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ABSTRACT: One of the most fascinating discoveries of the last years is that numerous complex systems, although very different
among them, as belonging to physical, biological, chemical, informational, social or other environments, exhibit common
properties as the scale invariance (i.e. the system properties appear identical over a large range of scales). Moreover, these
properties significantly control their dynamics: for instance, it is well known that the scale-invariance of complex networks
implies their robustness under random deletion of elements. In such systems, the basic characteristics are not described by
the nature of their constitutive elements, but rather by their topological properties (i.e. relations among the system elements).
This theory schematizes an interconnected system by a graph, defined as a mathematical set of N nodes (elements of the
system) connected by links or edges (relations among the elements). Indeed the node-links schematization allows an effective
descriptions for an extremely varied class of phenomena: social networks, as scientific collaboration networks, informatics
systems, as the WEB and internet, biological systems, as protein-protein interactions networks and metabolic networks,
technological systems, as electronic circuits, and so on. Here, we discuss how such systems self-organize themselves into a
steady scale-free structure. In particular, we show that the power-law is the most probable distribution that both nodes and
links, in a reciprocal competition, assume when the respective entropy functions reach their maxima under mutual constraint.

The proposed approach predicts scaling exponent values in agreement with those most frequently observed in nature.

INTRODUCTION

Network structures are everywhere in nature [1, 2],
representing the unifying theme for understanding a
number of very different phenomena across social,
biological, technological, hydrological and ecological
systems. A complex network, also called graph in
the mathematical literature, may be simply defined by
N nodes (or vertices) connected by M edges (or
connections); nodes are system elements, while edges
represent their interactions.

The usefulness of the network theory lies in its
universality, indeed the node-edges schematization
allows for an effective description for an extremely
varied class of phenomena. For example, Internet is a
network of computers and routers connected by a
physical and wireless link [3, 4]; likewise the World-
Wide-Web is a virtual net of HTLM documents,
connected by hyperlinks pointing from one document
to another [5]. The cell metabolism is guaranteed by a
complex network of substrates and enzymes, connected
by chemical reactions in which these molecular
compounds participate [6]. The food webs may be
thought of as directed networks, where nodes are
distinct species and edges represent predator-prey
relationships [7]. News and diseases spread on a social
network, where vertices are human beings and edges
represent various social interactions among them

[1, 8, 9]. As regards technological systems, the power
grid can be described by a network of generators and
transformers connected by high-voltage transmission
lines [1, 9].

In all these cases the representation of the system as
a network is obvious, nodes and links being identified
directly. In other cases, instead, the mechanisms that
couple the interacting nodes may be more complex and
the edges can be identified by noting similarities in the
dynamical behaviour of two nodes [10]. Recently,
based on this idea and analyzing daily temperature
records taken from a grid in various geographical
zones, Yamasaki ef al. [11] developed a method for
generating climate networks, where edges represent
correlations between temperature in different sites. In
particular, the authors find that the dynamics of the
network of temperature are significantly influenced by
El-Niiio, even in geographical zones in the world where
the mean temperature level is not affected. Thus, fast
fluctuations of the correlations observed during El-
Nifio periods cause the links to break, generating strong
climate changes. Moreover, a soil pore network can be
useful in studying soil moisture patterns [12]. In this
network centres of pores represent nodes, whose
connectivity may be quantified through the number of
independent paths between two points. Likewise,
complex networks of fractures in rocks have been
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studied in [13]. Furthermore, with reference to the
geomorphology, river networks may be defined by
nodes on a regular lattice, representing the elevation
field, while links are determined by steepest descent on
the topography [14].

The most schematic characteristic of a graph is the
node degree £; (also called connectivity), defined as the
number of connections of node V). A node Vis said to
be a nearest neighbour of V; if there is an edge between
these two nodes. Therefore, the degree of a node is
actually the number of its nearest neighbours. Fixed N,
the degree sequence Dy = {k, ks, ..., k;, ..., ky} 1s a set
of integers, whose elements stand for the connectivities
of all nodes of the graph [15]. The degree distribution,
that is the probability that a randomly selected node
has degree £, is given by p, = Ni/N, where N; is the
number of nodes with & edges.

A multitude of studies have shown that most real-
world complex networks display a strongly hetero-
geneous topology, described by a power-law degree
distribution py~k’, which implies that the highly
connected nodes are statistically significant [1, 2]. In
all networks considered the values of the scale
exponent y typically range from 2 to 3 [2], although
extreme values of about 1 (food webs [7]) and 3.54
(net of human sexual contacts [16]) have been observed.
The shape of the power-law degree distribution implies
a continuous hierarchy of nodes, going from a few
vertices with a high degree to a number of nodes with
very few edges. Thus, the degree distribution displays
a long-tail behaviour that begets the extreme values
(hubs). Due to the lack of a characteristic scale, these
networks are also called scale-free. networks [1, 2],
satisfying the property px = g0 Indeed, as reviewed
by Newman [17], if we increase the scale by which
one measures k by a factor @, the shape of the distri-
bution does not change, except for the overall multi-
plicative constant g,. Thus, the power-law distribution
can be taken as a synonym for the notion of scale-free
or scaling law, in the sense that the system properties
appear identical under a scale change. Furthermore, the
most actual usage of the term scale-free appears to
have a richer sense, being associated with additional
features, such as self-similarity and fractal geometry
[18, 19].

Scaling laws and fractals are abundant in nature and
river networks stand for a fascinating epitome of such
phenomenon [20]. Indeed, despite great diversities in
the geologic, vegetational and climatic constraints,
river networks self-organize into recurrent patterns,
showing a number of topological regularities associated
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with their tree-branching structure [20-23]. Furthermore,
fluvial networks display the absence of a single well
defined length scale too, reflecting in a power-law
distribution of various quantities [20-22], such as the
distributions of stream lengths and basin areas [22].
Consequently, a comprehensive understanding of the
spatial (and temporal) patterns describing the networked
system may be fundamental to many areas of earth
sciences, such as geology, geomorphology and hydro-
logy, providing much greater insights into dynamical
processes than traditional methods [24]. For instance,
in Hydrology it is well known [25] that network
structure and specific system functions co-evolve with
time, with strong interactions and feedbacks between
patterns and processes at both catchment and fluvial
scale. Furthermore, in other fields, it has been proved
that the topology of the complex networks affects their
behaviour in a fundamental way. Particularly, it has
been demonstrated that the networks with a power-law
degree distribution display a surprising robustness
against random removal of their own elements [26]. In
biology this property explains the strong resilience
exhibited by simple organisms under random deletion
of genes [27].

Complex networks can be substantially studied by
adopting two complementary approaches [28]. One on
side, some models [1, 29-31] deal with non-equili-
brium growth networks, simulating the time evolution
of a graph and reproducing the dynamics responsible
for its topology. An example of such models is that
proposed by Barabasi and Albert [1], based on
preferential attachment rule (while a network grows,
new nodes attach preferentially to the already well
connected nodes). This model asymptotically produces
a stationary and power-law degree distribution with
scaling exponent ¥ = 3. Several refined variants of
preferential attachment have been proposed, giving a
more realistic description of the local events that
control the networks evolution. Besides the addition of
new nodes, these dynamical models allow for the
addition and rewiring of the links [29], the initial
attractiveness of the nodes [30], and the nonlinear
preferential attachment [31]. Depending on the weights
of these processes, the scaling exponent of the power-
law continuously changes between 2 and oo, accounting
for the large variation observed in nature. Note that, in
other fields, the preferential attachment mechanism
resembles some dynamics introduced in order to
simulate eco-hydrological processes. In facts, recently,
using analyses of satellite image data, two groups of
researchers [32] have demonstrated that patch sizes for
vegetation ecosystems in arid and semi-arid climatic
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zones obey power-law distributions. Both groups
proposed a stochastic model for vegetation patterns,
wherein each vertex of a lattice is either occupied or
unoccupied and the number of old (new) shrub that die
(sprout) is proportional to the population of the
neighbour vertices. Then, the chance of a large cluster
to grow is larger than that of the small clusters and,
consequently, the distribution of the cluster sizes
becomes wide, thus obeying a power-law.

Complex networks have been investigated via
various optimization methods, by assuming that the
networks evolve in order to perform some specific
functions. For instance, in [33] scale-free networks are
obtained by minimizing a linear combination of the
link density and average distance (i.e., shortest path
between two nodes). Likewise, the results found in
[34] suggest that the emergence of the scale-free
topology may arise from a tradeoff between the
requirement of having the shortest route between any
two nodes and the smallest congestion in the network.
Moreover, in [35], by minimizing a cost function
depending both on length and traffic carried by the
edges, the authors proposed a model of networks,
whose topology display a spanning tree shape, thus
showing a spatial hierarchical organization.

Furthermore, network optimization is actually known
to be relevant in the study of general transportation
networks. Indeed, Banavar et al. [36] showed that the
network topology arises from an optimization process,
in which edges are positioned to minimize a specific
quantity, representing energy or cost of transportation.
In particular, the authors showed that trees (i.e., net-
works without loops) represent configurations of local
optimum for the specific functional to be minimized,
thus, from an evolutionary viewpoint, trees prevail over
networks [36]. This result is very general, suggesting that
other natural tree-like structures can arise through
optimality to different selective pressures. For instance,
this result can explain the allometric scaling in biology
[37], because of that many biological processes, from
cellular metabolism to population dynamics, are
characterized by a power-law relationship between
size (body mass) and metabolic rate. Similar scaling
behaviour is obtained for river morphology too, wherein
the scale-invariant tree-like patterns of the river networks
can be though of as the natural by-product of the
minimization of the total energy dissipation [38], thus
providing a unifying approach for biology and hydrology.

These results suggest that variational approaches
represent a valid tool accounting for the observed
regularities displayed by most real-world complex
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networks. On the other hand, systems like the complex
networks, consisting of a number of interacting elements,
naturally lend themselves to a statistical description, thus
a statistical mechanics approach seems to be appropriate.
This basic idea has led to a new class of models [28, 39—
41] that use standard tools of the equilibrium statistical
mechanics. In particular, in order to investigate un-
correlated scale-free networks at equilibrium state,
Sanchirico and Fiorentino [41] have introduced the
novel concept of entropy competition, by means of
which a power-law degree distribution is achieved. In
this paper, using tools of the statistical physics and
emphasizing the equivalence between entropy and
information (especially with regard to the statistical
inference), we review how three classes of degree
distributions can be derived by means of the maximum
entropy principle, according to the role played by the
connectivity of the nodes. We start from the review of
a statistical-mechanical model of literature, which
plays in network theory the role that the Boltzmann
model plays in statistical mechanics. Then we develop a
consistent formalism based on equilibrium statistical
mechanics. According to the Maxwell-Boltzmann
statistics, we achieve an exponential degree distribution,
by considering the connectivity as an indefinite property
of the system elements, without any reference to the
networked structure. Moreover, as a test of our approach,
we derive the Poissonian degree distribution, by thinking
of the connectivity as a topological property, coinciding
with the number of half-edges going out from a node.
Further we explain how two entropy functions can
reach their maxima, under mutual constraints, at which
the degree distributions of both nodes and first
neighbours follow a power-law. In this way, we point
out new insights into topological quantities that control
the scaling exponent and there after we conclude.

STATISTICAL MECHANICS OF COMPLEX
NETWORKS

Different statistical mechanics approaches have been
used to characterize complex (scale-free and finite-
scale) networks [28, 40]. The underlying models
define statistical ensembles of networks, endowed with
a probability measure, constituting a configuration space
(the phase space). Then, the topological features of the
networks can be derived by an appropriate choice of
the probability measure. It is worthwhile to review the
theoretical back-ground underlying the Exponential
Random Network (ERG) model, introduced by Park
and Newman [39].
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Exponential Random Graphs and Configuration
Model

The ERG model assumes as a statistical ensemble, ¥,
a collection of simple graphs (i.e. graphs without self-
connections and multiple edges), and defines their
probability distribution by maximizing entropy under
appropriate constraints, imposed by a given set of
observations. In so doing, the choice of the probability
distribution is not affected by any a priori bias, as the
only reliable information is enclosed in the constraints
for entropy maximization.

An observable y; is defined as a quantity that
describes some property of the elements of ¢ . For
instance, an observable may be the number M of edges
or the degree sequence Dy of a graph. The estimate
(v;) of the expectation value of a given observable,
deduced by measurements performed over real networks,
can be used to derive the probability distribution pg,
with Ge g, by imposing that this estimate equals the
mean E[ys] = 2Py over the statistical ensemble. In
other words, we want to choose a probability
distribution pg such that the networks that better fit the
observed characteristics (yg) have statistical weight pg,
thus satisfying constraint > .5pcye = (Vg). As a rule for
the definition of statistical weight, the ERG model
assumes that the best choice of the probability
distribution p; is the one that maximizes entropy,
defined as S; = —2gpglnps, under the normalization
condition Xgps = 1, and constraint Yopeys = (Vo).
Such a maximization reproduces the conditions of
maximum randomness possible, according to the
chosen constraints, which represent the only reliable
information on the system state. Using the Lagrange
multipliers method, Park and Newman [39] demo-
nstrated that the solution of the above constrained
maximum problem is given by the Boltzmann
exponential distribution p; = ¢ “/Z, were the function
H(G) = pys (with u Lagrange multiplier) is called
Hamiltonian of the network. The normalization constant
Z = Y;e""9 is called partition function, borrowing the
term from statistical mechanics. Constant x can be
interpreted either as a field coupling to the observable
or as an inverse temperature [39]. Particularly, {ys) =
—OF/du, where the function F = —InZ, called free
energy, stands for the generating function of the
expectation value of the observables. So, the
observable y; plays in the theory of the exponential
random graphs a role similar to the energy in statistical
mechanics. Using this formalism, and assuming the
number Mg of edges in the graph as only observable
vG, Park and Newman [39] obtain the Poissonian
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degree distribution, p;, = e‘E[k]E[k]k/k!, previously
derived by Erdds and Rényi ([42], by randomly
connecting with equal and independent probability p
each of the N(N-1)/2 possible pairs of nodes in a
network of N vertices (E[k] = pN). Note that the
Poissonian degree distribution has a maximum at the
average degree E[k] = 2.kp; of the network, implying
that each node has approximately the same number of
links, whereas the probability of finding a node with
connectivity greater than the mean one decays
exponentially.

On the other hand, the ERG model can be generalized
assuming as an observable a given degree sequence Dy
= {k(G), ..., k{G)} for each graph of ¢ [39]. Thus,
one obtains graphs that, in all respects other than their
degree sequence, are assumed to be entirely random.
The idea to simulate the randomness of the Poissonian
graphs while satisfying a given degree sequence Dy
has led to a new type of model, known as con-
figuration model (CM) [15, 43, 44], that extends the
Erd6s-Rényi model to the graphs with degree distribution
that differs from the Poissonian one.

The CM can be defined by means of the following
heuristic procedure described by Newman [44]: First
we assign to each node ¥V, a number k; of ends of
connections (half-edges) drawn from the set Dy, under
the constraint that the sum 2 k; is even (1 <j < N). If
2,k; is odd, then one can simply add a vertex of degree
1 without changing the topological properties of the
graph. Next, we randomly choose pairs of half-edges
and join them together to make complete edges, thus
building up a real graph. Nevertheless, a drawback of
this model is that it produces multigraphs, as the
construction rules do not avoid multiple edges and
self-loops. Therefore, in order to implement the CM, it
is critically important to determine the conditions by
means of which a random configuration defines a
simple graph. To this end, since we will analyze the
behaviour of graphs in the limit of a large system size,
some technical conditions of uniform convergence
must hold (see [15] for more details). In particular, as
stated by Molloy and Reed [15], the main result in [45]
implies that the underlying multigraph of a random
configuration with a given degree sequence and
maximum degree K = O(N'") is simple with probability
tending to a constant when both E[k] = X;kp, and O(D)
= 2k(k-2)p, are finite. In the case of the power-law
degree distribution Q(D) tends to infinity for 2 < y <3,
whereas in the range 1 < y < 2 both Q(D) and E[k]
diverge. Nevertheless, these quantities may assume
finite values for all », as showed by Aiello er al. (see
[46] for more details), using a cut-off like K = ON').
The cut-off condition, is needed to reduce the multiple
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edges, as the probability to have multiple connections
increases when the system size grows. Among other
things, the degree distributions of many real-world
networks are truncated on the right [9], thus displaying
a cut-off at higher degree values, due to the finite
system size [47]. Several authors use different
conditions of cut-off than that used by Aiello ef al. For
example Newman et al. [44] assume an exponential
cut-off, whereas Dorogovtsev et al. [48] define the
natural cut-off of the network as K = OW"™).
Although the cut-off required in [15] is much smaller
than the natural one, for scale-free networks with
scaling exponent between 2 < ¥ <3 (i.e., for y in the
range of values more frequently observed in nature), in
the limit of large system size, the fraction of multiple
edges over the total number of links vanishes, using
the structural cut-off K = O(N'?) introduced by Bogufia
et al. in [47). Consequently, any result that holds for a
power-law configurations with 2 < y< 3 and 0 < k <
N2 does for the underlying simple graphs too.

We underline that the configuration model provides
only a particular realization of all graphs on N vertices
and with degree sequence Dy. Each of these graphs is a
random member of the set ¢(Dy) of all graphs on N
vertices and with fixed degree distribution p;. Hence,
we may think of ¢(Dy) as a microcanonical ensemble.
Moreover, since the graph is constructed by joining
pairs of half-edges randomly selected, the degrees of
all vertices are statistically independent. So, the
configuration model is not capable of simulating the
significant correlations among the degrees of the
neighbour nodes of real-world networks, [4, 49].

MAXIMUM ENTROPY PRINCIPLE

Although statistical mechanics has been developed to
describe the properties of the gases, its field of
application has been extended to the study of fluid,
solid state and other physical systems. In this Section,
reviewing the results in [41], we explain a more direct
analogy than the one used by ERG models. In the
following, we will think of the elements (nodes) of a
complex network as the elementary particles (atoms or
molecules) of a gas. So, the extension of statistical
physics laws to the complex networks becomes more
natural. In particular, we assume as a statistical
ensemble (denoted by G,) the collection of all nodes of
a graph, and we associate to each node a certain statistical
weight. In this way, the maximum entropy principle
can be employed to achieve the most probable degree
distribution. We underline that the ensemble G, is
simply a collection of nodes but not a proper graph.
Nevertheless, once a given degree sequence, marking
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our G, ensemble, has been determined, the shift from
G, to the real graph G becomes immediate by using the
configuration model described in the previous section,
once required hypotheses have been verified.

Exponential Degree Distribution

Given a graph, each node ¥; is marked by the value &;
of its connectivity. So, all nodes that have the same
degree can be grouped together in a certain number of
clusters (say £2). Specifically, assuming for simplicity
that the degree sequence Dy with the largest element K
is full (i.e., each integer k satisfying 0 <k < K is an
element of Dy), the number of clusters £2 is equal to
K + 1. Moreover, in the limit of large system size, a
cut-off like K = G(N') ensures that the number of
clusters is always less than that of nodes. It is well
known that the number W, of ways to arrange the N
nodes (suppose identical, distinguishable and
independent) of G, in 2 clusters, with the kth cluster
containing N; nodes of connectivity k, is given by the
multinomial coefficient,

N!

[T~
k=0

In this case, the kth cluster, identified by the value of
the connectivity of its nodes, represents the kth cell of
the phase space of the statistical ensemble G,. For
large networks, in analogy with statistical mechanics,
the entropy function of this system (that we denote by
Sy) can be defined as proportional to the logarithm of
W, [41]. Thus, omitting a proportionality constant, we
can write,

K
S, ==Y p,Inp, . (2)
k=0
where, the frequency p, = N/N stands for the
probability that a randomly selected node lies in the
kth cell of the phase space. From a statistical
mechanics point of view, S, measures the disorder
encoded in the degree distribution, quantifying the
heterogeneity of the node degree.

On the other hand, entropy (2) also admits an
interpretation in terms of the information theory. To
this end, let us consider an experiment X = {x;, X, ...,
Xis ...» X}, With £2 possible outcomes, defined by the
occurrence probability p, = Ni/N, where N is the total
number of results and N, = |{X: X = x;}| denotes the
number of times in which the experiment X has given
the result x;,. In the context of information theory,
random variable X may be thought of as a message
transmitted by a discrete source of information, and py
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represents the probability that this message is
implemented by symbol x;. Shannon [50] proposed as
a measure of the uncertainty of a message transmitted
by a source the following quantity H(X) = -2 lnp, =
E[-Inp,], with 1 < k < €, called entropy of message
and coinciding with the Boltzmann-Gibbs entropy (2).
The quantity I(p) = —Inpy is called information related
to the probability distribution p. In a statistical
context, like that of the information theory, H(X)
measures the uncertainty that the experimenter has
before performing the experiment. If the only
information on random variable X consists of an
estimate (f{x)) of the expectation value of one function
fx) (or more), then we have a problem of inference
from incomplete information. As suggested by Jaynes,
the maximization of the entropy (2) simulates the
conditions of maximum uncertainty, due to the partial
knowledge of the processes that generate the random
variable [51]. This kind of approach does not
contaminate the statistical inference with preconceived
hypotheses on the features of the random variable. On
the contrary, this method allows us to build a
probability distribution over a given statistical
ensemble on the basis of partial knowledge of the
system, the only information being given by the
constraints for the entropy maximization. So, the
maximum entropy method provides the best estimate
(in the sense of least biased) with regard to missing
information. Thus, as a thermodynamical system
achieves the maximum disorder at equilibrium state,
the most probable distribution of a statistical ensemble
is the one that maximizes uncertainty. Then, with
regard to complex networks, entropy S, coinciding with
that defined by Shannon in the information theory, may
be thought of as a measure of the uncertainty related to
the topological configuration of a graph. This entropy
measures how random is the degree distribution of a
complex network.

It is well known [52] that by maximizing the
entropy S, only under the normalization constraint >p;
" =1, one obtains the following uniform distribution,

1

=5 . (3)
which implies that each cluster of G, is equally likely.
Indeed, in Eqn. (3) the probability p; that a randomly
selected node lies in the kth cluster also represents the
probability to randomly select a given cluster of G,.
Let us denote with p; the probability associated with
the generic node V; of the statistical ensemble, and
randomly choose a node of G,. This choice can be
performed first by choosing the cluster containing the
node and next selecting one of the N, nodes of such
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cluster. Holding Eqn. (3), we can write p; = 1/N,£2
where with 1/N, we have denoted the probability to
randomly select one of the N, equivalent nodes of the
kth cluster. Since for Eqn. (3) all clusters are equally
likely (i.e., they have the same number of nodes), one
has N = N,£2and so the probability p; becomes,

p= O

Thus, each node of G, has the same probability p; to be
chosen, independently of its own connectivity. Since
both equations (3) and (4) assign identical weights to
all elements of the system, they equally provide a
microcanonical description of the statistical ensemble
G, (supposed isolated).

Once the microcanonical ensemble has been establi-
shed, the next step in a statistical-mechanical formulation
is to choose the constraints to impose on the system,
thus defining the partition function, the temperature
and the canonical ensemble. Since each cluster is
identified by a different value of the connectivity, it is
quite natural to contemplate the mean degree, E[k] =
2ukpy, of the network for entropy maximization. So,
assuming the degree k as an observable, we maximize
entropy S, under the normalization condition 2p; = 1,
plus the other constraint X ,kp, = (k), thus assuming
that the mean degree E[k] equals the estimate (k) of the
expectation value of the connectivities. Using the
Lagrange multipliers formalism, one obtains the
exponential degree distribution py = €/Z [41], which
is to the graphs theory as Boltzmann distribution is to
the equilibrium statistical mechanics. The normalization
constant, Z = Y, = e"/(e”~1), represents the partition .
function, while the Lagrange multiplier > 0 may be
though of as an inverse temperature [39]. In analogy
with statistical mechanics, with H(k) = pk and F = —InZ
we denote the Hamiltonian and the free energy,
respectively. Since constraint X kp, = (k) may be
written as (k) = OInF/0u, by calculating the first
derivatiye of F one has (k) = 1/(e“~1) that, solving for
M, gives u = In(1+1/(k)), from which it follows that the
values of constant x are always positive for all (k) > 0.

Following Molloy and Reed [15], in order to find
the position of the phase transition for an exponential
configuration, we substitute the exponential degree
distribution p; = e*/Z in the inequality 2 k(k—2)p;> 0,
thus obtaining (6°Z/0yF + 20Z/0)/Z > 0, that is
satisfied for values of g < In3. Consequently, in the
case of exponential degree distribution, the phase
transition of the underlying graph occurs when g = In3
or, equivalently, when (k) = 1/2. Moreover, both E[k]
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and Q(D) are always finite for all z# 0, and so the
underlying multigraph has a non-zero probability to be
simple.

Although the tail of the exponential distribution
rapidly decays, as it happens for the Poissonian graphs,
an exponential degree distribution well simulates the
behaviour of some real-world networks, among which
the neural network of the nematode C. elegans, whose
neurons stand for the nodes and the axons are the edges
of the network [9]. Also these systems have been
explained by dynamical modes, by connecting at
random new nodes added to the graph (i.e., maintaining
the growth hypothesis but removing the preferential
attachment rule) [1]. On the contrary, here we have
shown how an exponential degree distribution may be
derived from a general principle, linking the sole
parameter, 4, of the distribution to the average degree
of the network.

Finally, since in the limit for £—0 (high temperatures)
Z—(, the Boltzmann degree distribution reduces to
Eqn. (3), and, consequently, the canonical ensemble
would coincide with the microcanonical one. To
complete the chapter devoted to the general con-
siderations, in the next section we will test our approach
in the case of classical random graphs.

Poissonian Degree Distribution

As discussed in the previous subsection, each node ¥
has a certain value k; of the connectivity, which has
been thought of as a discriminating characteristic of
the nodes, without any topological meaning. In other
words, the statistical description interprets k; as a
property (called connectivity) of a node, and by means
of this property we can distinguish one node from
another, identify the ones of the same type, and group
them in (2 clusters. In fact, the connectivity property
of a given node ¥ is due to a number of edges (equal
to k) among ¥, and its first neighbours. In this
subsection, in order to express this topological nature
of the connectivities, we consider not the node but
the hybrid element, consisting of the node and of its
half-edges, as a component of a statistical ensemble,
whose construction will be described shortly (see
Figure 1).

Since the number of half-edges going out from each
node coincides with the value of the node degree, the
hybrid elements can be grouped in the same clusters,
previously defined on the basis of the different values
of connectivities. In this case, in order to build such
groups, first we need to arrange in the £2 clusters both
N nodes and 2M half-edges of the graph, and next to
assemble the hybrid elements by assigning half-edges
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to each node of the given cluster. Note that, once the
total number N of nodes has been fixed and for each
degree sequence Dy, we do not need to independently
specify the number of half-edges 2M, because (for
undirected graphs) one has that 2M = 2k, = 2,kN,, for
1<j<Nand 0<k=K

‘ C‘:7k=1% /\. / - ‘

‘_ f - [T\ / = -

Mo | ‘,,‘\ — =
(a) : (b) ()

Fig. 1: The construction procedure for the hybrid elements,
which consist of a node with its own half-edges. (a) For all
k, each cluster contains N, nodes. (b) Each cluster
contains C, = Nk half-edges, that is k half-edges for each
node of the respective cluster in (a). (c) For each k, we
assign the C, half-edges of a given cluster in (b) to the N
nodes of the respective cluster in (a)

The construction of the statistical ensemble can be
subdivided into three following steps [41]:

Step 1. Assign N; nodes to each of (2 clusters, where
the kth cluster contains all nodes of connectivity k, or
rather we will assign (at step 3) k half-edges to the
nodes belonging to this cluster (see Figure 1a). In a
manner similar to that in Section III A, the number W,
of ways to arrange N nodes in £2 clusters, with the kth
cluster containing N; nodes, is given by the multi-
nomial coefficient, defined by Eqn. (1).

Step 2. In these same clusters we need to arrange the
half-edges too. Since the kth cluster contains N; nodes
(of degree k), we arrange Cy = Nk half-edges in this
cluster, that is k half-edges for each of N, nodes. For
the sake of simplicity of representation, as shown in
Figure 1b, we arrange the half-edges in other £2 clusters
adjacent to the first ones. Let us denote with C = 24Ci
the total number of half-edges (connectivities) of the
graph. The number of ways W, to arrange C half-edges
(supposed identical, distinguishable and independent)
in (2 clusters, with the kth cluster containing C; half-
edges, is given by the multinomial coefficient,
!
KC' ... (5)

[1¢

k=0

W, =




564

Step 3. Now, fixed the kth pair of clusters, we need to
assign the C; half-edges to the N, nodes, thus obtaining
the hybrid elements belonging to the kth cluster of
Figure lc. This problem is equivalent to the one of
disposition of the C; objects in the N, cells to & to
whose solution is again given by the multinomial

coefficient W, , = C,!/k!™ . Since, step 3 must be
repeated for each pair of clusters, the total number W#;
of ways to assign all half-edges to the N nodes is given
by W3 = HkWS ke

Finally, by using the multiplication principle of
combinatorics, the total number W of ways to arrange
the N hybrid elements in the £2 clusters is given by,

hylel . (6)

Again in analogy with the statistical mechanics, we
can assume the entropy S of the statistical system as
proportional to the logarithm of #. Then, using Stirling’s
approximation (N! = N%e™ and C! = C%, for N>
and, consequently, for C = E[k]N—>w), after simple
algebra, we obtain,

K
Sec—y p,Inpk+E[k[In N +InE[k]-1) ... (7)
k=0

where the frequency p, = NJ/N stands for the
probability that a randomly selected node has k ha'f-
edges or rather it is the probability that one of the N
hybrid elements of our statistical ensemble belongs to
the kth cluster. Note that, if the average degree E[] is
assumed constant (as we will do in the following), the
monotonicity and concavity properties of S are only
controlled by the first term on the right hand side of
Eqn. (7), as the second term is a constant. Thus, since
the summation in Eqn. (7) is a concave functional of
Di» the probability distribution at which the first
derivative of § is zero also maximizes S.

Let us maximize entropy (7) under the normalization
condition Xp; = 1, plus the constraint 2wkpy = (k). The
Lagrangian L(p) is given by,

K K
Lp)==-Y. pInp, =Y p, nkl+(k)(in N+ In(k)-1)
k=0 k=0

K K
-—lZpk+l—-yZpkk+y(k) .. (8)
k=0 k=0

where 1 e u are two Lagrange multipliers. Using
constraint >kp; = (k), we have substituted the average
degree E[k], that appears on the right hand side of
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Eqn. (7), with its estimate (k), by assuming that the
sum 2kp; keeps constant (and equal to (k) while DPi
changes. Thus, equating to zero the first derivatives of
the Lagrangian, we obtain,

bt b

Dy = AH =
where we have set 4 = ¢ and b = ¢ The latter
equality in Eqn. (9) follows from the normalization
constraint 2 4p; = 1, by using the Taylor series expansion
of the exponential function around zero. Finally, sub-
stituting Eqn. (9) in the constraint Y4kp; = (k), one has,

[ bk < J bk
=Nt Th=etp) 22 |op
b édb(k!J 7l

k=
thus obtaining [41] the Poissonian degree distribution
P =e " "k)/k!, introduced in Section II A.

Note that, from the above positions it follows that
the Lagrange multiplier 4 is given by (k) = ¢, being a
function only of the mean degree, which is finite for all
##—oo. Finally, the partition function is given by Z =
" = exp[exp(~)], thus satisfying the condition ky =
olnFlou.

The Poissonian degree distribution has also been
derived by Park and Newman by maximizing the S;
entropy, as well as in other ways by Erdos and Rényi.
This is not surprising as all three methods are founded
on the hypothesis of maximum randomness. Yet, there
are substantial differences between two previous
models and our approach: Erdos-Rényi random graph
model is not based on statistical mechanics formalism,
and in our case we have chosen a statistical ensemble
different from the one assumed by ERG model.
Particularly, this model assumes as a statistical ensemble
a collection of graphs, whereas our method refers to
the set of the N hybrid elements previously defined.
This result proves the high predictive power of our
approach, by showing that statistical ensembles based
on degree sequence may be helpful for an in-depth
analysis of the networks structure. In the next sections,
we will show how a power-law can be thought of as
the most probable degree distribution, by means of the
concept of entropy competition, [41].

. (9)

SCALE-FREE NETWORKS

We have obtained a Poissonian degree distribution,
thinking of the connectivity as the number of half-
edges going out from a node. Really, the nodes of a
network are real physical elements, whereas the edges
stand for a mathematical schematization that describes
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the interactions among the elements of a complex
network. In other words, although the edge is a
topological element of a mathematical object (graph),
with regard to the real-world networks it seems more
appropriate to interpret the connectivity of a node as
the number of its first neighbours, thus giving a quite
natural physical interpretation of the connect-
ivities, which, in this way, are thought of as elements.

Two Statistical Ensembles

Given a graph, each node ¥ is linked to other k; nodes,
the so called nearest neighbours of ¥}. Consequently,
in addition to the statistical ensemble G,, consisting of
N nodes we can define a second statistical ensemble
(that we denote with G,,) consisting of all nearest
neighbours of the N nodes of the graph. Particularly,
once the total number N of nodes has been fixed and
for each given degree sequence Dy = {ki, k2, ..., kj, ...,
ky}, the sum of the elements of this sequence defines
the total number C = X2k = 2Nk of the first
neighbours of all nodes (for 1 <j <N and 0 <k < K).
Thus, each node ¥, of the graph, thought of as an
element of connectivity k;, belongs to the statistical
ensemble G,. Instead, if we think of ¥V, as the first
neighbour of other &; nodes, then ¥, will be k; times an
element of the statistical ensemble G,,, one time for
each of its neighbour nodes. This last assertion implies

that, strictly speaking, G,, is a multiset, containing the

same element (¥}) more than once too. But this does
not affect the combinatorial counts as all elements of
G,, will be considered identical. In Figure 2, we
present a graph with 4 nodes together with its two
statistical ensembles. Nodes belonging to the clusters
of G, (Figure 2b) have connectivity k, whereas the
elements that belong to the corresponding clusters of
G, (Figure 2c) are the first neighbours of the nodes of
degree k. Due to this scheme, we can group the N
elements of G, and the C = 2Nk elements of G, in 2
pairs of clusters, with the former and the latter clusters
of the kth pair containing N, and C;, = Nk elements,
respectively. Once more, the numbers W, and W, of
ways to perform such arrangements are given by the
multinomial coefficients (1) and (5), respectively.
Consequently, while entropy S, of the statistical
ensemble G, is defined by Eqn. (2), the entropy (that
we denote with S,) of the statistical ensemble G,, may
be defined as proportional to the logarithm of W, [41].
Thus, omitting a proportionality constant, we can write,

K
S, =—Zrk Inr, woe {ILTY
k=0
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where the frequency r, = C;/C is the ratio between the
number C, = N,k of the nearest neighbours of all nodes
of degree k and the total number C = XNk of elements
of G, (i.e., the total number of the first neighbours of
all nodes of the graph). In accord with Newman [44],
since the probability that a randomly selected edge
reaches a node of degree k is proportional to kpy, for
uncorrelated networks, the frequency r, = CJ/C =
kpi/E[k] also stands for the degree distribution of the
nearest neighbours of a randomly selected node [4,
53]. Thus, the two entropy functions (2) and (11) give
a measure of the highly skewed distribution of the
connectivities of a graph from a point of view of both
nodes and their first neighbours, respectively.

(a) (b)

Fig. 2: (a) A graph with N = 4 nodes and C = Lk = 8
nearest neighbours. (b) Three clusters of G, containing
all nodes of the graph. (c) Three clusters of G,, whose
elements are the first neighbour of the nodes of G,. For
instance, as the node V has degree 2, it belongs to the
second cluster of G,. The same node also belongs to
both second and third cluster of G,, being the first
neighbour of both nodes Vp and V,, that have degree 2
and 3, respectively

We note that, since InW, = —2,;Cilnry, entropy S,
should be defined as S, = —E[k]NXriInr;, that reduces
to Eqn. (11) only if both N and E[k] = Xikpy are
constants. This is true when the constraint 2kp, = (k)
is met. Moreover, the constraint > /kp; = (k) is equivalent
to the normalization condition >4, = 1 for the distri-
bution r. Particularly, by using this normalization
condition for maximizing S, one obtains the uniform
distribution,

r,=— ... (12)
e
equivalent to a microcanonical description of the
statistical ensemble G,, (supposed isolated).

A way to quantify the randomness of a degree
distribution is to consider the nodes as members of a
statistical ensemble. Thus, from a statistical-mechanical
point of view, the uniform distribution p, = 1/02
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corresponding to a microcanonical description of the
ensemble G,, implies the most random evolution of the
elements of G,. Indeed, we may suppose that a given
node ¥, tends to establish a certain number of
connections with other nodes of the graph, during its
relaxation towards equilibrium. But, lacking any
information, we do not know how many connections
there will be among ¥, and other nodes. A priori, the
node ¥; can assume any value of the connectivity, thus
randomly choosing the number of its neighbour nodes.
In other words, node ¥; can belong to each of the 2
clusters of G, with equal probability, just as one finds
by maximizing entropy S, only under the normalization
condition Xp, = 1. At the same way, the uniform
distribution 7, = 1/£2 implies the most random
evolution of the elements of G,,. Indeed, a priori, the
node V; may be linked to a neighbour that has any
value of the connectivity, thus randomly choosing (&
times) the connectivity of its neighbour nodes. In other
words, each of the k; copies of the node ¥; can belong
to each of the 2 clusters of G, with equal probability,
Just as we obtain by maximizing entropy S, only
subject to the normalization constraint Y7, = 1.

In conditions of maximum randomness, since each
node of the graph belongs to both statistical ensembles,
it would tend to simultaneously satisfy both distri-
butions (3) and (12), which characterize the micro-
canonical equilibrium states of G, and G,,,, respectively.
But this is not possible as their probability distri-
butions (px and r;) are related, holding », = kpy/E[].
Because of that, the two statistical ensembles cannot
be considered isolated and they will never reach both
uniform configurations (3) and (12) at the same time.
Next, we explain under what hypotheses this behaviour
may lead to a canonical equilibrium state, at witch the
corresponding degree distributions of both nodes and
nearest neighbours are scale-free.

Entropy Competition

Given a probability distribution, like the degree distri-
bution py, its generating function is defined as,

Gp(z): Zpkzk
k=0

which is absolutely convergent for all [z/<I. Since the
probability distribution p; is assumed correctly
normalized, one has that G,(1) = Xp; = 1. Another
important property is that the mean degree of the
network is given by G',(1) = Zikpy. Given the generating
function G,(z), it is easy to demonstrate [44] that the
generating function G,(z) of the degree r; of the nearest
neighbours of a randomly chosen node is given by,

.. (13)
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6.0)=F e =25

= A A ()

that satisfies the normalization condition Y7, = 1, as
GA1)=1.

Particularly, with regard to the uniform degree
distribution, given by Eqn. (3), one has that G,(2) =
Y22 and G'(2) = Likz"""/42, from which, using Eqn.
(14), it follows that G(z) = Tu(k/A,)Z*, where with A,
= 2k (the cut-off condition 0 < k < K ensures that A,
is finite) we have denoted the normalization constant.
Consequently, the distribution of the degree of the first
neighbours, corresponding to the uniform degree
distribution (3), is given by,

k

Pk=Z

.. (14)

... (15)

At the same way, with regard to the degree distribution
given by the following equation,

T, =— ... (16)

k4,

where A, = X, 1/k (A; is again finite for the cut-off
condition) is the normalization constant, one has that
Gi(2) = Ziz'lkAy and G’ (z) = 42"/ Ay, from which it
follows that G,(z) = ¥,2"/¢2, again by using Eqn. (14).
Thus the particular degree distribution 7, defined by
Eqn. (16), corresponds to the uniform distribution (12)
of the degree of the first neighbours.

Both probability distributions p; and 7, will never be
uniform at the same time: each aticmpt, from the
elements of G, to assume the configuration that
satisfies the uniform distribution (3), will upset the
elements of G,,, whose distribution will go away from
that uniform, given by Eqn. (12), and vice versa. Thus, )
the relaxation of G, towards its microcanonical
equilibrium state (corresponding to the unconstrained
maximum of §,) will be constrained by the con-
comitant relaxation of G,, towards its own micro-
canonical equilibrium (unconstrained maximum of S,).
Then, either system, coming in mutual competition,
will tend to a canonical equilibrium state, at which the
attempts to get uniform both distributions p; and r;
mutually balance. Then, this conflictual behaviour can
be assumed as the most responsible for the scale-free
topology of the real-world complex networks, by
assuming that the opposite tendency to the respective
equilibrium states gives rise to the most probable
distributions of both p; and r,. To this end, we utilized
in [41] a condition on the probability distribution that
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maximizes entropy S, as a constraint in order to
maximize the entropy S, (or vice versa), in a way that
we will explain shortly.

In Section Il A we have introduced the information
function I(py) = —Inpy, whose average value E,[I(p)] =
—Ypdnpy (entropy of message) measures how random
the degree distribution of a complex network is. Now,
let 7 be an a priori choice of the probability distri-
bution py, the cross entropy is defined as the average
value E,[I(m)] = —2piInz (on the probability space py)
of the information related to the selected probability
m. Cross-entropy function has been largely employed
in linguistics [54] and in problems of data compression
[55], and it is related to Kullback-Leibler divergence
D@ilm) = Spddn(pi/m) [52, 56], being E,[I(m)] =
E,[1(p)]+D(pd| m). Keeping this in mind, let us find
the most probable distribution of the elements of Gj.
As said above, if G, and G,, are statistically
independent, both systems would reach their own
microcanonical equilibrium states. Particularly, the
most random evolution of G,, (supposed isolated)
would lead to the uniform distribution (12), corres-
ponding to the unconstrained maximum of S,
Moreover, this uniform distribution corresponds to the
particular distribution 7, defined by Eqn. (16). Now,
we think of the distribution 7 as the best choice of the
degree distribution p;, by assuming that the only
available information on the evolution of G, is given
by the knowledge of the effects (m) that the most
probable evolution of G,, would produce on the
ensemble G,, if no other conditions are specified. So,
in order to find the most probable distribution of the
elements of G,, it seems quite natural to introduce the
information related to the distribution 7 as a constraint
to maximize the entropy S,. Such a constraint can be
expressed in a natural way by making use of the cross
entropy previously introduced. To this end, we impose
that the mean value of the information related to the
distribution 7, equals its expected value,

_gpk Inm, :<1(7rk)>

From the point of view of statistical inference, we have
hypothesized that the competitive behaviour between
two ensembles represents the only information by
means of which we can describe their statistical states.
In other words, the least biased information that we
can use to reduce the uncertainty-entropy of G,
(compared with its unconstrained maximum) is given
by the knowledge of the condition of maximum
uncertainty-entropy of G,,, and vice versa.

.. (17)
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Power-Law Degree Distribution

Given a graph, in the following we assure that there
are no isolated vertices (i.e., NyV) = 0 for k = 0), and
so in all summations in Eqns. (2), (11), and (17) &
ranges from 1 to K. In [41] we defined the following
constrained maximum entropy problem: let us find the
maximum value of entropy S, under the normalization
constraint Y2, = 1, plus the following condition on the
logarithmic mean of the connectivities,

K
> pilnk=(Ink)
k=1

that follows by substituting Eqn. (16) in the constraint
(17). The pedix “p” to the symbol of expected value { )
in Eqn. (18) denotes that the mean is calculated on the
probability space p;. From a purely mathematical point
of view, the only difference between this problem and
the one that has led to the Boltzmann distribution p; =
e*/Z discussed in Section III A, lies in substituting
the condition Yikpy = (k) on the mean degree with the
constraint (18) on the logarithmic mean E[Ink],. The
Lagrangian functional L(p;) assumes the following
expression,

K K
L(pk)z _Zpk Inp, _)"Zpk
k=1 =1

K
+xl—,uZpk lnk+y(lnk)p wwk19)

k=1

.. (18)

where A and u are two Lagrange multipliers. Equating
to zero the first derivatives of the Lagrangian, we obtain,

vk
P = e = 7

n

.. (20)

where we have made the change of notation y, = u for
later convenience, and with Z, = ¢'"* we have denoted
the partition function. Substituting Eqn. (20) in the
normalization constraint > 4kp, = (k), one has that Z, =

&(,), where

¢ (?p)=ik”’

is the Riemann zeta function, defined for all k> 1 and
convergent if » > 1. Thus, the (node) degree distri-
bution assumes the following power-law form,

ke

Pk=am

that stands for the canonical distribution of the elements
of G,. Moreover, by substituting Eqn. (22) in the
constraint (18) we obtain,

.. 21

... (22)
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1 Mz(lnk)

6,) &,

that defines the values of the scaling exponent y, (see
Figure 3) as a function of only the estimate of
logarithmic mean of the connectivities, which is an
intrinsic quantity of the whole network.

e (23}

k)

Fig. 3: Scaling exponent y of the power-laws as a function
of the topological features f(k) of the network: the solid
line represents » as a function of fik) = (Ink), following
Eqgn. (18). Note that <3 approximately for (Ink)>0.57.
The dashed line represents y, as a function of f{k) = (Ink),,
according to Eqn. (13). In this case y,<2 approximately for
(Ink),>0.57

By denoting with Li,(z) the nth polilogarithm of z,
the generating function of the degree distribution (22)
may be written as,

Liyp (z)

G,(z)= . (24)
! ,)
from which, by using Eqn. (14), it follows that,
Li |z
_ L) .. (295)

G,(z)—~(—)c 3 =]

Consequently, the degree distribution 7, of the nearest
neighbours of a randomly selected node is given by the
following power-law,

k‘(?’p ‘])

convergent for all y>2. Again in analogy with the
statistical mechanics, the partition and Hamiltonian
functions of the balanced ensemble G, are given by Z,
= (%) and H, = yInk, respectively. Now, let us denote
with T, a generalized temperature of the ensemble G,,
for the above position we can assume 7,1/, and so,
for high temperatures (3,—0), the pair of relations (22)
and (26) becomes equal to the one defined by Eqns. (3)

... (26)
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and (15). In these conditions, the canonical ensemble,
whose weights are just defined by Eqn. (22), would
coincide with the microcanonical one, defined by Eqn.

3).

Dual Problem

In the previous subsection we have explained the
constrained maximum problem (that, in the following,
we will denote with §,|S,) controlled by the Eqns. (2),
(18) plus the normalization condition Xp, = 1. As
showed in [41], this problem can be completely
reversed. Indeed, each vertex of a graph is both node
and nearest neighbour of other nodes, and so the role
played by this element is interchangeable, belonging to
both statistical ensembles G, and G,, Then, in a
complementary way to the one discussed in the
previous subsection, we can maximize entropy S, by
using a constraint on the expected value of the in-
formation related to the distribution g, (defined by
Eqn. (15)), corresponding to the unconstrained
maximum of entropy S,. In this case, such a constraint
can be expressed by means of cross entropy —2#np,
defined on the probability space 7;. Thus, in a similar
way to that made for the method S,|S,, we introduce
the dual problem S,|S,, given by the maximization of
the entropy S, under the normalization constraint >
= 1, plus the following condition on the logarithmic
mean of the connectivities,

irk Ink = <1nk)r
k=1

where the pedix “r” to the symbol of expected value
denotes that the mean is calculated on the probability
space r;. The Lagrangian functional L(#;) is given by,

K K
k=1 k=1

K
+l—u2rk lnk+,u(lnk)r ... (28)
k=1

.. 27)

with A and & Lagrange multipliers. Equating to zero
the first derivatives of L(ry), we obtain,

e ke ~ k—(r,—l)
k e]-l-l Z

nn

... (29)

where we have made the change of notation y—1 = g4,
and with Z,, = ¢ we have denoted the partition
function. Without going into details, proceeding as for
the S,S, method, we obtain the following pair of
power-laws,




Mutual Control between Nodes and Edges of a Complex Network

ko k-(?r—l)

—_—, nd k:—_
26,) " T 6,0

but with different values of the scaling exponent %, in
this case defined by,

1 a(y,-1) N
~ 76,1 o6, <) K,

for all 3> 2 (see Figure 3). Also in this case, the scaling
exponent is only a function of the topological features
of the network, expressed by the estimate (Ink), of the
logarithmic mean of the connectivities. The latter of
Eqns. (30) defines the canonical distribution of the
elements of G,, for the which the partition and
Hamiltonian functions are given by Z,, = {(3~1) and
H,, = (—1)Ink, respectively. Moreover, by denoting
with 7, a generalized temperature of the balanced
ensemble G, for the above position we can assume
T,c1/(y~-1) and so, for high temperatures (3—1), the
two distributions in Eqns. (30) become equal to the
ones defined by Eqns. (16) and (12), respectively.
Thus, the canonical ensemble, whose weights are
defined by the latter of Eqns. (30), would coincide
with the microcanonical one, defined by Eqn. (12).

Both methods S,|S. and S,|S, describe two alternative
evolutions of a network, leading to the canonical
equilibrium states of G, and G,, respectively.
Particularly, in the case of S,|S, method we think of G,
as a system, whereas we consider G,, as a portion of
surroundings. On the contrary, in the case of the S5,
method, G,,, is assumed as system, G,, standing for the
surroundings. Yet, in both cases we obtain the same
pair of power-laws, although with different values of
the scaling exponent. This is due to the substantial
symmetry of two methods, as we can pass from one to
another by simply swapping the roles played by the
two entropy functions. This symmetric behaviour
suggests that the scale-free topology of the real-world
complex networks is only rooted in laws intrinsic to
the system, independently of any external shorting
established by the observer. Nevertheless, the different
values of the scaling exponents involve a symmetry
breaking responsible for the twofold evolution of the
network, which can evolve in the ways described by
the S,|S, method as by the dual one, depending on the
particular conditions of the surroundings. This symmetry
breaking can be ascribed to the information “hidden”
in the normalization condition Y4, = 1, used as a
constraint in the S,|S, method. Indeed, as noted in
Section IV A, the constraint > kp, = (k) on the mean
degree of the network, that is needed to correctly
define entropy S,, implies the normalization condition

P = ... (30)

.. 31)
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Y = 1. The constraint X 4kp; = (k) is instead absent in
the set of equations that define the S,|S, method. On
the other hand, since the clusters of either statistical
ensemble are identified by means of the different
values of the connectivities, it is natural to consider the
mean degree of the network in order to find the
equilibrium configuration. Now we note that, for a
power-law, the mean degree is finite for all values of
the scaling exponent y> 2, as we can write E[£] =
E(y— D/E(y). So, the method S,|S,, giving values of
(see Eqn. (31)) that range from 2 to oo, provides a
power-law degree distribution with finite average
degree. Since most of the real networks have values of
the scaling exponent ranging from 2 to 3, the method
S,|S, is the most suitable to describe the topological
features of real-world networks that have a finite value
of the mean degree. Indeed, as shown in the diagram of
Figure 3, for values of (Ink), nearly greater than 0.57, 3 is
less than 3, as most frequently observed in nature.

On the other hand, the networks with infinite mean
degree (i.e., with values of the scaling exponent
between 2 and 1) may be more appropriately described
by the method S,|S,, which does not impose any
constraint on the average degree of the network.
Indeed, this last method provides values of the scaling
exponent y, theoretically greater than 1 (see Eqn. (23)),
but that typically range from 1 to 2, as shown in Figure
3. In this way, the method S,|S, also provides for the
existence of those complex networks that have the
lower values of the scaling exponent (i.e., with y<2).

In this work we showed how a power-law degree
distribution can follow from a particular optimizing
problem, since building a graph starting from a given
degree sequence is a problem largely discussed by
means of the CM, described in Section II A. Then, if
we identify a particular mechanism generating a
theoretical power-law degree distribution, such as the
entropy competition, we should be confident that the
same mechanism also determines the scale-free
topology of the underlying graph. Nevertheless once
achieved a scale-free degree distribution with scaling
exponent values between 2 < y <3 (i.e., 5)|S, method),
we need to impose the structural cut-off to the degree
distribution defined by the former of Eqns. (30) in
order to build a simple graph using the CM. On the
other hand, for power-law degree distributions with
scaling exponent values between 1 and 2 (which
dominate for the S,|S, method) multiple edges and self-
loops cannot be neglected by using the structural cut-
off [57]. However, even in the range 1 < y <2, results
are interesting. In facts, in this case the CM generates
multigraphs [57], which may be thought of as
weighted networks [58], where the weight stands for
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the number of multiple edges between two nodes, and
the degree distribution should represent more correctly
the distribution of expected weights of a given node.

Finally, by substituting the power-law degree distri-
bution in the condition Q(D) > 0, Aiello et al. [46]
have proved that the underlying graph has a giant
component for all y< y =~ 3.4785, where the critical
value 3 is the root of {(y— 2) — 2E(y— 1) > 0. In our
case, since both methods S,|S, and §,|S, give values of
the scaling exponent typically belonging to the ranges
1 < % < 2 and 2<y < 3, respectively, the above
condition is met.

CONCLUSIONS

Real-world networks may be thought of as complex
systems, whose whole structure is the result of the
local interactions of a number of components, originating
collective and a priori unexpected properties, such as
the scale-free degree distribution, which affect the
underlying dynamics in a fundamental way. An
intriguing example of such a control between form and
function is offered by the fluvial geomorphology. In
facts, river networks display highly complex behaviours
analogous to critical phenomena, including strong
nonlinearities, thresholds, self-organization and fractal
structures, whose recurrent patterns arising from optimal
design exercise a dominant control over catchment-
scale hydrological response.

The observation that scaling properties are common
to many real networks, ranging from earth science to
biology, suggests that the structure and the evolution
of such systems are governed by simple and universal
organizing principles, independent of the particular
nature of the system components. In this sense,
optimality criteria and statistical-mechanical tools have
recognized to play a fundamental and unifying role in
explaining the tendency of natural systems, ranging
from tree-like structures to loop-dominated complex
networks, to evolve toward an optimal and robust
topology. .

This paper has reviewed how the degree distri-
butions that define three classes of complex networks
can be derived by means of the maximum entropy
principle, in accordance with the role played by the
- connectivity property of the nodes. Specifically, by
ignoring the networked structure and thinking of the
connectivity as an indefinite property of the nodes, an
entropy function, similar to the Boltzmann-Gibbs one,
can be defined. The maximization of such entropy,
under a constraint on the expected value of the mean
degree, leads to an exponential degree distribution,
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similar to the energy distribution in a gas system. On
the other hand, by thinking of the connectivity as the
number of the half-edges going out from a node, one
can define a different entropy function, describing the
statistical properties of hybrid elements, assembled by
assigning to each node the number of its own half-
edges. The maximization of this entropy function,
again constrained by the expected value of the mean
degree, leads to a Poissonian degree distribution.
Finally, to investigate the origin of the power-law
degree distribution, we have interpreted the connectivity
not as a property of the nodes, but rather as a particular
type of element that is the number of the first neighbours
of a give node.

Due to this interpretation, one can define the statistical
ensemble of the nearest neighbours, showing how it
comes in conflict with the ensemble of the nodes. This
is the key point of our approach, as the interwoven
destinies of two statistical ensembles beget the mutually
opposite tendency to respective equilibrium states, that
we explained by means of the entropy competition
concept. Based on this behaviour, the power-law
degree distribution of the real-world complex networks
has been interpreted as the most probable distribution
that the elements (nodes and first neighbours) of an
open complex system exhibit at-a canonical equilibrium
states, when both entropy functions try to reach their
maxima, under mutual constraint.

Accordingly, the scale-free topology of real-world
networks seems to emerge spontaneously as a result of
a general law of nature, thus explaining the ubiquity of
such a feature in a wide variety of complex systems.
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