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ABSTRACT: This study focused on evaluating performance of Best Management Practices (BMP) in controlling sediment and
nutrient losses from an agricultural watershed to meet Total Maximum Daily Load (TMDL) requirements. The study was
conducted in the L’Anguille River watershed, an intensively managed agricultural area consisting of more than 2,250 km~, 80%
of which are in row crop agricuiture; predominantly soybeans, rice, and cotton. The drainage from these fields flows into the
river carrying potentially large amounts of sediment, nutrients, and pesticide residues. The entire length of the L'Anguille River
has been designated impaired due to high sediment concentrations assumed to be coming from intensive row crop agriculture.
A total of 52 different BMP scenarios were analyzed and their impacts on water quality improvements were evaluated for three
implementation schemes: optimization, targeting in high priority subbasins, and random placement. The results indicated that
BMP optimization always resulted in the greatest reduction of sediment, total P, and total N losses from the watershed under a
given cost-constraint compared to the targeting and random placement schemes. The results of this study indicated that under
limited resources scenarios available for BMP implementation and maintenance, watershed management should focus on

optimizing BMP placement so that maximum pollutant reduction from the watershed can be accomplished.

INTRODUCTION

Agricultural nonpoint source pollution has been
recognized as the largest source of pollution to
streams, rivers, and estuaries in the United States.
Agricultural activities, such as, tillage practices and
land application of fertilizer and animal manure are
important factors contributing to NPS pollution,
leading to excess runoff losses of sediment, nutrients
and pesticides. A large percentage of water pollution is
recognized to be originated from NPS pollution
(Novotny, 1999) affecting more than 18% of the
impaired river miles measured and 48% of assessed
rivers and streams in U.S. (USEPA, 2001). Excess
sediment loadings is the most important NPS pollutant
of concern, as more than 50% of the sediment loadings
in various waterbodies is contributed by the erosion of
agricultural areas (Ritter and Shirmohammadi, 2001).
The other important NPS pollutants of concern are
Nitrogen (N) and Phosphorus (P) that, when present in
increased concentrations, result in accelerated eutro-
phication of the waterbodies.

Typically, control of NPS pollutants to improve
water quality in agricultural watersheds is achieved
through implementation of Best Management Practices
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(BMPs) at farm or field level. BMP implementation
within a watershed can be achieved using three
approaches: (1) random placement; (2) targeting BMPs
in critical source areas; and (3) optimizing BMP
placement based on environmental and economic
constraints. In the random placement approach, BMPs
are implemented in fields that are randomly distributed
across a watershed. This approach is common where a
watershed management agency operates on a ‘first
come—first serve’ basis to the farmers who are
applying for financial assistance for BMP imple-
mentation. This type of approach can be expected to
yield varying results and the associated water quality
improvements are difficult to replicate in another
watershed. In targeting approach, BMPs are placed in
critical source areas of a watershed. Critical source
areas are portions of a watershed that contribute
disproportionately large amount of NPS pollutants and
can be identified using a distributed parameter
watershed model or detailed monitoring of water
quality. In a large watershed with multiple farms and
BMP options, there can be a large number of BMP
targeting options that will result similar water quality
improvement. Under such conditions, BMP optimization
becomes effective in determining the optimum
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combination and placement of BMPs that will result in
maximum reduction in NPS load with minimum BMP
implementation and maintenance cost. However, BMP
optimization requires searching through a large
parameter and output domain and is com-
putationally cumbersome. Development of such methods
is still an active area of research. In addition, many
watershed management agencies may not have needed
technical skills to optimize BMPs in a given watershed.

The objective of this study was to develop a
methodology to determine the most effective com-
bination of BMPs to reduce the pollutant loads to
improve water quality in agricultural watersheds. The
relative effectiveness of three methods of BMP
implementation schemes (i.e. optimization, targeting,
and random placement) in improving water quality
were compared. The methodology developed was
evaluated in the L’Anguille River watershed, an
agricultural watershed located in Arkansas, USA.

DESCRIPTION OF THE STUDY WATERSHED

Effectiveness of BMP implementation schemes in
improving water quality were evaluated using data
from the L’Anguille River Watershed (LRW), located
in Eastern Arkansas, USA (Figure 1). The LRW is
primarily an agricultural watershed with an area of
2,250 km?. The principal land use in the watershed is
agricultural row crop production. According to the
2004 land use, the basin consisted of 40% soybeans,
25% rice, and 17% forest, with only 2% urban areas.
The soils in the basin consist of poor draining
hydrologic soil group C soils on the eastern part of the
watershed and group D soils to the west consisting of
Henry and Calloway soils.
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Fig. 1: Location of L'Anguille River Watershed in
Arkansas, location of USGS stream gauging stations in
the watershed, and subwatershed delineation used in
SWAT modeling

The LRW is listed in the EPA 303d list due to
excessive turbidity caused by suspended sediment
(ADEQ, 2005). The impaired designation culminated
over 150 years of direct human interaction with the
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L’Anguille River. Since the early 19" century, the
hardwood bottoms and swampy lowlands of the area
have been subjected to timber harvesting, draining, and
agricultural production practices. By 1945, the upper
reaches in Poinsett and Craighead Counties, had been
straightened and channelized to provide improved
drainage for agricultural production. The remainder of
the channel remains in its meandering form, with
various lengths of levees and other structures. The
sediment that results from erosion of farmland is
transported by the upper, straightened portion of the
river, and is deposited along the slower moving
meanders of the natural length resulting in channel
aggradations and flooding. In the Cross County area
the extended inundation of the hardwood forest has
resulted in large areas of dead standing timber. The
flooding has also negatively impacted agricultural
production in the affected areas. A Total Daily
Maximum Load (TMDL) has been developed for the
watershed requiring a reduction of 48% in spring, and
46% in summer, respectively, in sediment loading
from agricultural production areas in the basin
(ADEQ, 2002). This reduction in sediment loading is
expected to meet the in-stream turbidity standard of
45 NTU or a sediment concentration goal of 35 mg/L.

The USGS monitors stream flow in the watershed at
two locations: Colt (USGS Gauge no. 07047942) and
Palestine (USGS Gauge no. 07047950). Daily stream
flow data for Colt gauging station was available since
1992 and for Palestine gauging station since 1997. In
addition, 14 months of sediment and nutrient.lead and
concentration data were available at Palestine gauging
station. These data were used in model development
and BMP analyses.

DESCRIPTION OF THE WATERSHED MODEL

The Soil and Water Assessment Tool (SWAT) model
was used in this study to quantify BMP effectiveness
in reducing pollutant loads in the watershed. The
SWAT model is a physically-based, quasi-distributed,
deterministic, continuous, daily time step model
(Arnold et al., 1998). The SWAT model has been used
extensively to determine the effects of management
practice implementation of hydrologic and water
quality response at various spatial and temporal scales
(Behera et al., 2005; Bracmort et al., 2006; Gassman
et al., 2007; Gitau et al., 2004; White and Chaubey,
2005). The ability to define the management scenarios
in detail, including fertilization levels, irrigation
methods, and cultivation techniques, makes the SWAT
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model a powerful tool to evaluate watershed response
to management changes. It has also been used to
identify Critical sub-basins within watersheds (Tripathi
et al., 2003) where management practices may have
the greatest impact. A detailed model description can
be obtained from (Neitsch et al., 2002) or the model
web-site located at http://www.brc.tamus.edu/swat.

MODEL DEVELOPMENT, CALIBRATION AND
VALIDATION

The SWAT model input data consist of three main
categories; GIS data, weather data, and point source
discharge information. The GIS data required include a
Digital Elevation Map (DEM), soil data in the
digitized Soil Survey Geographic (SSURGO) format,
2004 summer land use data, and weather station
location information. The DEM used was from the
National Elevation Dataset (NED) developed by the
USGS in 2002 in a 1 arc second (approximately 30 m)
resolution. These data were available in a seamless,
8 digit Hydrologic Unit Code (HUC) layer from
http://seamless.usgs.gov/. The SSURGO soil data were
available from USDA soil data mart by county at
http://soildatamart.nrcs.usda.gov/. It was the highest
resolution digitized soil information available during
the study period. All other GIS information including
2004 land-use information and weather station location
information was obtained from the Center for the
Advanced Technologies (CAST), the University of
Arkansas. The weather data were obtained from
National Oceanic and Atmospheric Administration
(NOAA). The point source discharge information was
provided by the ADEQ in the form of Discharge
Management Reports (DMRs) for permitted discharges
for the study period.

The model was set up and the watershed was
delineated using the automatic delineation tool in
AVSWAT 2005. The watershed was divided into
30 sub-basins. One additional sub-basin was added to
ensure output information at an existing USGS
gauging station to enable the model calibration. Each
sub-basin was divided into multiple Hydrologic
Response Units (HRU) with the land-use and soil type
thresholds set at 5% each. This resulted in 506 HRUs
in the watershed.

The majority of the managed land use in the water-
shed is in row crop agriculture, primarily irrigated
soybeans and rice. The typical crop rotation is a
combination of these two with an additional winter
wheat crop when profitable on suitable soils. The
management scenarios used for modeling these crops
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were determined using the published wverification
information from the watershed area, the individual
crop handbooks published by the University of
Arkansas Cooperative Extension Service (UACES),
and information obtained directly from the farmers in
the watershed. Fertilization application rates of 24
kg/ha phosphorous and 80 kg/ha nitrogen in rice, and
22 kg/ha phosphorous in soybeans were used in the
model. All other crops were set to auto-fertilize
nitrogen by the model based on crop nutrient stress.

The auto-calibration feature available in SWAT
2005 was utilized for sensitivity analysis and model
calibration (van Griensven and Bauwens, 2003). The
most sensitive parameter for flow and sediment was
the Curve Number (CN2), and the most sensitive
parameters _for the nutrient outputs were the
SOL_ORGN and SOL_ORGP for Nitrogen (N) and
phosphorous (P) respectively. The output for flow was
used for auto-calibration at the Colt gage, and the
outputs for flow, sediment, total N, and total P were
used for auto-calibration at the Palestine gage. The
objective functions used for model calibration were
maximization of the coefficient of determination (R%)
and Nash-Sutcliffe Coefficient of Model efficiency
(Exs’) calculated as,

e X
320107~ o)

B= = = (D)

. ()

where O is measured values, P is predicted outputs and
i = number of values (Nash and Sutcliffe, 1970).

BMP Optimization Plan Development

The BMP optimization was accomplished using an
optimization algorithm (NSGA-II) (Deb et al., 2002)
and the SWAT model. The NSGA-Il is a genetic
algorithm based optimization technique and is reported
to give a good spread of solutions through faster
convergence rate for BMP solutions (Deb et al., 2002).
Sets of BMPs, called allele sets, applicable to various
land use and land cover were prepared and used in the
optimization model (Table 1). During the optimization
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process, the algorithm searches for a particular
management practice from the given allele set for a
particular land use, and subsequently estimates the
pollution loading and the cost estimates for the
placement of this particular BMP in the selected farm.
The pollutant loading and the costs are summed up for
all the farms to get an estimate at the watershed level.
The allele set forms the variable space for the BMP
selection and the watershed level estimates form the
objective functions for the optimization model.

Table 1: Allele set of BMPs in L'Anguille River Watershed

Crop Allele Set
Rice Type 1. NMP 1, NMP2, NMP 3°
Soybean Type 1. NMP 1, NMP 2, NMP 3

Type 2. BufferOm, 5m, 10 m
Type 3. Conservative till, no till

3NMP 1, 2, and 3 represent 25% below optimal, optimal, and 50%
above optimal application of P fertilizer.

A BMP Tool that provided the BMP cost estimate
and the HRU level pollutant reduction was developed
and used with the optimization tool. The use of BMP
tool eliminated the need for the dynamic SWAT model
runs required to search the optimal BMP
combinations. However, a limitation with the BMP
tool is that the effectiveness for only one pollutant can
be performed at a time. Another limitation is that the
BMP tool gives pollutant reduction at the HRU level
and does not perform any routing to determine the
transport of the pollutant as it moves through various
stream segments. The BMP effectiveness for sediment
was computed by calculating the percentage reduction
due to the placement of the BMP. The objective
functions used in BMP optimization were: (1) mini-
mization of pollutant loading; and (2) minimization of
the net cost increase at the watershed scale due to
placement and maintenance of the BMPs. The two
objective functions that need to be optimized are
mathematically expressed as,

min[ (£, (X)) (g (X)) |[vie[P.N,Sed]  ...(3)

Total reduction in the pollution load is expressed as
weighted average of the HRUs in the watershed f{x),

2 (B (x)x4(x))(1- & (%))
fi(X):xEX ZA(x)

xeX

.. (4)

The net cost of the placement of BMPs in the
watershed is estimated as g(x),
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Where X represents the HRUs in the watershed, P, is
the unit pollutant load i from a HRU, R; is the Pollutant
reduction efficiency of BMP, 4 is the Area of HRU;
and C; is the unit cost of the BMP. BMP costs used in
the model were annual net cost per unit area of the
watershed, including establishment, maintenance, and
opportunity costs. The cost informations for the
various BMPs for year 2007 were obtained from
University of Arkansas Cooperative Extension Service
(USACES, 2007) rice and soybean production
budgets. The cost information included the costs of
production  (fertilizers,  fungicides,  herbicides,
irrigation, labor, fuel, seed, etc.) for different tillage
systems (Rodriguez et al., 2007). Some of the BMPs
considered resulted in increased crop yields, which
was also added into the cost component. All the cost
estimates were made per unit area ($/ha). During the
optimization process, the algorithm searches first for a
particular management practice from the given allele
set for a particular land use. The subsequent estimation
of the pollution loading and cost estimates for the
placement of this particular BMP in the selected HRU
was obtained from the BMP tool. A weighted average
of the pollutant loading and the net costs at HRU ievel
was calculated to get an estimate at the watershed level.

. (5)

BMP Targeting Plan Development

The calibrated and validated SWAT model was used to
predict sediment loads from each of the 31 sub-basins
in the watershed. Best management practices are land
use specific. Targeting of BMPs for effective sediment
control requires identification of areas and watershed
characteristics that contribute significantly to the sedi-
ment load. The following steps describe the methodclogy
used for selecting BMPs using targeting approach:

1. Subbasins were ranked based on the total average
pollution loading for sediment, phosphorus and
nitrogen estimated by the SWAT model (Figure 2).

2. In order to compare the effectiveness of BMPs
under optimization and targeting schemes, one
optimal solution (population), at a time, was
selected from the optimized set described above
and the total area receiving BMPs through this
solution was computed.

3. A number of subbasins were selected that equaled
at least to the total BMP area obtainzd through
optimization solution in step 2).
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Fig. 2: Subbasin ranking from SWAT model for sediment, total P, and total N loadings

4. All the HRUs in the selected subbasins were placed
with a particular BMP from the different BMPs
possible that met the land use constraints.

5. Total pollutant load and net cost increase for each
of the BMP placements were computed.

6. Steps (2) through (5) were repeated with the next
optimal solution (population) until the last optimal
solution was reached.

The BMPs included in this study were no till and
conservation tillage in soybean fields, conservation
tillage in rice fields, and 0 and 10 m grass filter strips
installed at downslope ends of soybean fields, and
various fertilizer application rates (Table 1). These
BMPs were selected based on discussions with county
extension personnel and farmers and their potential to
be used in the watershed for NPS pollution control.

RESULTS AND DISCUSSION
SWAT Model Performance

The SWAT model was calibrated from 1992 to 1999
and validated using measured flow data from 2000 to
2001 at Colt gauging station. Similarly, model was
calibrated from 1998 to 2004 using measured flow
data at Palestine gauging station. The model

performance in simulating flow at these two stations is
shown in Figure 3. The R? ranged from 0.43 to 0.70
and Eys’ ranged from 0.41 to 0.68, respectively.

A sensitivity analysis was performed on GA
parameters to determine the influence of these
parameters on the pareto-optimal front. The various GA
parameters (population size, generations, mutation,
and crossover probability) were changed, one at a
time, to evaluate the effects of each parameter on the
Pareto-front. The parameter value for which the
pareto-front was closest to the origin in sensitivity
analysis was taken as the parameter estimate for the
optimization process. Figure 4 shows the sensitivity of
GA parameters, viz, population size, number of
generations, crossover probability, and mutation
probability. The various parameters that were used for
the development of the model are shown in Table 2.

Table 2: Default and Optimal Parameters Chosen for GA
from Sensitivity Analysis

Parameter Default Final
Population 100 200
No. of generations 1000 40000
Crossover probability 0.9 0.9
Mutation probability 0.0001 0.001
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Fig. 3: The SWAT calibration and validation results for flow for Colt (left) and Palestine (right) gauging stations
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Fig. 4: Sensitivity analyses results for various GA parameters used for BMP optimization

BMP PERFORMANCE UNDER OPTIMIZATION,
TARGETING AND RANDOM PLACEMENT
SCHEMES

The baseline watershed response consisted of con-
servative tillage for both rice and soybean with no
buffer strips and Nutrient Management Plans (NMP)
implemented. The annual average HRU area weighted
baseline loadings from the watershed for sediment,
total P, and total N yield were 1.8 t/ha/yr, 1.5 kg/ha/yr,
and 17.4 kg/ha/yr, respectively.

Figure 5 shows the sediment loading under various
BMP placement schemes. Similarly load reductions
and associated costs for total P and total N are shown
in Figures 6 and 7, respectively. These figures show

the final optimization solutions that were obtained. The
optimization model run using number of generations as
20,000 and a population of 100 took 45 minutes on a
CentrinoDuo@2.16GHz computer. It can be noticed
that the optimal solutions had a very good spread range
which showed that there was a good nondominance
sorting for the different optimal solutions reached by
the individuals in the population. For optimization, the
sediment loadings from the watershed could be
reduced in the range of 30-33% with associated BMP
implementation cost of 0-$50/ha in the watershed
(Figure 5). Similarly, a net reductions in total P loads
ranged from 16 to 31% under optimization for a net
cost of 0-$59/ha (Figure 6). For total N, a net
reduction up to 13% could be obtained with BMP
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optimization with associated BMP cost of $50/ha
(Figure 7). All BMP optimizations resulted in
significant load reduction for sediment, total P, and
total N compared to the baseline loads of the same
pollutants. An interesting observation made was that
for some of the BMP scenarios the pollutant reduction
was noticed without an increase in the total net cost
(Figure 5). This can be explained as the increase in the
crop yield because of the placement of a certain BMP
nullifies the increase in cost because of imple-
mentation and maintenance of the BMPs at a
watershed scale. Such a reduction can be termed as
‘zero net cost BMP scenario’.

The ranking of subbasins for BMP targeting was
different for different pollutants of concern (Figure 2)
showing that a pollutant specific subbasin ranking
should be prepared for BMP targeting. A subbasin
ranking for one pollutant of concern may not be valid
when a different pollutant is considered. When areas
under BMP implementation were same for optimization
and targeting, a significantly smaller pollutant reduction
was obtained for sediment (Figure 5), total P (Figure
6) and total NV (Figure 7) under the targeting scheme
compared to the optimization scheme. The load
reductions ranged from 0-1% for sediment, 0—3% for
total P, and 0—1% for total &, respectively. It should be
noted that some of the BMP scenarios resulted in net
increase of total P and total N from the watershed
compared to the baseline loads, possibly due to
increased fertilizer applications. Comparison of BMP
costs under two schemes indicated that for the same net
cost of BMP implementation, optimization always
resulted in greater reduction in pollutant loads from the
watershed.
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Fig. 5: Reduction in the sediment yield and associated
cost for various BMP schemes in the L'Aguille River
watershed
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When BMPs were randomly placed, the net reduction
in pollutant loadings were intermediate compared to
targeting and optimization, i.e. they were less than
BMP optimization and greater than BMP targeting. A
greater pollutant load reduction compared to the
targeting could be due to larger areas under random
BMP placement (20% of the watershed). However,
none of the random placement scenarios resulted in
pollutant load reduction similar to optimization
scheme. In addition, the main limitation of the random
BMP placement is that the results are not reproducible
in other watersheds.

SUMMARY AND CONCLUSIONS

Reducing pollutant loads from agricultural watersheds
require placement of BMPs at strategic locations that
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can maximize loads reduction with minimum associated
cost. This study evaluated effectiveness of three BMP
implementation schemes in reducing sediment, total V,
and total P losses from an agricultural watershed:
optimization, targeting in high priority sub-basins and
random placement to minimize net-cost increase and
pollutant losses. BMP optimization results gave a
range of solutions with corresponding net cost increase
due to BMP implementation. The maximum reduction
under the optimization objective functions was 33% at
a net cost of $55/ha for sediment. Similarly, maximum
reduction in total P and total N were 31% and 13%,
respectively, with associated costs of $59/ha and
$50/ha. Both targeting and random placement resulted
in significantly smaller pollutant reduction compared
to BMP optimization. The results of this study
indicated that under limited resources available for
BMP implementation and maintenance, watershed
management should focus on optimizing BMP
placement so that maximum pollutant reduction from
the watershed can be accomplished.
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