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ABSTRACT: Aquifer properties exhibit significant spatial variation and assigning hydraulic conductivity values to a distributed
parameter model based on the available scanty field data is an important problem in modeling of groundwater systems. An
estimate of hydraulic conductivity for a two-dimension inverse model based on ridge functions and neural network for a
phreatic leaky-aquifer is developed in this study. An objective function is minimized by combining a forward transient
groundwater flow model with a proper optimization algorithm to obtain the best set of hydraulic conductivity values. The
forward transient groundwater flow model is developed using the finite element method to obtain values of hydraulic
conductivity from hydraulic head measurements. An artificial neural network that ensures correspondence between the integral
representation of ridge function and neural network algorithm is then incorporated. To account for the high frequency
fluctuations of the estimated hydraulic conductivity values in the model, the input weights are related to the spatial frequency.
Later, using an inverse modeling the hydraulic conductivity values are estimated so that the mean square error between the
measurements and the model prediction in terms of piezometric head is minimized. The results indicate that complex hydraulic
conductivity values can be estimated from the piezometric head measurements taking only few parameters. This is sound to
be suitable when hydraulic conductivity field map exhibits heterogeneity with large anisotropy in the aquifer. The procedure
also helps to dampen erratic high frequency terms in the estimated parameters and hence is stable and attains fast converge.

functions. Murata (1996) proved that the inverse trans-

INTROBUCTICN form that is developed by using ridge functions provides

A ridge function G(x) : R" — R, (n > 2) is defined on
the basis of a univariate function ¥: R — R as G(x) =
F(a.x — b) where a € R’ is a fixed vector, b € R is an
areal number, x = (x;, X2, X3, ..., X,) @ € R’ and

n .
ax= ZH a;x;. Function G(x) takes the same value on

certain hyper-planes in R" (whose normal vectors are
parallel to @) and is not integrable in R' even when the
one-dimensional function is integrable on R.

Ridge functions and their generalization as linear
combination take place in problems of neural networks
applied for approximating multi-dimensional spatial
functions (Chui and Li, 1992; Sun and Cheney (1992);
Leshno et al., 1993; Murata, 1996; Cande’s 1999).
Coppola et al. (2003), in general pointed out the
advantages of Artificial Neural Networks (ANNs)
models over conventional simulation methods. Chui
and Li (1992) claimed that neural networks with one
hidden layer that represent approximation by ridge
functions can be designed to estimate any continuous

a reasonable interpretation of the structure of three-
layered networks since there is correspondence between
transformation coefficients and parameters of networks.
Mantoglou (2003) used ridge functions and neural
networks to represent a two-dimensional transmissivity
map of a synthetic confined aquifer with steady flow.

In this study, a two-dimensional parameterization. of
hydraulic conductivity is determined by ridge functions
and neural networks. An inversion of aquifer model is
then obtained such that an objective function is mini-
mized in terms of the hydraulic head by combining
a forward-transient groundwater flow model with
Levenberg-Marquardt optimization algorithm to obtain
stable estimates of hydraulic conductivity values.

THE DISCRETIZED TRANSFORM OF RIDGE
FUNCTIONS AND ANNS RESENTATION

Murata (1996) introduced continuous integral repre-
sentations using a linear combination of ridge functions
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to approximate an n-dimensional function with certain
boundness and admissibility conditions, as,

g(x)= .[R"+1 w(a,b)p(a.x —b)dadb (D

in which 1(a,b) indicates the values of ridge transform
(ridge coefficients) and p:R—> Ris one dimensional

identical function. Admissibility conditions reveal that
the function approximated has a bound on the first
moment of the magnitude distribution of the Fourier

transform, i.e. IRp(t)dtzo . The value of the this

integral can be approximated by summation of N
discrete cell of integral, thus,

g(x)=2fil‘t,p(a,x—ﬁr) ... (@)

= Input
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Fig. 1: Schematic hydrologic cross-section of study area

An architecture of a feedforward artificial neural
network consisting of an input layer with n input-units,
an output layer with only one neuron and a hidden
layer of N neurons, depicted in Figure 1 is applied to
compute the value of an n-dimensional f(x):R" —R.
Using a linear activation (transfer) function for output
layer, such architecture can be expressed as,

N n
f(x)= ZWJ,-JFH[Z W, ;% +b j] .. (3)
j=1 i=1

where Fn is the transfer function of hidden layer and
W, ; and W, are weights of input neurons and hidden
neurons, respectively. A comparison of equation (2)
with equation (3) shows that there is a correspondence
between the discrete representations and neural
network algorithm as depicted in Table 1.

Representing the feedforward ANN with the ridge
functions provides attractive convergence properties
which make them useful for estimating multidimens-

ional functions (Mantoglou, 2003). Also, the mean
square error of the approximation is inversely
proportional to the number of neurons in hidden layer,
N (Barron, 1993; Murata, 1996). Furthermore, to
approximate the function with desirable accuracy the
activation function of the networks should be no a
polynomial (Leshno et al., 1993).

Table 1: Corresponding Parameters between Ridge
Functions Representation and ANN Algorithm

Parameters
Ridge functions representation a Bl p T
ANN algorithm Wi | b | Fn | Wix

THE INVERSE MODEL

The groundwater system of the Salmas Plain, in the
north-west region of Iran consists of an unconfined
and a confined aquifer separated by an aquitard.
Quaternary alluvial, silt, sand, gravel and clay
deposited unevenly throughout the aquifers cause a
great heterogeneity of the hydro-geological features.
The Zola River which is an unseasonal stream that
runs from southwest to northeast of the plain and
constitutes a prescribed potential boundary condition.

In this study, the hydraulic conductivity distribution
of the phreatic aquifer is estimated to indicate the
capability of the methodology. Figure 2 shows the
schematic cross section of the aquifer system. The
flow in the aquifers is assumed to be horizontal while
it is vertical in the aquitard. The governing equation of
flow in the unconfined leaky-aquifer takes the form,

0 oh| 0 oh
—[K(h—n)—}+—~ K(h-m)2
ox ox] oy Ay
oh
+R+q,—P=S5,—
qv Y ot
In the equation, A(x,y,t)is the hydraulic head in
the phreatic aquifer (L), K is the hydraulic conductivity
assumed to be an isotropic two-dimensional function,
R=N+R +RW where N(x,y,t), Ri(x,yt), and
RW(x,y,t) represent the distributed rates (L/T) of
natural replenishment artificial recharge, and return
water through irrigation respectively, and, p=PA+ET
where B(x,y,f)and ET(x,y,t) denote the rates (L/7)
of pumping, and evapotranspiration, respectively. The
vertical leakage rate (L/T) through the semipervious
layer, assumed to be linear is represented by,
b-h ¢-h

= — . (5
dy agd Baqd o (5)
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where @(x,y,r) is the piezometric pressure in the
confined aquifer (L), and ¢ = B / K,qq in which K,y

and B, are the permeability and the thickness of
aquitard, respectively.

The study area is discretized into 1278 rectangular
cells (grid) and the transient groundwater flow model
is simulated subject to boundary and initial conditions
using the finite element model referred to as FEGM.
The nodes along the permanent stream flow are also
considered to be a boundary with constant head.
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Fig. 2: Schematic hydrologic cross-section of study area

Using piezometric measurements that are available
at only 29 locations throughout the aquifer, an inverse
problem (parameter estimation problem) is conducted
to estimate a set of particular values of I, 5» W1 and b,
that represent the hydraulic conductivity values
(Eqn. 3) and simultaneously minimize some measure
of misfit between the head measurements, K, and the

model prediction, Ay, . One commonly used measure of
; . XM iy el
misfit is the least square error, E= o H(h, —hy )

where M is the number of head measurements. Sub-
stituting Eqn. (3) the least square error takes the form,

2
W, j%i +bj] s we(6)

m

2

I

1

M N
E=Y|h"- ZWMFn(
I= j=1
i=1,
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METHODOLOGY AND DISCUSSION

Taking the true values of hydraulic conductivity (Figure
3a), the values of head are determined by applying
FEGM. The obtained values of head at only 29 locations
(M=29) for which the measured head values were
available are selected as true values. The optimized

values of the parameters (W:_,- ; W;l and b;) represent

the hydraulic conductivity values are obtained through
an optimization process. The error function (Eqn. 6) is
minimized by the Levenberg-Marquardt algorithm to
ensure convergence. The number of neurons, N in hidden
layer is taken to be equal to 25. The geographical co-
ordinates of the points of measured hydraulic head
locations are used through minimization of error func-
tion to take into account the high frequency fluctuations
of the hydraulic conductivity values in the model.

In addition to this since using a one-dimensional
sigmoidal functions in ANNs do not satisfy the necessary
boundness conditions in Ridge functions representation
of the form (1), (Murata, 1996, Mantoglou, 2003) one-
dimensional bell shaped functions with a maximum of
one constructed by the first derivative of the tangential-
sigmoidal function is used as transfer function, Fn of
hidden neurons. The first derivative of the tangential
sigmoidal function satisfies the admissibility condition
and exhibits a behavior of oscillation (Mantoglou, 2003).
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Fig. 3a: The spatial distribution of the true hydraulic
conductivity, Abrishami et al. (1992)
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Fig. 3b: The spatial distribution of the hydraulic
conductivity, estimated
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Fig. 4: The correlation between hydraulic head values
due to estimated and real permeability
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Equation (3) to determine the spatial hydraulic con-
ductivity values (Figure 3b). Figure 3 approximately
showed a resemblance between the assumed two-
dimensional hydraulic conductivity maps (true distri-
bution) of Abrishami et al. (1992) and estimated
hydraulic conductivity.

The optimal values of W, W, and b; are used in
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Fig. 5(a): The spatial distribution of hydraulic head
corresponding to the true distribution of hydraulic
conductivity

N
o

1450

[
o

11400

Collomns
x
(4]

1350

-
(=]

(%]

1300

20

10 30 40

Rows
Fig. 5(b): The spatial distribution of hydraulic head
corresponding to the estimated distribution of hydraulic
conductivity
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The hydraulic conductivity distribution so obtained
and the spatial-true hydraulic conductivity were used
in FEGM to obtain the corresponding hydraulic head
values. The post regression analysis reveals that there
exists an extremely high correlation (R = 1) between
hydraulic head values computed using estimated true
hydraulic conductivity values, Figure 4. Furthermore,
it can be seen that the trend of hydraulic conductivity
is dominated by the trend followed by the hydraulic
head (Figures 4 and 5).

SUMMARY

Values of hydraulic conductivity by Ridge functions
and Neural Network are determined through inverse
problem by minimizing the error between the observed
and computed hydraulic head values. The high frequency
fluctuation of the predictable hydraulic conductivity
values is simulated by the frequency of spatial -co-
ordinates. The results indicate that even though the target
(true data) values of hydraulic are quite difference from
the hydraulic conductivity values obtained numerically
(Figure 3), the subsequent hydraulic head values
obtained taking both target and estimated shows an
extremely good match as depicted in Figure 5. Alsc,
on comparing Figure 3 and Figure 5, one can see that
the trends of hydraulic head have an impact on the
tendency of estimated permeability values.

So it can be pointed out that this approach is
competent to represent an essential two-dimensional
map of hydraulic conductivity to simulate the dynamical
groundwater flow in the phreatic leaky-aquifer even
when the study area is essentially empty of field
measurements. Furthermore, the procedure is not time
consuming and converges so fast.
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