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ABSTRACT: Flood frequency analysis is commonly accomplished by fitting univariate distributions to annual peak flows.
Lognormal, gamma, log-Pearson, extreme value, logistic and Wakeby are the commonly employed flood frequency
distributions. Hydrological processes, however, exhibit multivariate characteristics and simultaneous consideration two or more
component processes may be required and advantageous in a variety of applications. Multivariate flood frequency analysis,
involving flood peaks, volumes and durations has been done in the past on a limited basis and has been traditionally
accomplished by employing readily available bivariate and multivariate frequency distributions that have marginals from the
same family of distributions. Such an approach is highly restrictive in situations where underlying processes are characterized
by marginals from different distribution families. This difficulty is usually overcome, in a limited way, by first normalizing or
transforming the variables into similar marginals and then employing the available functional distribution forms. The concept of
copula overcomes this limitation by allowing combination of arbitrarily chosen marginal types for obtaining joint and conditional
multivariate distributions. It also provides a wider choice of admissible dependence structure and easier procedure for
generating multivariate random samples, as compared to the conventional approach. A variety of copula families have been
evolved and thus the selection of appropriate copula family for different applications is an important first step. The use of
copula-based multivariate distributions in the field of hydrology has started only recently and optimal copula structures for
hydrological applications are yet to be identified. This paper highlights the merits of copula concept and illustrates its
application to multivariate flood frequency analysis by way of investigating relative applicability of six copulas families.

INTRODUCTION

Flood frequency analysis typically involves fitting
univariate distributions to annual maximum flows or
peak flows or to peak over threshold flows, observed
at a location of interest along a river. Commonly
employed distributions include 2 and 3-parameter
lognormal (LN and LN3), 2-paramter gamma (G2),
Pearson type III (P3), log-Pearson type III (LP3), the
extreme value type I (EV1) or Largest Extreme Value
(LEV) or Gumbel, the Generalized Extreme Value
(GEV), and Wakeby distributions, among others. The
main objective of various hydrological designs, e.g.,
for dam spillways, bridges, etc., has been to estimate a
flow that shall have an average inter-arrival period
more than a specified design period. Hydrological
processes, however, exhibit multivariate characteristics

and simultaneous consideration of various component
processes may be required and crucial in certain
situations. Flood phenomenon involves important
multivariate hydrologic features such as peak flood
discharge, corresponding volume and duration, time to
flood peak, rate of rise and recession of flood. The
decision to employ univariate, bivariate or multivariate
distribution is, however, made primarily on the basis
of the objectives of the application. For example, for
risk assessment for a small to moderate sized flood
protection structure, a univariate flood frequency
analysis of annual flood peaks may suffice. On the
other hand, in situations where storage has significant
effect on the flood attenuation or where failure
mechanism is affected by flood duration and/or
volume then these variables are also required to be
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considered along with the peak flood discharges. Flood
peaks, associated flood volumes and durations are also
considered simultaneously in operational flood
management measures, such as design of flood
retention basins (Sackl and Bergmann, 1987) and in
analyzing the risk of damage due to floods.
Conditional probability of failure functions, based on
both flood peak and duration, are studied for risk
assessment of levees and embankments (U.S.A.C.E.,
1999). Multivariate analysis, considering flood peak
and volume and/or duration is thus essential and would
result in improving management strategies and better
assessment of potential risk (Michele et al., 2005, and
Salvadori and Michele, 2004). Application of
multivariate flood frequency analysis involving flood
peak, volume and duration has been made in past on a
limited basis. This has mostly been bivariate frequency
analysis of flood peak and volume. Conventional
bivariate frequency distribution models have certain
limitations. The copula concept which is emerging as a
new way of multivariate frequency distribution
analysis overcomes some of the restrictions posed by
the conventional multivariate distributions. This study
highlights the merits of copula concept and presents its
application in the field of multivariate flood frequency
analysis by way of investigating relative suitability of
six copulas families.

CONVENTIONAL MULTIVARIATE FLOOD
FREQUENCY APPROACH

Traditionally, bivariate normal, lognormal, exponential,
or Gumbel (called mixed Gumbel) distributions have
been applied for hydrological variables such as flood
peaks, and associated flood volume and duration.
Gupta et al. (1976), Todorovic and Woolhiser (1972),
and Todorovic (1978) have discussed distributions for
time of occurrence of peak flow in relation to the flood
event. Ashkar and Rousselle (1982) discussed the
multivariate nature of flood peak and corresponding
volume and duration involving exponential conditional
distributions for flood duration and volume for given
peak flow levels. Bivariate stochastic model for flood
peak and volume based on the principle of maximum
entropy has been suggested by Krstanovic and Singh
(1987). Sackl and Bergmann (1987) employed bivariate
normal distribution on transformed flood peaks and
volumes in order to estimate the design volume for
retention basins. Correia (1987) obtained the bivariate
density function for flood peak and duration by
assuming their conditional distribution to be normally
distributed and marginal distribution for duration to be
exponentially distributed.
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An application of the general form of the logistic
model for a bivariate extreme value distribution was
demonstrated for obtaining flood frequency distribution
at a downstream station on the basis of information
from two stations upstream of the junction by Raynal
and Salas (1987). In an indirect approach, Rosbjerg
(1987) obtained frequency distribution of annual
maximum flood from successive peak floods, employ-
ing Marshall-Olkin bivariate exponential distribution.
A bivariate meta-Gaussian distribution proposed by
Kelly and Krzysztofowicz (1997) allows specification
of arbitrary marginals and covers full dependence
range and is based on the assumption that normal
quantile transformed (NQT) variates of original
hydrologic  variables follow bivariate normal
distribution. Extending the work of Raynal and Salas
(1987) and Escalante and Raynal (1994), Escalante-
Sandoval (1998) employed a multivariate extreme
value distribution with mixed Gumbel marginals and
applied to data from 42 gaging stations in northern
Mexico. Another instance of bivariate consideration of
flood peak and volume is available in Goel et al.
(1998) in which frequency analysis of transformed
peak flows and volumes, from an Indian river, are
modeled using bivariate normal distribution. Yue er al.
(1999) employed bivariate Gumbel mixed model,
originally proposed by Gumbel (1960), for obtaining
joint and conditional probabilities for flood peak and
volume and for volume and duration. Yue (2001)
applied the bivariate extreme value distribution and
bivariate lognormal distribution for multivariate flood
frequency analysis. Most of these applications involve
multivariate distributions that restrict marginals from
the same distribution families. This and some other
limitations posed by the conventional multivariate
approach are described in the following subsection.

LIMITATIONS OF CONVENTIONAL
MULTIVARIATE APPROACH

All the traditional multivariate distribution approaches
stated above, except for the meta-Gaussian method
(Kelly and Krzysztofowicz, 1997), have limitations of
allowing marginals from the same family. However,
different hydrological applications may involve
multiple variables, not all of which belong to the same
distribution type. Transformation to normal distri-
bution and consequent fitting of multivariate normal
distribution has often been resorted in such situations.
Extensive efforts, spanning decades of research work
in the area of flood frequency analysis, has resulted in
identification of some plausible candidate distribution
functions. The lack of multivariate distributions featuring
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marginals from different distributions restricts the
ability to directly utilize such suitable distribution
functions as marginals. This makes migration, from
univariate to multivariate flood frequency analysis,
sub-optimal, as noted for example by Choulakian et al.
(1990).

Furthermore, several multivariate distributions also
do not allow for a full coverage of possible
dependence between different variables. Few examples
that could be readily mentioned in this regard are the
bivariate exponential and bivariate Gumbel distri-
butions. The bivariate exponential distribution imposes
a critical restriction of the variables to be negatively
associated such that the Pearson’s correlation
coefficient p is between —0.404 and 0. On the other

hand, the bivariate exponential distribution given by
Moran and studied by Nagao and Kadoya (1971)
provides an alternative formulation admitting full
positive correlation coefficient. Although both these
formulations complement each other in terms of
covering wider range of correlation coefficient but are
not versatile enough individually. Similarly, the
bivariate extreme value distribution given by Gumbel
(1960) admits only a partial positive range of p to the

extent of 0 to 2/3. Although not applied for hydrological
variables, Farlie-Gumbel-Morgenstern (F-G-M) family
of distributions, as applied for rainfall variables by
Singh and Singh (1991) and studied later by Long and
Krzysztofowicz (1992), are applicable for only weakly
associated variates having Kendall’s tau between —2/9
and 2/9 and may thus be of limited use in hydrological
applications.

Another concern while using conventional multi-
variate formulations is that of Pearson’s linear
correlation measure being linked to the dependence
parameter, either directly or indirectly. The Pearson’s
linear correlation coefficient is not invariant to non-
linear monotonic transformations and depicts linear
correlation rather than the functional association. It
may also not be even estimable in certain situations
involving heavy-tailed distributions. These restrictions
are overcome by copula-based procedure and the same
is outlined in the following section.

COPULA CONCEPT

Copula is a simple concept wherein bivariate and
multivaraiate probabilities are expressed in terms of
marginal probabilities and more advantageously in
terms of uniform marginals. This theory has been in
vogue for some time now, especially with respect to
actuarial science and finance applications, and in
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recent years has also made an impressive beginning in
the field of hydrological engineering. Several
illustrative and review studies, such as Favre ef al.
(2004), Salvadori and De Michele (2004), De Michele
et al. (2005), Genest and Favre (2007), Poulin ef al.
(2007), Salvadori and De Michele (2007), Serinaldi
and Grimaldi (2007), Zhang and Singh (2007) provide
elaborate discussion on copula applications related to
flow variables and explain its advantages and
limitations. There are several other application studies
covering rainfall variables that have been reported but
not listed here. Although the development and
application potential of copulas is a topic of current
research, it is rooted in the theorem due to Sklar
(1959), stating that the joint distribution function of
any randomly distributed pair (X, ¥) may be written
as,

F(x,y)=C[FX(x),Fy(y)], x,yeR e (1)

where Fy(x) and Fy(y) are marginal probability
distributions and C:[0,1]x[0,1]—[0,1], a mapping
function, is the “copula”. In turn it means that a valid
model for (X,Y) is obtained whenever the three

constituents (C, Fy,and Fy ) are chosen from given
parametric families, viz,

Fy (x38), Fy(yim), C(u,v;0) oo K2

where & and m are the parameter vectors of marginal
distributions and 0 is the dependence structure para-
meter vector. # and v are the quantiles of the uniformly

distributed variables U=Fy(x) and V=F(y)

respectively. Several classes and families of copulas,
such as the meta-elliptic copulas, extreme value
copulas, and Archimedean copulas, exist. For an
elaborate introduction about copulas reference may be
made to Joe (1997), Cherubini ef al. (2004), Nelsen
(2006), and/or Genest and Favre (2007), among others.
These references have been used substantially in
collating the material for this article. Of the several
families of copulas that exist, the one that has been
frequently applied in the field of hydrology is the
Archimedean family. This copula family has the form,

¢[F(x,y)]=¢EC[FX (). & (»)]}
#=13)
=0 [Fx (x)]+ 0 [F ()]

where ¢, a continuous, strictly decreasing function
from 7]0,1]—]o, | and with ¢(1)=0, is called a

generating function. The joint probability function can
then be written as,
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F(x,y)=C|Fy(x).F ()]
=41 { o[ Fy (x)]+ o[ F (y)]} .. (4)
=C(u,v)= ot { o (u)+6(v) }
Parameter 0 is hidden in the generating function, for
example, the Clayton copula family, the one that has

been employed for several hydrological applications,
involves 0 in the generating function in the form,

¢(r)=%(r9—1), 0e[-1,0),0%0 e (5)

Employing the above generating function and the form
of Archimedean copulas given in Eqn. (4), the bivariate

cumulative probability distribution is obtained as,
1

Fy)={[Fe )] +[F (-1}
={u"9+v_e—l}_6 = C(u,v)

C(u,v) here is called the copula probability. Double

differentiating the above bivariate probability function
results in the joint density function as,

F(x3)=Fe () fr (v) 1+8) [Fy (1) B (0] |
([5 @T +[A O 1)
= £ (2) 5 () | (1+0) (uv) ™ (u® 4170 - 1)“5‘2]
= fy (x) £y (¥) co(uv)

.. (6)

- (M
where f(x) and f(y) are the marginal densities and
co(u, v) is the copula density. Expressions for
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probabilities of six copula families and corresponding
parameter space and generating functions are given in
Table 1. Generating function is not applicable for
F-G-M and Galambos copulas as these belong to non-
Archimedean families.

PARAMETER ESTIMATION

The parameters describing the copula dependence
structure can be estimated by non-parametric, semi-
parametric and parametric methods. The non-parametric
method and semi-parametric method (called pseudo-
maximum likelihood method) rely on the relative ranks
of the joint variates. The parametric method utilizes the
classical maximum likelihood procedure for estimating
parameters of marginals and the dependence structure.
These are outlined here below.

Estimate Based on Non-Parametric Measures of
Association

This approach is based on the pretext that the dependence
structure is fully defined by the relative ranks of
individual variables and by a single parameter. Such
basis also renders the dependence structure completely
independent of the choice of the marginals. Non-
parametric estimates of 0 based on Kendall’s Tau (1)
and Spearman’s rho (p;) are obtainable using the
formulations given by Genest and Mackay (1986) as,

1=4 [051]2C(u,v) cg (u,v)dudv -1 ... (8

py=12 [ 2C(wv) dudv 3 .. (9)

[0,

Table 1: Probability Function, Parameter Space, Generating Function and Relationship with Non-parametric
Measure of Association for Six Copula Families under Consideration

Copula Cyu,v) Parameter Space Generator ¢(t) Kendall's tau ¢
A-M-H' YR Y 1,1 al
e 1-6(1-u)(1-v) 1. 1) In— A-BIn (1-0)
6 - ~Ve 1,
Clayton [max(u=0+v=0-1.0)] [=1, \{0} 5(°-1) 0/(9 + 2)
F-G-M uv[1+0(1-u)(1-v)] =1, 1] n.a. 20/9
-bu -bv
1 (e —1)(e —1) -0t _4 4
Frank? '510[1+W (—o0,20)\{0} _Ini“9_1 1+6[D1(9)—1]
-1/
Galambos® uv exp [(ﬁ“e'f\?‘e’) B] [1, @) n.a. n.a.
1/6
G-H® exp [—(ﬁ"ew'"ﬂ)f ] [1, @) (=Int® 1-1/0

2
1 ,.30-2 andB:M; 2

30 392

k . . L . .
Dy(6) = %J.oeﬁd’ is a Debye function; * Expression involves & =-Inu and v = -Inv
exp(t -
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Estimates of dependence parameters for some copulas
families such as those of Ali-Mikhail-Haq, Clayton,
Frank, and Gumbel-Hougaard, among others are
available in closed form while others can be obtained
numerically. For example, for Clayton and Farlie-
Gumbel-Morgenstern copula families the relationship
of Kendall’s tau and Spearman’s rho with dependence
parameter is given as,

6

0
tT=——and p, = —
B+2 3

Based on the above, a sample-based estimate of 0,

.. (10)

much like a moment based estimate, is obtained
respectively as,

A 21 - n

b=—"_and§ = 3p, L an

(1-%)

Such relationships of dependence parameter 6 with
Kendall tau for few copula families are given in
Table 1.

Maximum Pseudo-Likelihood Estimator (PMLE)

In this method, the dependence structure is again
completely independent of the margins as they are
represented non-parametrically by the respective ranks.
The log-likelihood function, assuming that Cy is

absolutely continuous with density ¢y , is of the form,
1(6)= ZIog[ce(FX (%): Fy (7)) ]
s .. (12)
i
—Ziog|:C9[n+ ] n+1H

where Fy(x)=R/(n+1) and Fy(y)=S;/(n+1) are
the non-parametric marginal probabilities based on the
bivariate ranks (R,,S;). In other words, Maximum

Likelihood (ML) estimate of only € is obtained.

Maximum Likelihood Estimator

The classical ML estimation of parameters of copulas
involves maximization of log-likelihood function
given by,

I(B,S,n) =Zn:10g { Cal:FX (x;S), Fy (J”;Tl)]}

where & and m are parameters of the marginals
Fy(x,8) and Fy (y,n), and 6 is the parameter vector

of the dependence structure. All these parameter are
estimated simultaneously in this method. A variant of

. (13)
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this ML approach is called “Inference From Margins”
(IFM) method, wherein univariate ML estimates of

d and m are first obtained separately and then ML
estimate of © is obtained. The log-likelihood in this
case is expressed as,

" glog { co| Fy (x:8), Fy (J’?”)]}

where Fy (x;8) and Fy (y;m) indicate margins having

. (14)

parameters & and m that are obtained on univariate
basis using ML method. IFM approach is advocated
for multivariate copulas of larger dimensions when
estimation through classical approach becomes
unwieldy. It is interesting to note that though the
classical ML approach is more general but smallest
mean squared errors are reported for the maximum
pseudo-likelihood method (Tsukahara, 2005).

APPLICATION

The hydraulic infrastructure along a river, such as
dams, bridges, levees etc. are designed in order to
safely carry the maximum flows that may occur with
the designed probability of non-exceedence. However,
many situations such as design of retention basins,
extent of flooding due to levee breach, and consequent
property damage, serviceability of a highway bridge
across a river etc. warrant simultaneous consideration
of multiple flood related variables such as peak river
flows, associated volumes and durations. Such
considerations are very important for the insurance
companies in order to be aware of the actual risk due
to flooding and associated damages. An application in
that direction is presented here with the objective of
obtaining plausible joint densities and probabilities of
river flow peaks and associated flood volumes. Six
different copula types, namely Ali-Mikhail-Haq (A-M-H),
Clayton, Farlie-Gumbel-Morgenstern (F-G-M), Frank,
Galambos, and Gumble-Hougaard (G-H) have been
considered in this study. Four of these, A-M-H.-
Clayton, Frank and G-H are Archimedean in nature.
F-G-M copulas on the other hand are non-Archimedean
and involve quadratic sections. Galambos and G-H
(which is Archimedean also) belong to the extreme-
value copula families.

Data Set

The Annual peak flows and average daily flows of
Greenbrier River at Alderson station (USGS station #
03183500) in United States’ West Virginia state are
obtained from the USGS website. The Greenbrier
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Fig. 1: Characteristics of observed bivariate annual peak flow (Q in 10° cusec) and volume (V in 10° cusec-day) data of
Greenbrier River at Alderson gauging station—(a) scatter plot and histograms in original domain; (b) scatter plot of ranks
and corresponding uniform histograms; (¢ and d) histograms along with P3 and W3 probability density curves

respectively

River is a tributary of the New River in southeastern
part of the state and is approximately 165 mi (265 km)
long. Through the New, Kanawha and Ohio Rivers, it
is part of the Mississippi River watershed. The station
commands a drainage area and contributing area of
1,364 square miles. A length of 110 years of data, from
1896 to 2005, is considered for this analysis. Volumes
of flood events associated with the peak flows are
obtained from the record of average daily flows. The
scatter plot of this bivariate data and of their ranks,
along with the respective histograms, is shown in
Figure 1. As ranks are the scaled empirical prob-
abilities, they are approximately uniformly distributed
between 0 and 1, as seen in Figure 1.

Potential Marginal Distributions

Several candidate distributions, such as 2 and 3-para-
meter lognormal (LN2 and LN3), 2-paramter gamma
(G2), Pearson type III (P3), log-Pearson type III (LP3),
and largest extreme value (LEV) are considered for
fitting the annual peak flows and volumes on
univariate basis. On the basis of Kolmogorov-
Smirnov, Anderson Darling, and Chi-Squared fit
statistics and overall fit of the Q-Q plots, Pearson
Type III and 3-parameter Weibull distributions were
taken as the marginals for flood peak and volume
respectively. The overlay of density curves of these
distributions and the corresponding histograms is
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shown in Figure 1. The density functions for P3 and
W3, fy(x) and fy(y),are

O AR

rore{25] e {52) " o
¥ Y Y

where o y,By and oy, Py >0 are scale and shape
and yy Sx<+o fyy<y<+owo are the
parameters. The ML parameters estimates for these
two marginals are obtained as 7y =4.601,

&y =6.197, By =5.101, and 7§, =28.361,
122.185, By =1.326. And the corresponding standard
errors are Se;{x =4.332,Se&X =1.365, Sefix =1.715,

and Se{,}, =1.907, Se&}, =6.093, Seﬁy =0.107.

location

&'Y:

Estimation of Dependence Structure

The dependence parameters for the six copula families
under consideration are estimated by (a) empirical and
(b) pseudo-ML methods and the results are summarized
in the following sections.

Empirically-based Parameter Estimation

The sample estimates of p, 1, and p; are 0.466, 0.389,
and 0.555 respectively. And with corresponding
p-values of 1.78e-09, 3.0e-10, and 2.9e-07 these
indicate significant positive dependence. A qualitative
assessment of the dependence structure between the

<
Bl

-0.5

-1.0

T T t T T
-1.0 -0.5 0.0 0.5 1.0
i
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two variables can be made by way of scatter plot of the
raw data and the ranks of the data. The plot of ranks, in
Figure 1, is a better assessment in view of its invariant
properties to non-linear monotonic transformation. The
nature of positive orientation of scatter point in these
plots corroborates the inference of positive dependence
between Q and V. Additionally, Chi-plots and K-plots,
proposed by Fisher and Switzer (1985) and Genest and
Boies (2003) respectively, can be constructed for an
objective graphical assessment. Chi-plots are based on
the chi-squared statistics for independence in a two-
way table. The plot also includes the control limits
corresponding to a chosen significance level. Scatter of
the chi-plot predominantly within these control limits
indicates independence and vice-versa. When the
scatter is largely on the upper (lower) side of the
control limits, it indicates positive (negative)
dependence. K-plot is another graphical tool, much
like a O-Q plot, that involves plotting of various order
statistics of bivariate probabilities against the expected
values of the same from a random sample of
W=C(U,V)=F(X,Y), of the same size n as the
observed data, under the null hypothesis of
independence between U and ¥ or X and Y. The
diagonal line indicates independence, whereas the
curve given by K, (w)=w—w log(w) corresponds to
perfect positive dependence. In case of perfect negative
dependence all the points lie on the x-axis. The Chi
and K-plots for the data under consideration are given
in Figure 2. It may be seen that similar to the
assessment from the quantitative estimates and plot
between ranks, both Chi and K-plots indicates
significant positive dependence.

1.0

0.2

0.0

T T T T T

0.0 0.2 0.4 06 0.8 1.0
Wi:n

Fig. 2: Characterization of dependence structure using (a) Chi and (b) K plots
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Table 2: Point and Interval dependence Parameter Estimates Based on Empirical and
Pseudo-Maximum Likelihood Methods (p-value = 0.95)

Empirical Interval Estimate PMLE based Interval Estimate
Copula
Fafni!y Theta | | ower Upper Standard m Theta | | ower Upper Standard
(6,) C.L C.L. Error 0 0 C.L. C.L Error
A-M-H - - - - 24.490 | 0.995 0.900 1.090 0.049
Clayton 1.283 0.722 1.844 0.286 25.451 | 1.220 1.031 1.409 0.097
F-G-M - - - - 14.811 | 0.995 0.823 1.167 0.088
Frank 4.036 2.631 5.441 0.717 19.646 | 3.970 3.807 4133 0.083
Galambos 0.917 0.631 1.202 0.146 16.367 | 0.800 0.665 0.935 0.069
G-H 1.642 1.361 1.922 0.143 16.118 | 1.529 1.388 1.670 0.072 .

Based on the relationship between t and dependence
parameter 0, as given in Eqn. (9) and utilizing the
available closed forms given in Table 1, the dependence
parameter is estimated. These point estimates along
with the corresponding standard errors and the interval
estimates at a significance level of 0.95 are given in
Table 2. The estimates for A-M-H and F-G-M copulas
are not obtainable for this data set as the value of 1 is
beyond the admissible limit. The A-M-H copula
requires T to be between —0.1817 and 0.3333 whereas
F-G-M copula admits it in the range of —2/9 and 2/9
(—0.222 to 0.222) only. This illustrates limitations of
these copula structures, similar to that faced by some
of the conventional distributions.

Pseudo-Maximum Likelihood Based Estimation

The dependence parameter based on Pseudo-Maximum
Likelihood Estimation (PMLE) is computed by
employing maximum likelihood function given in Eqn.
(13). The maximized likelihood function value, and
point and interval estimate of dependence parameter for
the six copula families is given in Table 2. It may be
seen from these results that the standard errors of the
dependence parameter estimates from this method is
an order of magnitude lower than those obtained using
the empirically-based method and thus are preferable.
It is noted that non-optimal estimates are obtained for
the A-M-H and F-G-M copula types and considered
here primarily to see how adversely the final outputs
are affected.

Assessment of Copula Fitting

More than one copula structures may adequately fit the
data at hand. It is imperative to ascertain relative
suitability of such plausible copula families. Com-
parisons are normally made using (a) graphical
methods, (b) error statistics, and (c) formal goodness
of fit statistics. Although the typical probability plots

used for univariate frequency analysis are not
applicable, owing to the bivariate or multivariate
nature of data, plots with similar basis are however
proposed for such cases. Plot involving comparison of
empirical and computed probability distribution of
random variable W =C(U, ), as discussed with respect

to k-plots, is one option for the graphical evaluation.
Another option is to draw a O-Q type of plot between
the order statistics W(,) sW(Z) S...SW(H) of W, as has

been illustrated by Genest and Favre (2007). Comparison
of observed data with the large number of generated
random samples is yet another option. For this study,
six sets of random samples of size 500 are generated
employing the approach outlined in Nelsen (2006) for
the six copula families under consideration, respectively.
The dependence parameters obtained above by PMLE
method are used while utilizing the copula-based
conditional bivariate distributions for generating bivariate
random samples. The comparison of observed data and
500 generated random samples for the six copula
families is shown in Figure 3. It may be seen from
these plots that the general nature of spread of
observed data matches with that of 500 random
samples. However, a closer look reveals that for
Galambos and G-H copulas there are certain random
samples in the upper tail that do not have similar
representation by the observed data. In that sense,
Clayton and Frank copulas may be adjudged having
better representation of the observed data.

A simple quantitative performance assessment of
various copula families is made by comparing error
statistic such as Root Mean Square Error (RMSE)
from empirical and computed bivariate probabilities.
Similarly, other error statistics like mean absolute error
(ME-A-ERR), mean error (MN-ERR) and maximum
absolute error (MX-A-ERR) reflect other important
characteristics of this comparison. An account of this
comparison is given in Table 3. It may be seen that
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Fig. 3: Sets of 500 random samples based on pseudo-maximum likelihood estimates of dependence parameter (é) for
the six copula families under consideration. The solid circles in grey color are the random samples whereas “+” symbols

represent observed data

Table 3: Error Estimates for Empirical and Pseudo-Maximum Likelihood-Based Copula Models

Empirically-based Copula Model* PMLE-based Copula Model
Copula Family ME-A-
RMSE ME-A-ERR | MN-ERR | MX-A-ERR RMSE ERR MN-ERR | MX-A-ERR

AMH 0.0184 0.0153 0.0143 0.0470 0.0184 0.0153 0.0143 0.0470
Clayton 0.0132 0.0109 0.0066 0.0338 0.0139 0.0115 0.0081 0.0364
FGM 0.0340 0.0289 0.0287 | 0.0820 0.0340 0.0289 0.0287 0.0820
Frank 0.0187 0.0159 0.0066 0.0469 0.0188 0.0160 0.0072 0.0479
Galambos 0.0224 0.0183 0.0067 0.0593 0.0246 0.0196 0.0123 0.0678
GH 0.0224 0.0183 0.0065 0.0587 0.0244 0.0196 0.0121 0.0670

* . A-M-H and F-G-M copulas consider same dependence parameter as obtained from the PMLE method.

Clayton copula yields lowest errors and F-G-M copula
yields largest errors in all these error categories. The
reasoning for the poor performance of F-G-M copula
is obvious as this copula admits © up to 0.222 only
whereas the sample estimate was much higher at

0.389. Similarly, poor but slightly better performance
of A-M-H copula than F-G-M may be attributed to the
fact that this copula also allows t to be 0.333 at the
most. Another important observation in regard to
Frank, Galambos and G-H copulas is that although
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they performed slightly inferiorly than A-M-H with
respect to most error statistics, they show a far less
mean error statistic. Since a lower mean error indicates
a better balance between positive and negative
deviations, this may be a desirable feature and that
way Frank, Galambos, and G-H copulas may be
considered to have given a comparatively better fit. It
may also be seen from the table that the errors from
both the methods are of similar order of magnitude.
This comparison is graphically depicted i Figure 4,
wherein ordered empirical probabilities are shown as
solid black line and corresponding computed
probabilities are plotted as grey points. The inference
from this graphical comparison is similar to that
derived from the tabular results. The Clayton copula-
based joint probabilities and densities, both in 3-D and
contour forms, are given in Figure 5. Figure 5(a)
illustrates the close match between the computed and
empirical probabilities.

CONCLUSIONS

At present, the use of copula-based multivariate
distributions in the field of hydrological engineering is
in the initial stages of development and application.
There have been few studies made in this regard and
this number is growing at a faster pace. The above

study presents a successful application in this direction
and reinforces that copula-based bivariate frequency
distribution can be effectively applied in this domain.
The major advantage of copula usage is the possibility
of able to combine arbitrary margins as per the wishes
of the analyst which is normally dictated by the
specific nature of the margins. This overcomes the
main limitation of the conventional approach wherein
limited number of functional distributional forms
involving similar marginals is available. This study
also highlights the fact that certain copula structures
may not be comprehensive enough in terms of
covering the entire dependence space. The inferior
performance of A-M-H and F-G-M copulas is
attributable to this limitation and it parallels similar
restrictions posed by some of the conventional
distributions. However, since there is availability of
several copula types, the ones that cover the required
dependence can be employed. Considering the
graphical and quantitative methods of performance
evaluation presented in this study it may be concluded
that although Clayton, Frank, Galambos, and G-H
copulas all performed almost equally well,
performance of Clayton copula was best among all in
various ways, followed closely by Frank copula.
Clayton copula provided the least errors among all the
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Fig. 5: Plots of joint probability (a and b) and joint density (c and d)

error statistics considered in the study. These two
copula types also provided a closer match between the
large sized random sample and observed data. The
Galambos and G-H copulas, although from the
extreme value copulas families, did not perform
satisfactorily in terms of the match between the
random samples and the observed data. Some of the
extreme values generated by these copula types are
significantly greater than those in the 110 years of
observed data. As Clayton and Frank copulas are also
comprehensive in nature, these copula types appear to
be better suited for applications involving annual flood
peaks and volumes.
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