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Introduction

Simplified rainfall-runoff models are usually applied to represent hydrologic processes over
watersheds with scarce hydrometeorological data (Viessman Jr. and Lewis, 1996). Even
watersheds with good monitoring systems and more elaborated models are limited in face of
complex hydrological processes (Singh, 1988) such as precipitation, evaporation, infiltration
and streamflow that are difficult to quantify with good accuracy. Moreover, some surface’
processes such as streamflow are strongly depended upon the physical characteristics of the
watershed like topography, vegetation cover, soil type, hydraulic structures, urbanization,

and many others.

Watershed analysis and modeling require extensive time series of streamflow and rainfall
data, not frequently available. Many analytical methods have been developed to estimate
streamflow from rainfall measurements over the watershed (Viessman Jr. and Lewis, 1996;
Franchini and Pacciani, 1991), as well as stochastic and statistical ones where no
measurements are available. These simplified methods are usually applied to engineering
projects, water resources management, flood forecasting and others. A great deal of the
hydrological and hydraulic processes is neglected. Other more elaborated methods such as
the Shamseldin et al. (1996) ensemble streamflow estimates from several models. Each of
them represents certain important physical aspects. More recently, the ANN method was
successfully utilized to model time series in a variety of applications in science and
engineering (Vemuri, 1994), also applied to convert rainfall into streamflow (Luk et al.,
2000; Hsu et al., 1995; French et al., 1992) without prescribing the hydrological processes;
nonlinear systems are handled without explicitly solving differential equations (Hsu et al.,

1995).
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Urban hydrology are not well represented by deterministic models since it is difficult to
quantify processes with equations due to missing or incomplete data. Overall, processes and
formulae are simplified and fewer parameters are used to keep the model and required data
manageable. Simplified models can make modeling feasible and enhance insight in the
processes. When the natural process is not sufficiently known, but data exist, a statistical
approach can also be applied. Watersheds with long data time-series can be represented by
stochastic models, but noise and changes can reduce modelling capabilities. Furthermore,
some issues are not addressed: (1) unknown processes; (2) decision making; (3) data

intensive tasks; (4) changing environments.

The ANN can deal with such issues, namely, processing speed, fault tolerance, adaptability
and learning capabilities (Loke, 1995). As described by Loke (1995), ANNs relate an input
vector (e.g., rainfall accumulation) fo an output vector (streamflow) by means of a large
number of highly interconnected, simple input and output devices termed neurons. These
neurons can be connected in several ways to form special groups of neurons with distinct

architectures. The ANN has to be trained through a learning procedure that uses a data set of

input and output vectors to adjust the networks internal parameters. After training, the ANN
is verified against an independent data set. If the verification procedure is not satisfactory, the
network has to be retrained, using different data sets or modified internal settings. Training
and verification are repeated until the ANN performs adequately. As the performance of an
ANN is influenced by many parameters (e.g. network structure or learning algorithm),
numerous types of ANNs exist, all with their specific application purposes. ANNs are
divided into prediction, simulation, classification, optimization and identification problems.
ANNSs can be used in urban hydrology applications for runoff and flow forecast, flow and

pollution simulation, control strategy definition or system parameter identification.

Therefore, the objective of this paper is to apply and ANN to simulate and to forecast flash
floods in the Tamanduate1” river watershed, a heavily urbanized area in Eastern Sa"o Paulo
State (Fig. 1). Rainfall data were obtained from the Sa’o Paulo weather radar—SPWR
(Pereira Filho, 1999). Streamflow were estimated from data measured by an automatic stage

level station at the outlet of the watershed (Fig. 1). Athree-layer feed forward ANN (Hsu et
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al., 1996)was trained with the LLSSIM(Hsu et al., 1995). Noteworthy, feed forward ANNs
have been widely used (Karunanithi et al., 1994; Crespo and Mora, 1993). Their structure is
post-defined. Simple structures might not have enough degrees of freedom to learn the

process adequately, while complex ones might not converge to realistic patterns.
Artificial Neuron Model

Artificial Neural Networks (ANN) are computational systems whose architecture and
operation are inspired from our knowledge about biological neural cells (neurons) in the
brain. The transmission of a signal from one neuron to another through synapses is a complex
chemical process in which specific transmitter substances are released from the sending side
of the junction. The effect is to raise or lower the electrical potential inside the body of the
receiving cell. If this graded potential reaches ahthreshold, the neuron fires. It is this
characteristic that the artificial neuron model proposed by McCulloch and Pitts, [McCulloch
and Pitts 1943] attempt to reproduce. The neuron model shown in Figure 1 is the one that

widely used in artificial neural networks with some minor modifications on it.
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Fig 1 Structure of Artificial Neural Network

The artificial neuron given in this figure has N input, denoted as us, u2, ...u~n. Each line
connecting these inputs to the neuron is assigned a weight, which are denoted as w1, wz, .., wn
respectively. Weights in the artificial model correspond to the synaptic connections in
biological neurons. The threshold in artificial neuron is usually represented by 6 and the

activation corresponding to the graded potential is given by the formula:
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a=[iw}u}.]+9 (1)

J=1

The inputs and the weights are real values. A negative value for a weight indicates an

inhibitory connection while a positive value indicates an excitatory one. Although in

biological neurons, 6 has a negative value, it may be assigned a positive value in artificial

neuron models. If 0 is positive, it is usually referred as bias. For its mathematical
convenience we will use (+) sign in the activation formula. Sometimes, the threshold is
combined for simplicity into the summation part by assuming an imaginary input %, =+1 and
a connection weight w,= 6 . Hence the activation formula becomes:

&

a:[iwjujj 2)

The output value of the neuron is a function of its activation in an analogy to the firing

frequency of the biological neurons:

x= f(a) 3)

Furthermore the vector notation
a=wu+6 4)

is useful for expressing the activation for a neuron. Here, the j element of the input vector u
is 2/ and the /" element of the weight vector of w is wj. Both of these vectors are of size N.
Notice that, wTu is the inner product of the vectors w and u, resulting in a scalar value. The
inner product is an operation defined on equal sized vectors. In the case these vectors have
unit length, the inner product is a measure of similarity of these vectors. Originally the
neuron output function fl@) in McCulloch Pitts model proposed as threshold function,
however linear, ramp and sigmoid and functions (Figure 1.4.) are also widely used output

functions.
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Backpropagation Neural Network

Several algorithms of neural network model exist. However, back propagation which belongs
to supervised learning algorithm that compares the actual output to the target or specified
output and then readjust the weights backward in the network. The same input is specified to
the network in the next iteration, so the actual output will be closer to the target output. One
of the basic requirements of the BP training is that the transfer function be continuous and
differentiable. The sigmoid logistic non-linear function which fulfills the above requirement
is used with the value ranging between 0 tol. The standard back propagation training

algorithm (Figure 2) is as followed:

(1) Initialize all weights and bias factors to small random values.

¢ L
(2) Forward pass: Present input vector (7}, I> . I,, ) and specify the desired output (¢,

tn!)

(3) For layer m = 1,2,...,l: , according to Figure 2, we can compute

Ny = iji,m Oyt +8m )

where O; g=1; , t; = target value of neuron j in output layer, O; »= output of neuron j in layer

m, N;j = activation of neuron j in layer m, 6;, = bias value for neuron j in layer m , Wj;, =

synaptic weight between node j in layer m and node i in layer m-1

The output O;, of the 4™ unit in the layer m is computed using a sigmoid function as
O ! £l (6)
L, = 7= 1,L,.,0
S I ¢ ;

(4) Compute the final output ( O),,0,........ ,0,1,) and compared with the desired output (7,

12 tyy). If the difference is acceptable, the process is terminated and the system has learned.

Otherwise, continue to next step. When the number of epochs is reached while the difference
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is not acceptable, the convergence is not attained. One should try with a new set of initial

values, or even modify the structure of the network.

(5) Backpass: for layerm=1,1-1,1-2, ..., 1, let §;,= 6 for neuron j in layer m,

For output layer m &, ,, =0, (1-0,,)(¢; - 0,.,); (7a)
For hidden layerm &, ,, = O, . (1- Oj,,,,) 2 m;,m:fsf ) (7b)
it
Node i

bias value for node j

Layer m-1
Fig. 2 Transfer of Input of Layer m-1 to A Nodal Output of Layer m
To compute the weight increments:

AW, 4D =9-8,,, - O pn +e2- AW, () (8)

where 77 = learning parameter, = momentum constant, AW, ,, (n) = weight change between
node j in layer m and node i/ at n iteration, AW;,, (n+1) = weight change between node j in

layer m and node 7 at n+1 iteration, O;,,.;= I;,, . » = number of iteration (» = 1,2,3,...).The

new values of the weight is computed as

Wj}i.m (P? + 1) - Wﬁm (?ﬂ:l + ‘&Wﬁ.xs (,:g s 1) (9)
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where W, (n) = weight value between node j in layer m and node i at n iteration, Wi

(n+1)= weight value between node j in layer m and node i at nt+1 iteration

(6) Go to step 2.

The training algorithm

The linear least squares simplex or the LLSSIM algorithm (Hsu et al., 1995; Gupta et al.,
1997)isa hybrid method that optimizes the training of feed forward ANNs. Basically, the
LLSSIM splits the weights into two training strategies to minimize the search for the global
minima (Scalero and Tepede]enlioglu,1992). The simplex algorithm (Duanetal.,1992) is a
random multi-initialization procedure that reduces trapping by local minima (Hsu et al.,

£y

1996). For hydrological applications, the data sets are normalized:

X ’Xnn“ « IR Kﬂlﬂ}

JV_, e “'V}ri.m =

TEX

where, Xi hydrological variable at the ith time step;

Xmin lowest value of X in the hydrological time series;

Xmax highest value of X in the hydrological time series;

Ni normalized value of X at the ith time step;

Nmin lowest value of N allowed; Nmax highest value of N allowed;

The imposed lower and upper limits of the normalized variables prevent over-shooting
(Smith, 1993). The time series of precipitation and streamflow were normalized in the range

of 0 to 1 and 0.1 to 0.9, respectively.
Study Area

Fig. 3 shows the Tamanduate1” watershed, located in Eastern Sa”o Paulo State, Brazil. It is an

important tributary of the Alto Tiete River (Water and Electrical Energy Department

2 with an

(DAEE), 1988). This densely urbanized watershed has a drainage area of 310 km
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estimated time of concentration of about 4 h. More than 80% of its area is impermeable,
especially upstream from the outlet (CTO, 1997). The Tamanduatei'river channel has a
regular concrete cross-section that was projected to support a peak flow of around 485 m’/s
for a return period of 500 years (CTO, 1997). As the population grows every year without

any effective public policy, so do the urbanization and the flood waves that cause severe

inundation.
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Fig 3: Map showing Study area

The Tamanduater” watershed is a part of a much larger urban area termed the Metropolitan
Area of Sa”o Paulo (MASP) with a population of more than 17 million inhabitants.
Thermodynamically, it constitutes a huge heat island. Under quiescent synoptic conditions
during the rainy season from October to March it tends to induce stronger convection and so
more rainfall associated with the local sea breeze circulation which brings moisture from the
Atlantic Ocean (Pereira Filho, 1999). With increased precipitation and lower infiltration

rates, flash floods are becoming more and more severe with increasing social and economical
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loses. Thus, hydrological models such the one proposed in the present work are of great

assistance to give support to the civil defense and to the local and state governments.

Data sets

Precipitation accumulations were estimated from radar measurements of reflectivity. The
Sa"o Paulo weather radar (SPWR) is located in the Upper Alto Tiete™ River (Fig. 2). Radar
volume scans were made every 10 min. Reflectivity measurements were transformed into
rainfall rates by the classical Marshall and Palmer (MP, 1948) ZR relationship. Afterwards,
rainfall rates were interpolated to a constant altitude of 3.0 km with a horizontal resolution of
2 kmX2 km. Precipitation accumulation were obtained as follows:
a R '
where, P precipitation accumulation (mm); R rainfall rate (mm/ h); n number of time steps of

ten minutes each.

The SPWR rainfall estimates are susceptible to many sources of errors such as electronic
calibration, the use of the MP relationship, bright band and range effect (Pereira Filho, 2003).
In this work, radar rainfall estimates were not analyzed together with rain gauges to minimize

errors since the available network of rain gauges is sparse and presented many data gaps.

Moreover, rain gauge measurement errors can be large because of the rainfall spatial
variability and wind effects for intense convective systems as the ones associated with floods
in the MASP and so could not be used as ‘ground truth’. In the present work, the SPWR data
were used without any corrections because of the limitations above. In this work, flood
events with radar rainfall estimations not consistent with the respective flood waves were
arbitrarily eliminated. Radar rainfall estimates can be improved by integrating both radar
estimates and rain gauge measurements through a statistical objective analysis scheme
(Pereira Filho et al., 1998). Pereira Filho and Crawford (1999) have shown that a 30% error
in radar rainfall estimation can result in a peak flow error greater than 300% for small flood

waves.
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The Tamanduate1” watershed was mapped to the SPWR matrix coordinate system (Fig. 4) to
form a mosaic of radar rainfall estimations of 2 kmX 2km horizontal resolution. The area of
the watershed was divided up into eight isochrones (Ponce, 1989) of thirty minutes each.
Thus, aerial precipitation averages were obtained by simple average of all corresponding 2
kmX2 km rainfall accumulations. This was done to reduce the number of nodes in the ANN

input-layer so to improve the convergence rate of the ANN training.

Stage level data were measured every ten minutes at the outlet of the watershed (Fig. 3).
Since the river channel has a regular cross-section, an empirical rating curve was used to
estimate the streamflow. Time series of both radar derived rainfall and streamflow estimates
were taken from the data sets available between 1991 and 1995. All selected flood events are

plotted in Fig. 5 one after the other side-by side.
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Fig. 4. Radar based coordinate system over the area of the Tamanduater” watershed
shown in Fig. 3. The squares represent 2 kmX2 km grid cells divided up into eight
isochrones.
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Fig. 5. Time series of streamflow measurements at the outlet of the Tamanduater”
watershed (Fig. 2). A total of one-hundred flood events were selected from 1991 to 1995.

The feed forward ANN was trained with the LLSSIM method for different input data (Table
1):

1. Rainfall for each isochrone at time steps t to t-At and streamflow as the output at time

« stept.

2. Similar to (1) for streamflow at time step t-At asan input.

3. Similar to (1) for stage level.

4. Similar to (2) for stage level.
Table 1
The ANN training options
Traiing option Input (hetput

Rainfall Streamtlow State lewvel Streamblow Stage level

ANNI Yes No - Yes -
ANNZ Yes Yes - Yes -
ANNZ Yes - No = Yes
ANN4 Yes - Yes - Yes

Halfhowr rainfall accumulations for isochrones 1 o 8 {(Fig. 4) for time steps 1 1o 71— TAs, respectively, are input 1o the ANN at time step .
Streamflow or stage level inpit and output to the ANN are given at time steps r—Ar e ¢, respectively.

Initially, a data quality control was performed withthe ANN to identified flood events with
poor quality due to precipitation and streamflow measurement errors. Thus, the ANN was

initially training with all available data sets in a total of 100 events (Fig. 6) with the
configuration (8,1,1). Most events with very larger discrepancies between observed and
estimated streamflow were eliminated. This data quality control procedure reduced the
number of flood events by 25%. The selected events were randomly divide up into three

groups for training, verification and forecast. The later used the observed rainfall as

forecasted (perfect forecast).
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The verification procedure

Observed and simulated streamflow and stage level time series were compared by means of
the mean square difference (MSD). Difference instead of absolute error because the
observations such stream- flow or stage level are not free of errors. The MSD can be written

in terms of phase and amplitude differences:

MSD=MSD,+MSD,
where, MSD, amplitude difference between observed and estimated time series;

MSD, phase difference between observed and estimated time series.

Fig. 6 shows time series of normalized observed and 51mulated streamflow or stage level for
trammg performed with ANNI(8,1,1), ANN3(8,1,1), ANN](8 5,1), ANN2(9,1,1) and
ANN4(9,1,1), respectively. The results indicate that the training performed without
streamflow (Fig. 6a) or stage level (Fig. 6b) data as an input to the ANN tend to overestimate
the lower output values while some higher flood wave peaks are underestimated. These
amplitude differences between observations and simulations are most likely related to the use
of a single radar ZR relationship. In fact, the MP relationship tends to overestimate lower
rainfall rates and underestimate higher ones. Moreover, it is more likely to have larger errors
in radar rainfall estimation than in stage level or streamflow since the later represents an
integrate measurement of the rainfall over the watershed plus other superficial hydrological
processes. The increase in the number of nodes in the hidden-layer (e.g. Fig. 6¢) slightly

improves results, though not always, as discussed later in this section.

The addition of streamflow (Fig. 6d) or stage level (Fig. 6e) at time step t-At in the input
layer improved the ANN performance by more than 40% variance-wise. This addition works
as a memory of the watershed since it is the result of all hydrological processes. One might
ask whether the radar data is need at all. With the radar data one can perform quantitative
short-term rainfall forecast (Pereira Filho et al., 1999). It can be input to the hydrological
model so increasing its lead-time. Furthermore, improving radar rainfall estimates was not a

goal in this work. Since for these two configurations the ANN well simulated all flood waves,
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one can infer that the quality of the data sets and the arbitrary subdivision of the watershed
into isochrones limited the performance of the ANN. In this sense, notice that the stage level
data yielded slightly better results because no additional uncertainty is introduced by the use

a rating curve.

Normally, the first guess weights are selected in between specified limits. An appropriate
selection can reduce the search time significantly while the opposite can lead to a premature
saturation of the ANN. Initially, the weights are chosen randomly close to zero. Sometimes,
it might lead to a local minimum. The ANN training process is completed when the solution

yields an error less than an arbitrary small value.

Verification

A larger number of independent flood events depicted in Fig. 6 were utilized to verify the
ANN training. Fig. 6 shows the simulated and observed time series of flood waves for the
same options used in the training (Fig. 7). An inspection of Fig. 7 indicates that the ANN
yielded fairly good flood wave simulations. The effect of errors and uncertainties are similar
to the ones in the ANN training. The highest observed flood wave in between 300 and 350 h
in Fig. 7a—c was not simulated at all most probably due to radar rainfall underestimation.
Again, the inclusion of streamflow (Fig. 7d) or stage level (Fig. 7e) as an input variable

greatly improved the simulations.

Table 2 shows variance coefficients of each of the training and verification experiments
performed with the ANN shown in Figs. 6 and 7. More than 95% of the variance is explained
with the inclusion of streamflow or stage level at the input-layer. On the other hand, variance
coefficients of the ANN verification are 6 to 8% lower than the ones for training without the
addition of either streamflow or stage level at the input-layer. As in the training, the use of

stage level yields slightly better results than with streamflow.




Hydrology Project (Phase —II) Workshop on Urban Hydrology, 4-6, October, 2010, DRC, NIH, Kakinada-533 003, AP

0 40 80 120 180 200 | 230 280
{b) Timeihour)
§= T observed .
& _05{—ANNB,1.1) i
oE
9B ] )
;330_4
g D21 Y
0 40 a0 120 180 200 249 280

Time(hour)

(c}

=

& q sy observed

% 081 —aANNE.S5.1) i

i . . ! '

3 04 Ly f-

= 02 4P\ MY _,m»;l»«- ‘é Iy

Z g ;

0 40 80 120 160 200 240 280

. Timeihour)

Wog

3 N R olserved

i 0.5 1 — ANN(G,1,1)

k- 4

N04

Tu 4

£ 02

& 4

S

0 40 a0 120 180 200 24h 230

Timeihour)

@

o o
o

o

o
%]
1

Normalized Stage
Laval
o
s

g 40 80 120 160 200 240 260
Time{hour)

Fig. 6. Times series of normalized streamflow (a) and stage level (b) obtained with the ANN
trained with options 1 and 3 (Table 1), respectively, as well as with option 1 for five nodes in
the hidden-layer (c). Time series of normalized observations are indicated in each plot by the
dashed lines.
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Flood forecasting

The ANN was utilized to forecast flood waves with the configuration (9,1,1). Observed
precipitation was used as forecasted together with stage level data. Since from the previous
section it yielded slightly better results. Besides, it is straightforward to estimate flood levels
in this manner. Observed stage level and precipitation at the initial time step were input to the
ANN to forecast the stage level at the second time step. It was then input to the ANN with
the observed precipitation as if it was forecasted to estimate the stage level at the third time
step. This procedure was used up to the six time levels or up to 3 h in advance. Thirty-four
independent events were utilized in the forecast (not shown). Stage level forecasts were

compared to measurements.

Covariance coefficients (r?‘) between (;bserved and forecasted stage levels at 30-minute time
steps are shown in Fig. 7. The covariance decreases with leadtime. Considering that the
forecast has skill down to r2=0.5, the ANN forecast is useful almost up to 1.5 h in advance.
Of course, the skill is rapidly reduced by errors caused by data errors and hydrological
uncertainties. Spatial and temporal variations in rainfall distribution are in general very
significant. As mentioned before, radar rainfall estimation is subject to several sources of
errors. Unfortunately, no independent rainfall data sets were available to perform a more in
depth analysis of errors in radar rainfall estimation. Though, even with these limitations, the
ANN performed better than current AR models used in the MASP (Pereira Filho and de
Barros, 1998).
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Fig 7 Observed and computed plot during validation period

235



Hydrology Project (Phase —II) Workshop on Urban Hydrology, 4-6, October, 2010, DRC, NIH, Kakinada-533 003, AP

Table 2

Wariance cocflicients between ohserved and ANN obtainad stage
level or stream flow for training (left) an veribication {right) optionz
specified in Table 1

(ption P~ Training 7 Verification
AMNI (8,11} (.53 0.45
AMNNI{E LD 0.54 Q.49
ANNI{E5.D) 0.57 (.45
ANNZ (9,11 0.95 0.95
ANM4 {9,111 .96 0.5

The 3D vector indicates from left to right the number of nodes in the
input, hidden and owtput layers,

1.0 s
0.6
0.6
0.4 N

0.2

] T T T T
0 05 10 115 20 25 30

Lead Time (hour)

Fig. 8. Covariance coefficients between observed and the ANN4 forecasted stage level
for 30, 60, 90, 120, 150 and 180 min lead time. Curve fitted by the least square method.

Conclusions

An three-layer feed forward ANN was applied to model a urban watershed using weather
radar and telemetric streamflow data. Results indicate its usefulness for hydrologic
simulation and forecast without explicitly resolving important surface hydrology processes.

Even with better spatial and temporal data resolution the performance of the ANN was

limited by data uncertainties and errors.
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