditions interannual
variability has a larger impact on phenology than
spatial variability in dryness.

The results on quasi-real-time monitoring and early
warning of droughts are preliminary and much remains
to be done on filtering and gap-filling of time series and,
therefore, on the accurate and timely detection of
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anomalies. The work presented here, however, shows
that the information on vegetation phenology and
photosynthetic activity conveyed by multi-spectral
data collected by imaging radiometers is very reliable
and relationships robust over a range of space and time
scales.

The results summarized and reviewed in this chapter
open up two main avenues for further research:

(2) The period of time spanned by spaceborne obser-
vations of the global land surface span, 25 years or
more, having a climatological relevance far superior
to what was achievable with the data available in
the late ‘80-s when we began exploring these ideas;
it deserves the most urgent attention, therefore, a
deeper and more robust understanding of the
observed response of the terrestrial biosphere to
climate variability, specifically focusing on inter-
annual variability.

(b) Both methods and data are now available to develop
further an efficient and cost-effective early warning
system on drought events, based directly on ob-
servations of vegetation conditions from space.
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