# Cluster Analysis of Groundwater Quality Data of Trombay Region, Maharashtra

# K. Tirumalesh<sup>1</sup> and K. Shivanna

Isotope Applications Division, Bhabha Atomic Research Centre Mumbai - 400 085, INDIA E-mail: ¹tirumal@barc.gov.in

# A.K. Sriraman

Water and Steam Chemistry Division, Bhabha Atomic Research Centre Mumbai - 400 085, INDIA

ABSTRACT: This paper summarizes the findings obtained in a monitoring study to understand the sources and processes affecting the quality of groundwater in Trombay region using cluster analysis. Three distinct types of groundwater clusters were found, viz., Na–HCO<sub>3</sub>–EC–pH–SO<sub>4</sub>–CI, Mg–Ca and SiO<sub>2</sub>–K. These three different clusters indicate that different geochemical mechanisms control the chemical characteristics of the groundwater. The groundwater chemistry is mainly influenced by dissolution of minerals in the deep zone whereas base exchange dominates in the shallow zone. Enhanced mineralization in shallow zone compared to deep zone lindicate faster circulation of groundwater in deep zone preferably through fissures and fractures whereas groundwater flow is sluggish in shallow zone.

#### INTRODUCTION

Groundwater is important as a source of water for human consumption, agricultural and industrial use. Identifying the source and origin of groundwater, and understanding the geochemical processes affecting groundwater quality are crucial for the sustainable water supply. Groundwater quality depends on natural processes such as precipitation inputs, soil erosion and water-rock interaction, biota interrelationships and also anthropogenic influences such as urban, industrial and agricultural activities.

Multivariate analyses, such as cluster, factor and discriminant analysis, are useful for interpreting the governing processes through data reduction and classification (Robert, 1962). The use of these methods to water quality monitoring and assessment has increased in the last decade, mainly due to the need to obtain appreciable data reduction for analysis and decision (Vega et al., 1998). Multivariate treatment of environmental data is widely used to characterize and evaluate surface waters (Reisenhofer et al., 1995) and groundwater quality (Helena et al., 2000; Kim et al., 2005) and it is useful for evidencing temporal and spatial variations caused by natural and human factors linked to seasonality (Lingeswara Rao, 2003; Singh et al., 2005).

Cluster analysis is a method for searching similar pair of relationship such as correlation in a large symmetric matrix. This analysis organizes large set of data into groups and enables straight forward and logical comparison of various chemical constituents (James, 1966).

In the present paper groundwater from shallow and deep zones of Trombay region was monitored in order to characterize the chemical nature of groundwater and to provide an understanding of its geochemical evolution using cluster analysis.

# LOCATION, GEOLOGY AND HYDROGEOLOGY

This study area bound by hill on the north and west side, Mumbai Harbor Bay in the south and east side. The geographical coordinates are 19°00′–19°05′ N latitude and 72°54′–72°56′ E longitude. The high tide coastal line is about 200m towards south. The study area with sampling points is shown in Figure 1.

This area is covered by volcanic traps of Tertiary period. The subsurface geology reveals that the top zone consists of an over burden of 1 to 2 mere in thickness comprising clayey soil. This zone of overburden is followed by highly weathered basalt up to a depth of 9–10 meters. Below this zone fresh basalt with lateral joints and vertical cracks was observed.

The common rock forming minerals present in this area are plagioclase feldspars, pyroxene, augite and altered minerals like biotite and chlorite (Godse, 1967; Rakesh, 2005).



Fig. 1: Location map of the Trombay region with geological units and sampling points

The average annual rainfall is about 2700 mm. Groundwater is generally confined to the weathered strata, which forms the main aquifer zone and seasonal variation in water table is noticed. The groundwater flow direction is towards the Bay i.e., in the SE direction.

#### SAMPLING AND MEASUREMENTS

Water samples from bore wells tapping shallow (2 m bgl) and deep zones (10 m bgl) were collected monthly from the three bore wells for a period of 25 months. Samples collected were filtered using 0.45 µm pore size membrane filters and stored in polyethylene bottles, which were initially washed with concentrated HNO<sub>3</sub> and rinsed thoroughly with distilled water. For cation measurement a duplicate set was collected and acidified to pH< 2 by adding ultra pure concentrated HNO<sub>3</sub>.

Physical parameters like pH, Temperature, Dissolved Oxygen (DO) and Electrical Conductivity (EC) were measured in situ using portable pH/DO/Temp meter (Corning, model 313) and conductivity meter (Orion model 130). Alkalinity was measured by titrating 10 mL of water sample with 0.02 N H<sub>2</sub>SO<sub>4</sub>. A mixed indicator (Bromocresol green—Methyl red) was used

to mark the end point of the reaction at pH 4.3. Permanganate Demand (PD), Total Hardness (TH), E-coli and Total Dissolved Solids (TDS) were measured as per standard methods (APHA 1995). Anions viz., Cl<sup>-</sup>, SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup>, F<sup>-</sup> and Br<sup>-</sup> and cations viz., Na<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, K<sup>+</sup> and NH<sub>4</sub><sup>+</sup> were analyzed using ion chromatography (DX-500) employing electrochemical detector (ED 40) in conductivity mode. Dissolved silica was measured by spectrophotometer.

### **RESULTS AND DISCUSSION**

## **Quality Assurance**

The general quality controls adopted in this laboratory were: calibration with known standards, analysis of reagent blanks, recovery test, analysis of duplicates and analysis of control samples. In order to assess the quality of results, the laboratory participated in the United Nations (UN) GEMS/Water Performance Evaluation (PE) studies no 5 and 6 organized by International Atomic Energy Agency (IAEA) under RAS/8/097 during 2004 and 2005 respectively. In these tests the laboratory performance was evaluated by way of a Z-score,  $Z = (X_{lab} - X_V)/s$ , where  $X_{lab}$  is the laboratory value,  $X_{\nu}$  is the value accepted as the true one and s is the standard deviation of the laboratories mean value. Laboratory performance is evaluated as point of excellence if Z-score is between 0 to 0.15, good, between 0.15 to 0.32, satisfactory between 0.32 to 1.645, point of opportunity between 1.645 to 2.258 and point of immediate concern above 2.58. The Z-score values obtained for each parameter are presented in Figure 2. All the results fall under point of excellence or good or satisfactory category and none of them in point of opportunity or point of immediate concern category.



Fig. 2: Z-score values for inter laboratory evaluation

The limit of detection and the limit of quantification are also characteristics for the evaluation of any analytical method as they allow the determination of the minimum quantities that a method can detect or quantify respectively. These parameters are necessary to check if the method is performing with adequate accuracy at the required concentration levels. These limits were calculated from the standard deviation of the blank multiplied by three for the limit of detection and by ten for the limit of quantification. The precision of the methods was estimated from duplicate analyses. The relative standard deviations for all the measured parameters are less than 5%.

The accuracy of the chemical data was also checked by calculating Charge Balance Error (CBE) given by,

CBE (%) = 
$$\frac{\text{meq (cations)} - \text{meq (anions)}}{\text{meq (cations)} + \text{meq (anions)}} \times 100 \quad \dots (1)$$

The CBE values were found to range from -5.7 to +5.6% but most of the groundwater samples (70 out of 75) show CBE within allowed limits i.e.  $\pm 5\%$ .

Basic statistics of hydro-chemical data of the groundwater samples are given in Table 1 to give an estimate of the variation in chemistry.

## **Cluster Analysis**

For cluster analysis, A  $10 \times 10$  matrix of correlation coefficient was computed using MegaStat (Micrsoft-XL add-ins) software. Linear correlations of different chemical constituents of groundwater samples are given in Table 2. Similar pair of chemical constituents was linked based on the correlation coefficients and then the next most pair and so on until all the chemical constituents have been clustered. In the first step, mutually highest correlation value in each column of the matrix was identified as shown in Table 2 in bold face type. Similar highest correlation coefficients of chemical constituents such as Na-HCO3 and Mg-Ca were clustered first. The new correlation coefficients between Na-HCO<sub>3</sub> and Mg-Ca clusters and independent constituents were recalculated by arithmetic averaging method (Davis 1973) and the rest of the correlation coefficients were retained as such. Clustering steps of chemical constituents is shown in the dendrogram (Figure 3).

The cluster analysis suggests that three main interrelated types of chemical constituents are responsible for the Hydrogeochemical variability in the quality of groundwater. Cluster-I (Na-HCO<sub>3</sub>-EC-pH-SO<sub>4</sub>-Cl), cluster-II (Mg-Ca) and cluster-III (SiO<sub>2</sub>-K).

7

4

5

5.3

Bore Well No. 1 Bore Well No. 2 Bore Well No. 3 AVG Min. Мах. AVG Median Min. Max. AVG Median Min. Max. Median EC 120 380 259 280 265 553 3894 360 250 440 313 300 TDS 66 312 174 255 145 323 228 226 182 181 335 257 7.2 7.8 7.6 pH 8.6 7.9 8.1 7.7 8.7 8.2 8.2 7.2 8.6 Na<sup>†</sup> 6.1 51.8 18 17.5 14.2 115 58.3 58.4 10.9 52.2 18.3 13.5 K<sup>+</sup> 0.4 3.2 1.2 1.1 0.6 1.3 1 0 1 0.4 0.4 3.5 NH4 0 0.7 0.1 0 0 0 0 0 0 2 0.4 0 Ca<sup>2+</sup> 13.4 47.5 23.4 23 16.2 14.7 11.8 34 23.8 23.2 9.4 31.2  $Mg^{2+}$ 11 7.7 7.1 12.5 4.6 13 10.1 5.9 13 8.6 14.1 12.4 HCO<sub>3</sub> 128 125 232 200 130 180 152 150 55 218 150 198 F-0.1 0.4 0.2 0.2 0.2 0.8 0.3 0.2 0.1 0.3 0.2 0.2 CI 8.7 37.9 15.5 14.5 12.4 46.2 17.5 15.9 9.3 19.3 12.3 11 2.4 0 NO<sub>3</sub> 0 1.4 0.5 0.5 0.2 0.8 0.6 2.4 0.75 0.5 SO<sub>4</sub><sup>2-</sup> 5 23.1 14.7 15.3 14.8 28.7 19.1 18.5 11.6 24.3 16.1 15 SiO<sub>2</sub> 3.2 24.6 17.604 19 14.2 46.6 20.1 18.9 3.2 24.6 17.6 19 102 56.3 88.3 172 136 TH 52.3 133 99 137 95 72 135 PD 0.65 1.3 0.99 1 0.7 1.6 1.1 1 1 3.6 1.6 1.5

7

4.9

5

Table 1: Statistical Parameters for the Groundwater Quality of the Study Site

Note: EC is in µS/cm and others in mg/L

7

5.2

5

4

4

DO

Table 2: Different Step Correlation Matrices (highest correlation of a column are shown in bold)

|                                                            | pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EC                                                                                         | Na                                     | Matri                                                                                                                            | Ca                                                                                                                | Me                                                        | HCC                      |                               |                                         | E10                                  |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------|-------------------------------|-----------------------------------------|--------------------------------------|
| pН                                                         | рн<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                                         | Ma                                     | K                                                                                                                                | u                                                                                                                 | Mg                                                        | нсо,                     | Cl                            | SO <sub>4</sub>                         | SiO <sub>2</sub>                     |
| EC .                                                       | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                          |                                        |                                                                                                                                  |                                                                                                                   |                                                           |                          |                               |                                         |                                      |
| Na                                                         | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.53                                                                                       | 1                                      |                                                                                                                                  |                                                                                                                   |                                                           |                          |                               |                                         |                                      |
| K<br>Ca                                                    | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.11                                                                                      | 0.23                                   | 1                                                                                                                                |                                                                                                                   |                                                           |                          |                               |                                         |                                      |
| Mg                                                         | -0.12<br>-0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.22<br>-0.02                                                                             | -0.61<br>-0.59                         | -0.16<br>-0.42                                                                                                                   | 0.64                                                                                                              | 1                                                         |                          |                               |                                         |                                      |
| HCO3                                                       | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7                                                                                        | 0.77                                   | 0.06                                                                                                                             | -0.17                                                                                                             | -0.17                                                     | 1                        |                               |                                         |                                      |
| CI                                                         | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.25                                                                                       | 0.38                                   | 0.16                                                                                                                             | -0.08                                                                                                             | -0.13                                                     | 0.22                     | 1                             |                                         |                                      |
| SO <sub>4</sub>                                            | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.46                                                                                       | 0.63                                   | 0.1                                                                                                                              | -0.31                                                                                                             |                                                           | 0.48                     | 0.53                          | 1                                       |                                      |
| SiO <sub>2</sub>                                           | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.21                                                                                       | 0.21                                   | 0.14                                                                                                                             | -0.15                                                                                                             | -0.1                                                      | 0.17                     | 0.17                          | 0.17                                    | 1                                    |
| Secon                                                      | d Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tep Co                                                                                     | rrela                                  | tion M                                                                                                                           | atrix                                                                                                             |                                                           |                          |                               |                                         |                                      |
| 575 08000                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Na-HCO <sub>3</sub>                                                                        | Mg-Ca                                  | рН                                                                                                                               | EC                                                                                                                | к                                                         |                          | CI                            | SO <sub>4</sub>                         | SiO2                                 |
| Na-HCC                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                          |                                        |                                                                                                                                  |                                                                                                                   |                                                           |                          |                               |                                         |                                      |
| Mg-Ca                                                      | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.39                                                                                      | 1                                      |                                                                                                                                  |                                                                                                                   |                                                           |                          |                               |                                         |                                      |
| pН                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.37                                                                                       | -0.21                                  | 1                                                                                                                                |                                                                                                                   |                                                           |                          |                               |                                         |                                      |
| EC                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.62                                                                                       | -0.12                                  | 0.3                                                                                                                              | 1                                                                                                                 |                                                           |                          |                               |                                         |                                      |
| K                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.15                                                                                       | -0.29                                  | 0.08                                                                                                                             | -0.11                                                                                                             |                                                           |                          |                               |                                         |                                      |
| CI                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                                                                                        | -0.1                                   | 0.32                                                                                                                             | 0.25                                                                                                              | 0.16                                                      |                          | 1                             | nar                                     |                                      |
| SO <sub>4</sub>                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.55                                                                                       | -0.18                                  | 0.17                                                                                                                             | 0.46                                                                                                              | 0.1                                                       |                          | 0.53                          | 1                                       |                                      |
| SiO <sub>2</sub>                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.19                                                                                       | -0.13                                  | 0.02                                                                                                                             | 0.21                                                                                                              | 0.14                                                      | 8                        | 0.17                          | 0.17                                    | 1                                    |
| Third S                                                    | Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Corre                                                                                      | elatio                                 | n Matr                                                                                                                           | ix                                                                                                                |                                                           |                          |                               |                                         |                                      |
| Life States                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Na-HCC                                                                                     | 3-EC                                   | Mg-Ca                                                                                                                            | рН                                                                                                                | K                                                         |                          | CI                            | SO <sub>4</sub>                         | SiO <sub>2</sub>                     |
| Na-HCO                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                          |                                        |                                                                                                                                  |                                                                                                                   |                                                           |                          |                               |                                         |                                      |
| Mg-C                                                       | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.2                                                                                       |                                        | 1                                                                                                                                |                                                                                                                   |                                                           |                          |                               |                                         |                                      |
| pН                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.33                                                                                       | 3                                      | -0.21                                                                                                                            | 1                                                                                                                 |                                                           |                          |                               |                                         |                                      |
| К                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02                                                                                       | 2                                      | -0.29                                                                                                                            | 0.08                                                                                                              | 1                                                         |                          |                               |                                         |                                      |
| CI                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.28                                                                                       | 3                                      | -0.1                                                                                                                             | 0.32                                                                                                              | 0.16                                                      |                          | 1                             |                                         |                                      |
| SO <sub>4</sub>                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.51                                                                                       |                                        | -0.18                                                                                                                            | 0.17                                                                                                              | 0.1                                                       | C                        | .53                           | 1                                       |                                      |
| SiO <sub>2</sub>                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                                                                        |                                        | -0.13                                                                                                                            | 0.02                                                                                                              | 0.14                                                      |                          | .17                           | 0.17                                    | 1                                    |
| Fourth                                                     | Ste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | p Con                                                                                      | relatio                                | on Ma                                                                                                                            | trix                                                                                                              |                                                           |                          |                               |                                         |                                      |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            | O <sub>3</sub> -EC                     | Mg-Ca                                                                                                                            | SO <sub>4</sub> -0                                                                                                | l p                                                       | н                        | K                             | Sic                                     | 02                                   |
| Na-HCC                                                     | <sub>3</sub> -EC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                          | L                                      |                                                                                                                                  |                                                                                                                   |                                                           |                          |                               |                                         |                                      |
| Mg-C                                                       | 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.                                                                                        | 25                                     | 1                                                                                                                                |                                                                                                                   |                                                           |                          |                               |                                         |                                      |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                        |                                                                                                                                  |                                                                                                                   |                                                           |                          |                               |                                         |                                      |
| SO <sub>4</sub> -                                          | CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3                                                                                        | 39                                     | -0.14                                                                                                                            | 1                                                                                                                 |                                                           |                          |                               |                                         |                                      |
| SO <sub>4</sub> -                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                                                                                        |                                        | -0.14<br>-0.21                                                                                                                   | 1<br>0.24                                                                                                         | 1                                                         |                          |                               |                                         |                                      |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            | 33                                     |                                                                                                                                  |                                                                                                                   |                                                           |                          | 1                             |                                         |                                      |
| рН                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                                                                                        | 33<br>02                               | -0.21                                                                                                                            | 0.24                                                                                                              | 0.0                                                       | 08                       | 1<br>0.14                     |                                         | l <sub>i</sub>                       |
| pH<br>K<br>SiO <sub>2</sub>                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0<br>0.0                                                                                 | 33<br>02<br>2                          | -0.21<br>-0.29<br>-0.13                                                                                                          | 0.24<br>0.13<br>0.17                                                                                              | 0.0                                                       | 08                       |                               | 1                                       |                                      |
| pH<br>K<br>SiO <sub>2</sub>                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0<br>0.0                                                                                 | 33<br>02<br>2<br>ation                 | -0.21<br>-0.29<br>-0.13                                                                                                          | 0.24<br>0.13<br>0.17                                                                                              | 0.0                                                       | 08                       | 0.14                          | ı<br>K                                  | SiO <sub>2</sub>                     |
| pH<br>K<br>SiO;<br>Fifth Si                                | tep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3<br>0.0<br>0.<br>Correl                                                                 | 33<br>02<br>2<br>ation                 | -0.21<br>-0.29<br>-0.13<br>Matrix<br>O <sub>3</sub> -EC-SO                                                                       | 0.24<br>0.13<br>0.17                                                                                              | 0.0                                                       | 08<br>02                 | 0.14                          |                                         |                                      |
| pH<br>K<br>SiO;<br>Fifth Si                                | tep (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.3<br>0.0<br>0.<br>Correl                                                                 | 33<br>02<br>2<br>ation                 | -0.21<br>-0.29<br>-0.13<br>Matrix                                                                                                | 0.24<br>0.13<br>0.17                                                                                              | 0.0                                                       | 08<br>02                 | 0.14                          |                                         |                                      |
| pH<br>K<br>SiO;<br>Fifth Si<br>Na-HCO<br>M                 | tep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3<br>0.0<br>0.<br>Correl                                                                 | 33<br>02<br>2<br>ation                 | -0.21<br>-0.29<br>-0.13<br>Matrix<br>O <sub>3</sub> -EC-SO                                                                       | 0.24<br>0.13<br>0.17<br>(<br>4-Cl N                                                                               | 0.0<br>0.0<br>1g-Ca                                       | 08<br>02                 | 0.14                          |                                         |                                      |
| pH<br>K<br>SiO;<br>Fifth Si<br>Na-HCO<br>M                 | tep (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.3<br>0.0<br>0.<br>Correl                                                                 | 33<br>02<br>2<br>ation                 | -0.21<br>-0.29<br>-0.13<br>Matrix<br>O <sub>3</sub> -EC-SO<br>1<br>-0.2                                                          | 0.24<br>0.13<br>0.17<br>(<br>4-Cl N                                                                               | 0.0<br>0.0<br>1g-Ca                                       | 08<br>02<br>pH           | 0.14                          |                                         |                                      |
| pH<br>K<br>SiO;<br>Fifth Si<br>Na-HCO<br>M                 | tep (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.3<br>0.0<br>0.<br>Correl                                                                 | 33<br>02<br>2<br>ation                 | -0.21<br>-0.29<br>-0.13<br>Matrix<br>O <sub>3</sub> -EC-SO<br>1<br>-0.2<br>0.29                                                  | 0.24<br>0.13<br>0.17<br>(                                                                                         | 0.0<br>0.0<br>1g-Ca<br>1<br>0.21                          | 08<br>02<br>pH           | 0.14                          | K                                       |                                      |
| pH<br>K<br>SiO;<br>Fifth Si<br>Na-HCO<br>M                 | tep (  3-EC-S 1g-Ca pH K SiO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3<br>0.0<br>0.<br>Correl                                                                 | 33<br>02<br>2<br>ation<br>Na-HC        | -0.21<br>-0.29<br>-0.13<br>Matrix<br>O <sub>3</sub> -EC-SO<br>1<br>-0.2<br>0.29<br>0.07<br>0.19                                  | 0.24<br>0.13<br>0.17<br>(<br>4-Cl N                                                                               | 0.0<br>0.0<br>fg-Ca<br>1<br>0.21<br>0.29                  | pH<br>1<br>0.08          | 0.14                          | K                                       | SiO <sub>2</sub>                     |
| pH<br>K<br>SiO;<br>Fifth Si<br>Na-HCO<br>M                 | tep (  3-EC-S 1g-Ca pH K SiO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3<br>0.0<br>0.<br>Correl                                                                 | ation Na-HC                            | -0.21<br>-0.29<br>-0.13<br>Matrix<br>O <sub>3</sub> -EC-SO<br>1<br>-0.2<br>0.29<br>0.07<br>0.19                                  | 0.24<br>0.13<br>0.17<br>(<br>4-Cl N                                                                               | 0.0<br>0.0<br>1g-Ca<br>1<br>0.21<br>0.29<br>0.13          | pH<br>1<br>0.08          | 0.14                          | K                                       | SiO <sub>2</sub>                     |
| pH<br>k<br>sio;<br>Fifth Si<br>Na-HCO<br>M                 | tep (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.3<br>0.0<br>0.<br>Correl                                                                 | ation Na-HC                            | -0.21<br>-0.29<br>-0.13<br>Matrix<br>O <sub>3</sub> -EC-SO<br>1<br>-0.2<br>0.29<br>0.07<br>0.19                                  | 0.24<br>0.13<br>0.17<br>(<br>4-Cl N                                                                               | 0.0<br>0.0<br>1g-Ca<br>1<br>0.21<br>0.29<br>0.13          | pH<br>1<br>0.08<br>0.02  | 0.14                          | K<br>1<br>14                            | SiO <sub>2</sub>                     |
| pH<br>k<br>sio;<br>Fifth Si<br>Na-HCO<br>M                 | tep (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.3 0.6 0.7 Correl GO <sub>4</sub> -Cl                                                     | ation Na-HC                            | -0.21<br>-0.29<br>-0.13<br>Matrix<br>O <sub>3</sub> -EC-SO<br>1<br>-0.2<br>0.29<br>0.07<br>0.19<br>Matrix<br>Na-HCO <sub>3</sub> | 0.24<br>0.13<br>0.17<br>(<br>4-Cl N                                                                               | 0.0<br>0.0<br>1g-Ca<br>1<br>0.21<br>0.29<br>0.13          | pH 1 0.08 0.02           | 0.14                          | K<br>1<br>14                            | SiO <sub>2</sub>                     |
| pH<br>k<br>sio;<br>Fifth Si<br>Na-HCO<br>M                 | z<br>tep (<br>'3-EC-S<br>Ig-Ca<br>pH<br>K<br>SiO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3 0.6 0.7 Correl GO <sub>4</sub> -Cl                                                     | ation Na-HC                            | -0.21<br>-0.29<br>-0.13<br>Matrix<br>O <sub>3</sub> -EC-SO<br>1<br>-0.2<br>0.29<br>0.07<br>0.19<br>Matrix<br>Na-HCO <sub>3</sub> | 0.24 0.13 0.17 (  4-Cl N                                                                                          | 0.0<br>0.0<br>1g-Ca<br>1<br>0.21<br>0.29<br>0.13          | pH 1 0.08 0.02           | 0.14                          | K<br>1<br>114<br>K                      | SiO <sub>2</sub>                     |
| pH<br>k<br>sio;<br>Fifth Si<br>Na-HCO<br>M                 | tep (  dep (  de | O.3 O.6 O.7 Correl GO <sub>4</sub> -CI Corre                                               | ation Na-HC                            | -0.21<br>-0.29<br>-0.13<br>Matrix<br>O <sub>3</sub> -EC-SO<br>1<br>-0.2<br>0.29<br>0.07<br>0.19<br>Matrix<br>Na-HCO <sub>3</sub> | 0.24 0.13 0.17 (  4-Cl N  EC-SO <sub>4</sub> - 1 -0.2 0.08                                                        | 0.0<br>0.0<br>1g-Ca<br>1<br>0.21<br>0.29<br>0.13          | pH 1 0.08 0.02 Mg-1 -0.2 | 0.14<br>3 :<br>2 0.           | K<br>1<br>14<br>K                       | SiO <sub>2</sub>                     |
| pH<br>k<br>SiO;<br>Fifth Si<br>Na-HCO<br>W<br>Sixth S      | tep (  tage of the part of the | 0.3 0.6 0. Correl GO <sub>4</sub> -CI Correc -SO <sub>4</sub> -CI-p Ca                     | 333<br>D2<br>2<br>2<br>Aation<br>Na-HC | -0.21<br>-0.29<br>-0.13<br>Matrix<br>O <sub>3</sub> -EC-SO<br>1<br>-0.2<br>0.29<br>0.07<br>0.19<br>Matrix                        | 0.24<br>0.13<br>0.17<br>(<br>4-Cl N<br>                                                                           | 0.0<br>0.0<br>1g-Ca<br>1<br>0.21<br>0.29<br>0.13          | pH 1 0.08 0.02           | 0.14<br>3 :<br>2 0.           | K<br>1<br>114<br>K                      | SiO <sub>2</sub>                     |
| pH<br>k<br>SiO;<br>Fifth Si<br>Na-HCO<br>W<br>Sixth S      | tep (  tage of the part of the | 0.3 0.6 0. Correl GO <sub>4</sub> -CI Correc -SO <sub>4</sub> -CI-p Ca                     | 333<br>D2<br>2<br>2<br>Aation<br>Na-HC | -0.21<br>-0.29<br>-0.13<br>Matrix<br>O <sub>3</sub> -EC-SO<br>1<br>-0.2<br>0.29<br>0.07<br>0.19<br>Matrix<br>Na-HCO <sub>3</sub> | 0.24<br>0.13<br>0.17<br>(<br>4-Cl N<br>                                                                           | 0.6<br>0.0<br>1<br>0.21<br>0.29<br>0.13                   | pH 1 0.08 0.02 Mg-1-0.:  | 0.14                          | K<br>1<br>14<br>K<br>1<br>0.14          | SiO <sub>2</sub> 1  SiO <sub>2</sub> |
| pH<br>k<br>Sio;<br>Fifth Si<br>Na-HCO<br>Sixth S<br>Na-HCO | tep (  day-EC-5  day-EC-5  fig-Ca  pH  K  Sioo <sub>2</sub> Ctep  Mg-1  K  Sio  Sio  Sio  Sio  Sio  Sio  Sio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O.3 O.6 O.7 Correl GO4-CI Corre                                                            | ation<br>Na-HC                         | -0.21<br>-0.29<br>-0.13<br>Matrix<br>O <sub>3</sub> -EC-SO<br>1<br>-0.2<br>0.29<br>0.07<br>0.19<br>Matrix<br>Na-HCO <sub>3</sub> | 0.24<br>0.13<br>0.17<br>(<br>4-Cl N<br>                                                                           | 0.6<br>0.0<br>1<br>0.21<br>0.29<br>0.13                   | pH 1 0.08 0.02 Mg-1-0.:  | 0.14<br>3 :<br>2 0.           | K<br>1<br>14<br>K                       | SiO <sub>2</sub> 1  SiO <sub>2</sub> |
| pH<br>k<br>Sio;<br>Fifth Si<br>Na-HCO<br>Na-HCO<br>Sixth S | tep (  top)  fig-Ca  pH  K  SiO2  tep  Mg-Ca  K  SiO3  Tep  Mg-Ca  K  SiO3  Tep  Mg-Ca  K  SiO3  Tep  Mg-Ca  K  SiO3  Tep  Mg-Ca  Mg-Ca  Tep  Mg-Ca  Mg-Ca  Tep  M | O.3 O.6 O.7 Correl GO4-CI PCCa  Lep Co                                                     | ation<br>Na-HC                         | -0.21<br>-0.29<br>-0.13<br>Matrix<br>O <sub>3</sub> -EC-SO<br>1<br>-0.2<br>0.29<br>0.07<br>0.19<br>Matrix<br>Na-HCO <sub>3</sub> | 0.24<br>0.13<br>0.17<br>(<br>4-Cl N<br>EC-SO <sub>4</sub> -<br>1<br>-0.2<br>0.08<br>0.1<br>atrix                  | 0.6<br>0.0<br>1<br>0.21<br>0.29<br>0.13                   | pH 1 0.08 0.02 Mg-1-0.:  | 0.14<br>3 : 0.<br>2 0.<br>CCa | K<br>1<br>14<br>K<br>1<br>0.14          | SiO <sub>2</sub> 1  SiO <sub>2</sub> |
| pH<br>k<br>Sio;<br>Fifth Si<br>Na-HCO<br>Na-HCO<br>Sixth S | tep (  dy-3-EC-S  dy-Ca  pH  K  SiO2  Ctep  Mg-Ca  Mg-Ca  pH  K  SiO2  Ctep  Mg-Ca  Mg | O.3 O.6 O.7 Correl GO4-CI PCa -SO4-CI-p Ca -SO4-CI-p Ca -SO4-CI-p                          | ation<br>Na-HC                         | -0.21<br>-0.29<br>-0.13<br>Matrix<br>O <sub>3</sub> -EC-SO<br>1<br>-0.2<br>0.29<br>0.07<br>0.19<br>Matrix<br>Na-HCO <sub>3</sub> | 0.24<br>0.13<br>0.17<br>(<br>4-Cl N<br>EC-SO <sub>4</sub> -1<br>-0.2<br>0.08<br>0.1<br>atrix<br>1<br>-0.2         | 0.6<br>0.0<br>1<br>0.21<br>0.29<br>0.13                   | pH 1 0.08 0.02 Mg-1-0.:  | 0.14  3 :                     | K 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | SiO <sub>2</sub> 1  SiO <sub>2</sub> |
| pH<br>K<br>Sio;<br>Fifth Si<br>Na-HCO<br>Na-HCO<br>Sevent  | tep (  top)  | O.3 O.6 O.7 Correl GO4-CI Corre -SO4-CI-p Ca -SO4-CI-p Ca Ca Ca Ca                         | Ilation                                | -0.21 -0.29 -0.13  Matrix O <sub>3</sub> -EC-SO 1 -0.2 0.29 0.07 0.19  Matrix Na-HCO <sub>3</sub>                                | 0.24<br>0.13<br>0.17<br>(<br>4-Cl N<br>                                                                           | 0.6<br>0.0<br>1<br>0.21<br>0.29<br>0.13                   | pH 1 0.08 0.02 Mg-1-0.:  | 0.14<br>3 : 0.<br>2 0.<br>CCa | K<br>1<br>14<br>K<br>1<br>0.14          | SiO <sub>2</sub> 1  SiO <sub>2</sub> |
| pH<br>k<br>Sio;<br>Fifth Si<br>Na-HCO<br>Na-HCO<br>Sixth S | tep (  top)  | O.3 O.6 O.7 Correl GO4-CI Corre -SO4-CI-p Ca -SO4-CI-p Ca Ca Ca Ca                         | Ilation                                | -0.21 -0.29 -0.13  Matrix O <sub>3</sub> -EC-SO 1 -0.2 0.29 0.07 0.19  Matrix Na-HCO <sub>3</sub>                                | 0.24<br>0.13<br>0.17<br>(<br>4-Cl N<br>                                                                           | 0.6<br>0.0<br>1<br>0.21<br>0.29<br>0.13                   | pH 1 0.08 0.02 Mg-1-0.:  | 0.14  3 :                     | K 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | SiO <sub>2</sub> 1  SiO <sub>2</sub> |
| pH K SiO; SiO; Na-HCO Na-HCO Na-HCO Sixth S Na-HCO Na-HCO  | tep (  te | O.3 O.6 O.7 Correl GO4-CI PCa SO4-CI-PCa SO4-CI-PCA CO | ation Na-HC                            | -0.21<br>-0.29<br>-0.13<br>Matrix<br>O <sub>3</sub> -EC-SO<br>1<br>-0.2<br>0.07<br>0.19<br>0 Matrix<br>Na-HCO <sub>3</sub>       | 0.24<br>0.13<br>0.17<br>(<br>4-Cl N<br>                                                                           | 0.0<br>0.0<br>1g-Ca<br>1<br>0.21<br>0.29<br>0.13<br>Cl-pH | pH 1 0.08 0.02 Mg-1-0.:  | 0.14  3 :                     | K 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | SiO <sub>2</sub> 1  SiO <sub>2</sub> |
| pH<br>k<br>Sio;<br>Fifth Si<br>Na-HCO<br>Na-HCO            | tep (  te | O.3 O.6 O.7 Correl GO4-CI PCa SO4-CI-PCa SO4-CI-PCA CO | ation Na-HC                            | -0.21<br>-0.29<br>-0.13<br>Matrix<br>O <sub>3</sub> -EC-SO<br>1<br>-0.2<br>0.07<br>0.19<br>0 Matrix<br>Na-HCO <sub>3</sub>       | 0.24<br>0.13<br>0.17<br>(<br>4-Cl N<br>EC-SO <sub>4</sub> -1<br>-0.2<br>0.08<br>0.1<br>atrix<br>1<br>-0.2<br>0.09 | 0.0<br>0.0<br>1g-Ca<br>1<br>0.21<br>0.29<br>0.13<br>Cl-pH | pH 1 0.08 0.02 Mg-1-0.:  | 0.14  3 :                     | K 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | SiO <sub>2</sub> 1  SiO <sub>2</sub> |



Fig. 3: Dendrogram showing various clusters of chemical constituents

In cluster-I, sodium and bicarbonate are correlated positively at higher level. The Na-HCO<sub>3</sub> cluster is further linked with EC, SO<sub>4</sub>, Cl and pH at lower level of correlation. Moreover, they are clustered with positive correlation. Generally shallow zone show Na-HCO<sub>3</sub> type of water. The principle cause for this correlation is base exchange reaction with the clays. The base exchange with clay can be given as:

$$Na_2$$
-clay +  $Ca^{2+}$  ( $Mg^{2+}$ )  $\rightarrow 2Na^+ + Ca^{2+}$  ( $Mg^{2+}$ )- clay

To ascertain the possibility of base exchange reaction occurring in the groundwater,  $(Ca^{2^+} + Mg^{2^+})$ – $(HCO_3^- + SO_4^{2^-})$  was plotted against Na–Cl values (Figure 4). Waters undergoing base exchange would fall on a line with slope –1 while waters plotting close to the zero value on the x-axis are not influenced by base exchange (Benony 2007). Figure 3 shows that the slope of the best fit equation is close –1 indicating the source of Na<sup>+</sup> is base exchange and not albite or other sea sources.



Fig. 4: Plot of Ca<sup>2+</sup> +Mg<sup>2+</sup>–HCO<sub>3</sub><sup>-</sup>–SO<sub>4</sub><sup>2-</sup> versus Na<sup>+</sup>–Cl<sup>-</sup> of shallow zone samples

The shallow zone water show more TDS and EC values (Figure 5) which further point to long residence time of groundwater facilitating higher mineralization and effective base exchange reaction.

Cluster-II represents contribution of alkaline earth minerals present in the subsurface. This cluster is dominated by Mg<sup>2+</sup> and Ca<sup>2+</sup> with a correlation coefficient of 0.64 and it is always negatively correlated to other constituents and clusters. This cluster is predominant in deep zone samples. The common sources for these ions in basalts are generally calcic plagioclase (anorthite) and pyroxene (olivine). The weathering reactions can be represented as follows:

$$\begin{split} &\text{CaAl}_2\text{Si}_2\text{O}_8 + 2\text{CO}_2 + 3\text{H}_2\text{O} \rightarrow \text{Al}_2\text{Si}_2\text{O}_5 \text{ (OH)}_4 \\ &+ \text{Ca}^{2^+} + \text{HCO}_3^{-1} \text{(Anorthite weathering)} \\ &\text{Mg}_2\text{SiO}_4 + 4\text{CO}_2 + 4\text{H}_2\text{O} \rightarrow 2\text{Mg}^{2^+} + 4\text{HCO}_3^{-1} \\ &+ 2\text{H}_4\text{SiO}_4 \end{split}$$



Fig. 5: Histogram of average TDS and EC of three wells with standard deviation (mean  $\pm 1~\sigma$ )

Groundwater derived from basalt formation has a distinguishable higher  $Mg^{2+}/Ca^{2+}$  ratio which is evident in these groundwaters. The  $Mg^{2+}/(Ca^{2+} + Mg^{2+})$  ratio is >0.5 and  $HCO_3^-/SiO_2 < 10$  indicating silicate weathering (Hounslow 1995).

Cluster-III comprises of SiO<sub>2</sub> and K with poor but positive correlation. This indicates common source of potassium and silica possibly biotite mineral present in the subsurface. Both shallow and deep zones contain this type of water. The hydrolysis of potash feldspar is given as follows;

$$KAlSi_3O_8 + 8H_2O \rightarrow Al(OH)_3 + 3H_4SiO_4 + K^+ + OH^-$$
(K-feldspar weathering)

Since K-feldspar are comparatively less soluble in water, other sources for potassium and silica affects their correlation leading to poor correlation (r = 0.14).

The poor correlation between potassium and silica can also be due to removal of potassium through absorption and bioaccumulation by thick and dense vegetation spread over entire study area.

## CONCLUSIONS

An attempt has been made to understand the sources and processes affecting the quality of groundwater in Trombay region using cluster analysis. Three distinct types of groundwater point to heterogeneity in the subsurface geology and different geochemical mechanisms controlling the chemical characteristics of the groundwater. The distribution of chemical species in groundwater is mainly controlled by dissolution of anorthite, olivine and K-feldspar rock forming minerals in the deep zone and base exchange with clayey soil in the shallow zone. Low TDS and EC in deep zone indicate fast circulation of groundwaters through fissures and fractures whereas groundwater flow is sluggish in shallow zone leading to comparatively high TDS and EC values.

#### **ACKNOWLEDGEMENTS**

The authors wish to thank Dr. Gursharan Singh (Head, Isotope Applications Division), Dr. S.V. Narasimhan (Head, water and steam Chemistry Division), Shri Ramkishen (Head, Engineeing services section, Trombay) and Dr. A.K. Tyagi (Chemistry Division) for their active support at various stages of the above programme. Thanks are also due Shri S.B. War and Shri P.S. Shetty for their valuable assistance and guidance during the project.

#### REFERENCES

APHA, AWWA, WEF (1995). "Standard Methods for the Examination of Water and wastewater", 19<sup>th</sup> edition, American public Health Association, Washington.

Benony, IK. Kortatsi (2007). "Hydrochemical framework of groundwater in the Ankobra Basin, Ghana". *Aqua. Geochem.* 13, 41–74.

Davis John, C. (1973). "Statistics and data analysis in Geology", John Wiley & sons, Inc. New York, pp. 456–473.

Godse, V.B., Mohan, A.L., Mahesh Singh, Amalraj, R.V. and Thomas, K.T. (1967). 'Characterization of Trombay soils from disposal of radioactive wastes'. Sym. Disposal of Radioactive Wastes into the Ground, held at IAEA/ENEA Vienna.

Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J.M. and Fernandez, L. (2000). "Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principle component analysis". Wat. Res. 34, 807–816.

- Hounslow, W.A. (1995). "Water quality data- analysis and interpretation", Lewis Publishers, New York.
- James, M. Parks (1966). "Cluster analysis applied to multivariate geological problems". *Jour. Geol.* 74, 703–715.
- Kim, J.H., Kim, R.H., Leè, J., Cheong, T.J., Yum, B.W. and Chang, H.W. (2005). "Multivariate statistical analysis to identify the major factors governing groundwater quality of in coastal area of Kimje South Korea". *Hydrol. Proces.* 19, 1261–1276.
- Lingeswara Rao, S.V. (2003). "Cluster analysis of ground-water quality data of Venkatagiri Taluq, Nellore Distrit, Anfhra Pradesh". *Jour. Geol. Soc. Ind.* 62, 447–454.
- Rakesh, R.R., Yadav, D.N, Narayan, P.K. and Nair, R.N. (2005). B.A.R.C, Report—B.A.R.C/2005/I/010.

- Reisenhofer, E., Adami, G. and Barbieri, P. (1998). "Using chemical and physical parameters to define the quality of karstic freshwaters (Timavo River North-eastern Italy); a chemometric approach". Wat. Res. 32, 1193–1203.
- Robert, L. Miller and James Steven Kahn (1962). "Statistical analysis in the geological sciences", John Wiley& sons, Inc. New York, pp. 259–299.
- Singh, K.P., Malik, A. and Sinha, S. (2005). "Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques: a case study". *Anal. Chim. Acta* 538, 355–374.
- Vega, M., Pardo, R., Barrado, E. and Deban, L. (1998). "Assessment of seasonal and polluting effects on quality of river water by exploratory data analysis". *Wat.Res.* 32, 3581–3592.