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ABSTRACT: The two-parameter weibull distribution is presented as an alternate for developing synthetic hydrographs after a
review of the existing applications like the popular gamma distribution method. The suitability of weibull distribution as
Synthetic Unit Hydrographs (SUH) is explored for two cases using field data (i) for limited data conditions, and (ii) for no data
condition, i.e. ungauged catchment. To estimate the parameters of the weibull distribution, an analytical procedure is proposed
instead of existing numerical solutions. Taking the data of fifty-six catchments from India, equations for peak flow and time-to-
peak are developed using two new methods: (i) non-linear optimization, and (ii) artificial neural network. Both these methods
use a set of non-dimensional groups formed out of geomorphological variables as inputs. The workability of the proposed
method is checked using a test catchment. The weibull distribution parameters are related to statistical properties of the
hydrograph considering an equivalent triangular hydrograph, which eventually helps in analyzing the parameter sensitivity. The
results show that the weibull distribution is flexible and more adaptable to derive SUH in ungauged catchments.

" INTRODUCTION

Rainfall-runoff process is of immense interest in
hydrology. However, many components of this process
are difficult to observe routinely and unambiguously,
and require costly measuring facilities. Due to economic
and other constraints, such facilities are scanty,
particularly in developing countries. Hence, a number
of techniques have been developed to determine runoff
when limited data are available. Among these, the
Synthetic Unit Hydrographs (SUH) are of great
significance to determine runoff volume with respect
to time, especially from ungauged catchments. The
qualifier synthetic here denotes that the ordinates of
the Unit Hydrograph (UH) are obtained without using
catchment’s rainfall-runoff data. These yield a smooth
and single valued shape corresponding to unit runoff
volume, which is essential for UH derivation. Flood
Estimation Handbook (1999) provides a good review
of several methods of SUH derivation. Two distinct
approaches are followed for development of a SUH.
The first approach uses an empirical method e.g.
McCarthy (1938) and Snyder’s method (Snyder,
1938), which utilize empirical equations to estimate
salient ?oims of the hydrograph, such as peak flow
(Qp) (L ™, lag time (7,) (T), time base (t3) (T), and

UH widths at 0.5Q, and 0.75Q,. Functional relation-
ships of catchment characteristics are used for this
purpose. One such relationship was proposed by
Bernard (1935) who accomplished the transformation

of rainfall into runoff through medium of distribution
graphs, which was assumed as a function of catchment
characteristics. Similar expressions were later given by
Edson (1951), Gray (1961), and Haan et al. (1984)
among others. All these methods begin by obtaining
the salient points of the UH, and a smooth curve is
fitted through these points to obtain a SUH; thus a
degree of subjectivity is involved in such manual
fittings, as this require simultaneous adjustments for
the area under the UH to represent unit runoff volume.
In contrast, the SCS (1957) method utilizes the land
use, soil type, hydrologic, and antecedent moisture
condition of the catchment to estimate the peak
discharge (g,) and 4, and than the SUH shape is
determined from an average dimensionless g/g, versus
t/t, hydrograph; thus avoiding any manual fitting.

An alternate approach to the SUH derivation makes
use of the functional relationship between the important
points on Instantaneous Unit Hydrograph (IUH) and
catchment characteristics; thus providing a scientific
basis for the hydrograph fitting. Clark (1945) was
probably the first to propose the IUH theory, and the
concept was later used by Nash (1958, 1959) and
Dooge (1959) to develop a unit hydrograph. While
Nash (1958, 1959) and Dooge (1959) derived the IUH
as a two parameter gamma distribution from cascade
of n linear reservoirs, Clark (1945) derived it by
routing the unit inflow in the form of time-area
diagram, which is prepared from the isochronal map
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through a single reservoir. Depending on data avail-
ability Croley (1980), Aron and White (1982) and
Bhunya et al. (2003, 2004, 2007) applied the gamma
and beta distribution to develop a SUH. Similarly,
HEC-1 (1990, 1994) and Kull et al. (1998) have used
the Clark’s concept in developing SUH for ungauged
catchments, by fitting the hydrograph through selected
salient points like (Z,, gp), (4, 1) OF (Gps 1i)s where t; is
the point of inflection after the peak. These procedures
were an improvement over the earlier methods which
used a pure empirical method to derive the synthetic
unit hydrograph, further the subjectivity that existed in
manual fitting of the UH in earlier methods was
eliminated. Rodriguez-Iturbe and Valdes (1979)
combined both of these methods and expressed the
IUH in terms of geomorphological parameters as well
as the transition state probability matrix of the water
flow. The final expressions of the SUH were obtained
by regression of the peak as well as time-to-peak of
TUH derived from the analytic solutions for a wide
range of parameters with that of the geomorphologic
characteristics and flow velocities. Later, Gupta et al.
(1980) modified this procedure for deriving an IUH,
known as Geomorphological Instantaneous Unit
Hydrograph (GIUH). This concept is frequently used
in ungauged catchments. Rosso (1983) derived the
Nash parameters in relation to the Horton order ratios
using a power regression and developed the SUH.
Similarly, Jueyi Sui (2005) and Kumar et al. (2005)
have used the GIUH based Clark’s model to develop
flood hydrographs in ungauged catchments.

In SUH derivation, one of the important steps is the
estimation of one or two key points on the UH (or
[UH), through which the hydrograph is fitted. To
achieve this objective, relationships are sought from
the magnitude of the key parameters, such as gy, #», 5,
t; or #;, of the IUH, and selected catchment characteristics
which can be measured from a topographic map, and
generalized rainfall statistics. The preferred technique
for developing such relationships has invariably been
multiple linear regression analysis (see Hall et dl,
2001). This paper represents an extension of the earlier
works in two ways: (i) uses a two-parameter Weibull
distribution for fitting the UH and a new method is
proposed for the estimation of distribution parameters;
(ii) extends the multiple linear regression techniques to
a non-linear optimization using non-dimensional groups
of geomorphological variables for the regionalization
of ITUH parameters using data of fifty-six catchments;
(iii) explores the potential of the artificial neural
networks in constructing the regionalization of ITUH

parameters using the above data base; (iv) test the
present method with existing two-parameter gamma
distribution for SUH derivation. The workability of
this approach in SUH derivation is demonstrated using
data of an Indian catchment, not used for regionalization
(or treating them as ungauged).

SYNTHETIC UNIT HYDROGRAPH METHODS
Two-Parameter Gamma Distribution

Using the concept of cascade of n-linear reservoirs,
Nash (1959) and Dooge (1959) derived the gamma-
form expression for IUH as,

1 (Y7 &

=—| = (1
1 KT n(K ) ¢ ()
where n and K are the number of reservoirs and the
storage coefficient, respectively, and these describe the
shape of IUH; and g is the depth of runoff per unit
time per unit effective rainfall expressed in mm/hr/
mm. Eqn. 1 is used for SUH derivation from known »
and K. Defining g, as the peak discharge and 7, as the
time-to-peak in hr, a simple relation between » and
B (= gyt,) of the gamma distribution for SUH derivation

is given as follows (Bhunya et al., 2003),

n=553p"7" +1.04 0.01 <B<0.35
n=629p""#+1.157 P=035 .. (2)
where and B = g, #,. Eqn. 2 can be used to estimate the
shape of the SUH for known values of g, and 1.
Weibull Distribution
The pdf of a two-parameter Weibull distribution
(Figure 1) is given by Weibull (1939) as,
f(t)=(a/b)(t/b) e ;150 .. (3)

Here, the scale parameter a > 0 and the shape para-
meter b > 0. Mean () and variance (o?) of the pdf are
given by,

pu=br(+1/a);
o? =bT(1+2/a)-b*[CA+1/af . (4)
The cumulative distribution function (cdf) is given as,
F()=1-e"" ... (5)

As  —> o, F(f) = 1. This condition meets the criterion
for UH description (Sherman, 1941). Considering the
UH similar to the Weibull distribution with discharge
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ordinate (¢) on the y-axis and x-axis as time (7), (3) can
be used to describe an TUH as,

h(t)=(a/b)(t/b)r e (/) ... (6)
For conditions at peak; g, and #, can be obtained as,
t,=blla-1)/al’* orb=[al@a-D]""t, .7

(a-1)/a
a a-1 ~(a-1)/a

= e S )

I tp[a/(a—l)]”“( a ]

Substituting d = (@ — 1)/a in the above equation, and
rearranging, ¢y, can be expressed as,

qpt, =B=1/(1-d)d" " )d"¥e™) =
=(e4d)/(1-d)

Expanding the exponential in (9) up to second term, it
can be simplified to the following form,

a —(1+ep)a® +(eBla—1/2(ef)=0 ... (10)

This is a cubic equation in a, whose real roots gives
the Weibull distribution parameters as (Abramowitz
and Stegun, 1964),

a=u+v)—A/3 wox (11D
where,
u=[]‘+(.§3+r2)”2]”3;
v=[r—(s +r’)"?1";5=B/3- 4>/9;
r=(4B-3C)/6-A4"/27
and,
A=—1+ef); B=e B; and C = —ep/2. o (1)

An alternate solution of (9) can be obtained using a

numerical procedure as follows:

1. Generate d using a random number scheme within
a practical limit,

2. Estimate corresponding B-value from (9), and

3. Fit an equation to the ordered pair (d, p).

For this scheme d is simulated using a uniform distri-

bution random number generator scheme available on

any standard spreadsheet, corresponding to the limit of

gply (or B) between 0.01 and 2. It is noted here that -

values less than 0.01 are seldom experienced in field

and the maximum value is rarely found to be greater

than one (see Singh, 2000). For d < 0.67 (corres-

ponding to } < 1.104), the (d, B) sets perfectly fit a

third order polynomial of the following form,
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d=0.0039 (B) - 0.4427 (8% + 1.099 (B) — 0.0048
for B<1.104, d < 0.67 .. (13)

for d > 0.67 (corresponding to 3> 1.104) the scatter
plot of (d, B) is observed to follow a inverse power
function, therefore, the value of d is assumed as a
function of B given as,

(my + my ™)

where m; are the parameters of (14) which is obtained
using a suitable optimization scheme. For this the
Marquardt algorithm (Marquardt, 1962) was employed
for parameter estimation and the form of (14) is
obtained as follows,

d =1.1805/[1.192+0.59187"%],
B>1.104,d > 0.67 o155

Thus for a given value of G* or B (estimated from the
geomorphologic parameters of the catchment), the
shape parameter ‘a’ of Weibull distribution can be
estimated from (11) and (15) by analytical and numerical
procedures, respectively. Now the shape parameter
estimate of the Weibull distribution is substituted in (7)
along with #, estimated from (6) to get the expression for
scale parameter, b, as follows,

b, =1.584[a/(a-1)]""(R, /R,)**R,*V'L ... (16)

.. (14)

where b, = bv™'L is non dimensional. The correctness

of the proposed equations for 2PWD parameter
estimates are checked in the following section.

REGIONALIZATION OF UH PARAMETERS

So far the discussion was focused on deriving the
shape of the SUH; when two or three salient points on
the UH (or IUH) are available, e.g., time-to-peak, peak
flow or base of the hydrograph. Through these points,
the hydrograph is fitted to give it a complete shape.
Therefore, the point of concern that remains is to get
these salient points of the UH for ungauged
catchments. Mostly, such relationships are developed
using multiple linear regression analysis (Hall et al.,
2001), where a functional relationship is derived
between the important unit hydrograph parameters and
catchment characteristics. A similar approach was
applied to regional analysis of floods by Tasker et al.
(1996) and Swamee er al. (1995) to estimate flood
quintiles, and mean flood estimation in ungauged
catchments, respectively. The present study attempts to
relate g, and #, with non-dimensional groups of
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geomorphological parameters using (i) a non-linear
regression method, and (ii) Artificial Neural Network
(ANN) techniques using the data of fifty-six catchments.

Study Area

In this study, the following catchments from India were
considered for application: Lower Narmada and Tapi
sub-zone (3B): Geographic location of sub-zone extends
from 73° 14' to 76° 30' E longitude and 20° 19' to 23°
0' N latitude. This is a sub-zone delineated by CWC
(1982a) and comprises of a number of small bridge
catchments with area varying from 53 to 828 km”.

Mahanadi Sub-zone (3D)

Geographic location of sub-zone extends from 80° 25'
to 87° E longitude and 19° 15' to 23° 35' N latitude.
This is a sub-zone delineated by CWC (1982b) and
comprises of Mahanadi, Baitarani and Brahmani
among its major catchments. The study considers short-
term rainfall runoff data of small bridge catchments
with area varying from 19 to 1150 km®.

Lower Godavari Catchments (Sub-zone 3 F)

Sub-zone is bounded by Upper Narmada catchment,
Tapi catchment, Krishna, and Coromondel sub-zones.
The total area of the sub-zone is about 174,000 sq. km.
The sub-zone is L-shaped and extends from 76° 83' E
longitude and 17° 23' N latitude. The sub-zones 3B and
3F are further sub-divided for hydro meteorological
studies (CWC, 1980; CWC, 1982) and the available
data of total 22 watersheds of these sub-zones were
used in this study.

Myntdu-Leska River Basin

Basin is located in Jaintia hills District of Meghalaya,
in the northeastern part of India, in the southern slope
of the state adjoining Bangladesh. Its geographic location
extends from 92° 15' to 92° 30" E longitude and 25° 10
to 25° 17" N latitude. The area is narrow and steep,
lying between central upland falls of the hills of
Meghalaya. The catchment area is about 350 km® and
elevation range varies from about 1372 m to 595 m.
Ths study area has been shown in Figure 1.

Bridge Catchment No. 253

The bridge catchment on Tyria stream of Narmada
river at Gondia - Jabalpur railway line lies approximately
near 80° E longitude and 23° 5' N. The catchment area

is equal to 114.22 km?, and the stream length up to the
bridge is 35.42 km. These data were used by Lohani
et al. (2001).
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Fig. 1: Study area

The data statistics is given in Table 1. Since the
results of the present study are compared with other
popular synthetic methods, the catchments are selected
to lie in the small to medium range (100-500 km?); 33
catchments are less than 250 km?. It may be noted here
that zone 3b, d, and f are homogeneous regions in
respect to their flood producing mechanism (CWC,
1980; 1982), however, the data sets as a whole are not
subjected to any separate homogeneity tests; therefore,
the study area is non-homogeneous.

Non-Linear Optimization Method
Estimation of qp

This section focuses on development of an empirical
model for g, estimation for the study area, which can
be used for any ungauged catchment within the study
area. For this, the following non-dimensional groups
are considered: (i) A/L’, (ii) L/Lc, and (iii) (L/L:S™)).
The variable S here denotes mean catchment slope,
and is estimated as ratio of difference in elevations at
0.85 and 0.10 times basin length from mouth of the
basin to 0.75 times the basin length (Olivera, 2002).
Elevations are measured along the line of maximum
length of the catchment. Mean catchment slope can also
be calculated manually or within a GIS as average of
slope at many random or regular points in the catchment.
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Table 1: Summary of the Catchment and Unit Hydrograph Characteristics of the Study Area

No. of Catchments Range of
Catchment
/Zone Total | 2% (k‘;z s | e ; (;«Ln. s (,f,;‘q ) | Qs | o)
3B sub zone 17 9 53-828 1.3-8.4 18.7-74.5 7.2-37 50-300 1.5-6.5
3D sub zone 16 10 47-3108 0.6-9 12.5-96.6 7-52 17.4-560 4.5-16.5
3F sub zone 22 13 4-969 1.3-9.1 10-92.3 543 41-650 1.2-1156
Myntdu-Leska 1 - 350 4.2 51.8 27.8 118.3 5
Br. No. 253 1 1 114.2 25 354 16.9 54.6 5

In formulating these non-dimensional groups, two
basic issues are taken care of: (i) the physical signi-
ficance of non-dimensional groups, and (ii) the
improvement of model accuracy compared to existing
empirical relationships (or regional formulae).
Regarding the first issue, the non-dimensional groups
(A/L?) is the form factor used to quantify the degree of
similarity of drainage catchment shapes (in a region),
which influence the flood hydrograph shape (Olivera,
2002). Similarly, L/L, gives an idea about the eccentricity
of the catchment (Black, 1991), and the mean slope is
related to the velocity of flow and attenuation time of
the hydrograph. Earlier studies of Gupta er al. (1980),
CWC (1980; 1982a, b), and Hall ef al. (2001) have
used geomorphologic variables to form non-dimensional
groups e.g. (L/L;) and (LALS™) to develop regional
formula for g, estimation. The second issue addresses
the number of geomorphological parameters that need
to be considered for developing the model. Since the
flood peak or time-to-peak or any other UH parameter
not only depends on one or two physical characteristics
of the catchment, but also on many other factors, the
model need to assess the optimum number of catchment
parameters that need to be considered to yield precise
results. While considering the number and nature of
catchment parameters, it is to be ensured that they can
be computed easily from a toposheets or any map by a
user, who ought to use this formula for an ungauged
catchment. It is the second issue that has gained
precedence in hydrological studies, including the study

on mean annual flood estimation by Wong (1979) and
Swamee (1990).

To obtain the empirical model, it is necessary to
examine the possible relationships among the non-
dimensional groups; therefore, the correlation test is
supplemented by the paired #-test of mean of correlation
to infer the significance of the above variables, following
the null hypothesis (Montgomery and Runger, 1994).
The results (Table 2) shows the correlation to be low
(0.45 and 0.5) except L/Lc — LI(Lc S”) with a moderately
high correlation of 0.67, which is however rejected
with paired t-test. Therefore, it is appropriate to consider
all the three groups for developing the model. This is
further proved using the Buckingham n-theorem
(Langhaar, 1951) with mass (M), length (L) and time
(T) as the repetitive variables, which forms the
following empirical model for g, estimation,

o &) (L] (L)

Considering the aspects discussed above, the following
empirical model is proposed for the estimation of g,

ol -2 1) ]

i

... (18)

where suffix i stands for the i data set, and ay—a; are
the fitted coefficients. Time-to-peak, 7, is substituted for
dimension T because it is known to influence the peak
discharge in a significant way (Nash, 1959; Dooge,
1959; Gray, 1961) and Rodriguez-Iturbe and Valdes,
1979). It may be  highlighted that the proposed

Table 2: Significance-Test for Non-Dimensional Groups for the Whole Study Area

Sl No. Paired Ngr:;gggensrona! Correlation Paired t(-tos)tatrsncs t, Ac(;:%pst;cgifées?te
(1) (2) (3) (4 (5 (6)
1, L./Lc—A/L? 0.45 5.302 1.99 Rejected
A ALL%- Li(Lc S'? 0.5 6.015 1.99 Rejected
3, Ule-L(Lc S™) 0.67 8.52 1.99 Rejected
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model (Eqn. 18) satisfactorily addresses some key issues:
(i) it is not unit dependent, (ii) more catchment para-
meters are considered, (iii) the non-dimensional groups
have a physical significance, and (iv) the catchment
parameters considered here can easily be interpreted
from toposheets and imageries. '

Taking the observed data sets (Table 1), the Marquardt
algorithm of non-linear optimization (Marquardt, 1962)
was employed for estimation of parameters of Eqn. 18.
For optimization, the objective was to minimize the
sum of square of errors (E) between the observed and
computed values of g,. The goodness-of-fit is evaluated
using the coefficient of determination (COD or R?)
(Mendenhall and Sincich, 1988) given as,

i(}’a—}’c) ... (19)
COD(R2)=1—;‘—~—-
2e=va)

=1

where y is the variable under consideration; N is the
number of observations; and the subscripts o, ¢, and m
refer to the observed, computed, and mean values,
respectively. The resultant parameters of Eqn.18 are
given in Table 6a for two cases: (i) for catchment area
less than 250 km?, and (ii) for area greater than 250
km’; this categorization on the basis of catchment
areas yields the maximum COD.

The results of R? for the two cases are 0.88 and
0.85, respectively, which indicates that the calibration
is good. The validation of Eqn. 18 is done using data
of two catchments as reported in Table 6b, which
shows error less than 3 percent.

Estimation of t,

Many empirical relations for computation of time-to-
peak have been proposed in the past e.g. Snyder (1938)
derived time-to-peak as a function of L, L., and a
regional non-dimensional coefficient, which is related
to #, (SCS, 1957). Similarly, Linsley er al. (1975) and
Flood Studies Report (1975) expressed #, as a function
of L, L. and §, and Rodriguez-Iturbe and Valdes (1979)
have related it to Horton order ratios (Horton, 1945)
and L. For the present case, a multiple regression
analysis was initially used to check the correlation
between time-to-peak and each of the non-dimensional
groups. The results did not show any strong correlation
between the two; therefore the regression was tried by
employing the geomorphological variables individually,
which did not improve the results either. This
motivated the authors to try a new variable, i.e. time of
concentration (Z.) to relate #,. The time of concentration

is defined as the time taken by a water particle to travel
from farthest point of the catchment to the outlet
(Chow, 1965) and ¢, behaves in a similar way as the
time-to-peak for a UH. Most widely used relationship
for computing #. proposed for use with ungauged
watersheds was developed by Ramser (1927) (quoted
in Haan et al., 1984) as follows,

- =0,02L 7§03

where f. is the time of concentration in minutes, S
denotes the average slope of channel in m/m. A simple
scatter plot between time of concentration and time-to-
peak of the data from the study area is reported in
Figure 2 that shows a R* equal to 0.65 using a linear
fit. Thus, for the present case, the proposed empirical
model is as follows,

tp :f(tci‘ci)

where f is any arbitrary function and c¢; are the
parameters that need to be calibrated for the study
area. Using the data for forty-one catchments, the final
form of Eqn. 22 is derived as follows,

t 1.0486
= 193.786(—C]
60

The results of validation using data of fifteen catch-
ments give a R* = 0.88. Eqns. 18 and 22 can be used to
express parameter 3 as a function of only geomor-
phological variables. The same data as used in case of
validation of time-to-peak are used for validation of 3,
and the results shows a fit with R* = 0.68. The following
section discusses the empirical model development of
g, and £, estimations using ANN technique.

oo (20)

.. 21)

. (22)
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o
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Fig. 2: Correlation between [, and ¢, for the study area
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Artificial Neural Network (ANN) Method

In view of the versatility of artificial neural networks
in modeling non-linear systems, this technique was
also employed to determine g, and 7,. Since the theory
of ANN has been extensively discussed in the
contemporary literature, the same is not repeated here.
Detailed review of theory and application of ANN was
provided by ASCE (2000a, b) and Maier and Dandy
(2000). Two feed-forward three-layer ANNs were
developed in this study: a) to determine #, using the
data of ¢, and b) to determine g, usmg the data of 7,
and a non-dimensional factor A/(L,> S*°).

The first ANN had a single input and a single
output. Total 55 pairs of data were available. In the data,
f. ranged from 1.2 hours to 12.5 hours and ¢, ranged
from 0.17 to 2.8 hours. The data were standardized by
the following formula,

R,

i o3
*a) - (Min, *b)

N.=
! (Maxl.

where R, is the /™ input data; N, is the corresponding
standardized value; Min,; is the minimum of all the
values of the variable R; Max; is the maximum of all
the values of the variable R; and a and b are constants
which control the range of standardization. In the
present case, @ = 1.2 and b =0.8.

During training, the number of neurons in the
hidden layer was systematically changed and the best
results were obtained using 5 neurons. Levenberg-
Marquardt method was used for training. The first 40
data were used for training and the last t5 for testing.
For the training data set, RMSE was 0.0904 and the
model efficiency was 0.5229 while for the test data set,
RMSE was 0.2478 and the model efficiency was
0.1851. It was noticed that in the data, values in the
higher range mostly occurred in the later part of the
set. Hence, another ANN was trained in which the data
for the last 40 sets was used for training and that for
the first 15 for testing. In this case, the training set
RMSE was 0.1075 and model efficiency 0.6983 but
for the test data, RMSE was 0.1056 and model
efficiency —0.2175. This indicates that the ANN is not
able to properly learn the underlying behavior of the
data, probably due to insufficient inputs.

The second ANN had two inputs: ¢, and 4/(L. 5°°)
and a single output. Data of 56 catchments were
available. Here, the first 40 sets were used for training
and the last 16 for testing. For the training data, RMSE
was 0.0531 and model efficiency 0.942 but for the test
data, RMSE was 0.1129 and model efficiency 0.0025,
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indicating a poor training. When the data of the last 40
patterns was used for training and that of the first 16
for test, the results were still not good. To investigate
the reason behind this, a scatter plot of all the data was
prepared and it was noticed that two data points had an
altogether different behavior than the remaining.
Ignoring these two patterns, 54 sets remained out of
which, 40 were used for training and 14 for test. When
the ANN was trained using this new data set, RMSE for
the training set was 0.0551 and efficiency 0.9155 while
for the test data, RMSE was 0.0936 and efficiency
0.8262. This shows that now the ANN was able to
correctly learn the underlying behavior of the data.

When g, for the Bridge catchment No. 253 (Table
4) was estimated by the use of this ANN, it turned out
to be 0.179 and ¢, was estimated to be 5 hrs, which is
very close to the observed values given in Table 4.

APPLICATION

Utilizing the data of Bridge catchment No. 253, the
applicability of the proposed method in deriving SUH
is examined for two cases: (i) Case A investigates the
workability of the proposed method when it has partial
data, i.e. few observed data from the observed
hydrograph e.g. Q, and #, are used for the analysis, and
(ii) Case B derives SUH considering the catchment as
an ungauged catchment, i.e. with no data. Two
selected flood events are considered for this case.

Case A: The rainfall-runoff flood hydrograph that
occurred over the Bridge catchment No. 253 on 23"
Aug, 1996 was considered for this case. The salient
points of the flood hydrograph were as follows: 0, =
82.5 m3f's, =5 hrs, #3 = 21 hrs. The unit hydrograph
for the catchment was taken from the study of Lohani
and Singh (2001). The parameters of the beta
distribution were estimated using Eqns. 9 and 13, and
are shown in Table 2 i.e. 75 = 105 hrs, o = 21, p =
96.17, r = 5.51. The observed and the derived flood
hydrograph event for this catchment are shown in
Figure 3(a). To check the performance of this method,
the goodness-of-fit is further evaluated using the ratio
(STDER) of the absolute sum of non-matching areas to
the total hydrograph area, expressed mathematically as
(US Army Crops of engineers, 1990),

N
Z qor Qw r'

STDER = |8 | &W;
N

2

= (qﬂl + qa’") 2

. (24)
29,
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Tahle 3: Example for Estimating Weibull Parameters Eqgns. (9) and (13)

(Hi& ) (!_5‘}_ ) B=qoto Assuhmrgfi lerit a=taf, rAssumed | pusing Eqn. (9) | Computed B (Egn. 13)
0.1727 | 5 0.8637 100 20 4 65 0.7017
100 20 5 82 0.8141
105 21 5.2 90.2 0.833
105 21 5.51 96.17 0.8637

where g,= i" ordinate of the observed hydrograph, g,; =
i ordinate of the computed hydrograph, w; = weighted
value of /" hydrograph ordinates, g,,= average of the
observed hydrograph ordinates, and N = total number
of hydrograph ordinates. Since the computed w;-values
(Eqn. 24) are larger for higher g-values, the resulting
high STDER value signifies larger non-matching areas
on the upper portion of the hydrograph to non-
matching areas in the lower portion below g,. A low
value of STDER-value represents a good-fit, and vice
versa; STDER equal to zero represents a perfect fit.
For the Bridge catchment, STDER = 9.7, indicating a
good fit.

Taking the same values of g, and #, that was used
above, the SUH was derived using the gamma, Gray,
and SCS methods. The gamma distribution parameters
were computed using Eqn. 2 as follows: » = 5.81 and
K = 1.04 and the computed flood hydrograph for the
bridge catchment is derived using Eqn. 1, and is
reported in Figure 3. Similarly, the STDER for the
gamma, SCS and the Gray’s methods were found to

—a— UHby
6.00 - Weibull
distribution |
5.00 —»— UH by
gamma
distribution |
4.00
8 —¥— UH from
g observed
3 3.00 data
£ o
S 200
1.00 -
0.00 + — —y
| 0 5 10 15 20 25
Time in hours
|

Fig. 3(a): Comparison of UHs using Weibull
and Gamma pdfs

Fig. 3(b): Comparison of UHs using Weibull and Gamma
pdfs considering the bridge catchment as ungauged

be 14.1, 5.4 and 13.6, respectively. This means that the
flood hydrograph derived by using the SCS method is
closer to the observed values followed by beta, Gray
and gamma methods. To further check the efficiency
of these methods, the catchment is considered
ungauged in the following case.

Case B: Considering the Bridge catchment as ungauged,
i.e., for no data situation, g, and ¢, of the SUH are
estimated using the empirical relationships derived for
the study area. For the present case, catchment
variables are: L = 35.42 km, L. = 19.6 km, § = 3.7
m/km. Using these above data in Eqn. 22, time-to-peak
is computed as 4.6 hrs, and the corresponding g, (Eqn.
16) is equal to 0.176 hr™'. The parameters of the SUH
(Eqn. 6) were computed using Eqn. 13 as follows: p =
89.31 and r = 5.016 and the corresponding flood
hydrograph is shown in Figure 3(b), which shows a
close match with the observed UH. The figure also
shows the SUH derived by SCS method where the g,
and #, values are calculated using Eqn. 3 and the shape
of SUH from non-dimensional g/g, versus t/t, hydro-
graph (SCS, 1957). The SCS method overestimates the
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peak flow and time-to-peak values; the resulting
STDER values for beta based regression approach and
SCS methods are 11.1 and 32.7, respectively. It can be
seen that the SUH with SCS method is deviating from
the observed UH both in rising and falling limb.

Using the ANN approach the two points of the UH
are calculated here for no data situation i.e.
considering the catchment as ungauged. Taking the
catchment variables the non- dimensional groups are
computed, and are used in the ANN method to derive
1, as 5 hrs, and g, equal to 0.179 hr™'. For this the
parameters of the beta distribution are calculated as
follows: p = 98.3 and » = 5.815 and the corresponding
flood hydrograph is shown in Figure 3(b). The STDER
due to beta based ANN method is found to be 14.4 i.e.
slightly higher than that obtained with the regression
approach. Lastly Snyder’s method is employed to
derive the flood hydrograph using Eqn. 1, and the
corresponding STDER is 18.6. All the computed flood
hydrographs are shown in Figure 3(b).

DISCUSSION OF RESULTS

The analysis presented here focused on the use of beta
distribution for deriving synthetic unit hydrographs for
ungauged catchments. To compute the parameters of
the beta distribution, an approximate analytical solution
is derived that works accurately when compared to the
existing numerical solutions of Bhunya er al. (2004)
using field data. To examine the possible advantage of
using beta distribution in developing unit hydrograph,
the results of the flood hydrographs are compared with
the existing methods such as SCS (1957), gamma
distribution and Gray’s method using a suitable goodness
of fit criteria. The second section of this study attempts
to regionalize the unit hydrograph parameters viz. peak
flow of the UH and time-to-peak using non-dimensional
variables comprising of geomorphological chrematistics
of the catchments. The regional formulae for estimation
of peak flow and time-to-peak of an UH for ungauged
catchments was derived using these non-dimensional
variables by applying both non-linear regression
approach and ANN technique. For this data of fifty-six
catchments were used, and the performance was
checked using data of two test catchments. The results
showed high values of R? in the vicinity of 0.8. The
following section analyzes the sensitivity of the para-
meters to peak flow computation, and further makes an
analogy by a approximating the unit hydrograph to a
triangle.

Water, Environment, Energy and Society (WEES-2009)

Sensitivity of Beta Distribution Parameters

Since g, is a function of p, r, 15, and ¢, (Eqn. 13) the
sensitivity of the parameters to g, estimates can be
evaluated using the partial derivative as follows,

aqp - al_f(rspatﬁatp)J
ot ot

p P

... (25)

where fis any arbitrary function. Eqn. 25 is evaluated
numerically using a simulation procedure for two
different cases: (i) keeping p and f3 constant, and
varying r for different values of #,, (ii) keeping r and #3
constant, and varying p for different values of #,. It is
observed from the results (Figure 4(a)) that for small
values of p, the curve is flat i.e. rate of decrease in gp is
small, compared to higher p-values where the curve is
steep with higher gq /or,. Further, the g,~, curve

follows an exponential relationship of the following
form,
b
qp=ay(ty)” ... (26a)
where a, and b, are the parameters that vary with p and
are analysed for p in the range of 10 to 90. Similarly,
g~ curve fits an exponential curve given by,

a,=a,(t,)" ... (26b)

where a, and b, are the parameters that vary with » and
are given in Table 7 for r in the range of 1.5 to 5. An
inspection of the two graphs shows that g, is more
sensitive to » than p; for 25 percent increase in r value,
the corresponding increase in g, is 33 percent whereas
for the same increase in p the increase in g, is 13
percent. The relationship between g, and ¢, (Eqn. 26) is
analogous to SUH derived by two parameter gamma
distribution (Nash, 1959; Dooge, 1959) in the
following way. When ¢ = ¢,, ¢ = g,; the beta pdf
equation can be simplified to the following form,

(n _1)(”*1)8—(11—1) o

4
9 T(n-1) 7

=a,t, b, =1 ...(27a)

where,
_ 1(n-1) ,—(n-1)
& = (n-1)""e
I'(n-1)
Comparing Eqns. (26a) and (27), it can be observed
that parameters a, and a, b, and b, are similar e.g.
forr=35, a, = 0.7824, and b, = -0.97; for n = 5.01, a,

=0.7824 and b, = —1. This shows that the parameter
in beta distribution is similar to the parameter » in

... 27b)
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gamma distribution, however, b, in beta distribution
has a variation though small in magnitude » as observed
from the results in contrast to b, which is a constant
(= —1). This might be one of the factors that contribute
to the flexibility in the shape SUH while using the beta
distribution. This hypothesis is further proved in the
following section while analyzing the sensitivity of
these parameters using an analogous triangular UH.

Though the two parameter gamma pdfs also describe
the UH shape well, the major limitation is its inability
to yield a fixed #3 value which approaches infinity
when g approaches zero. It means that the recession
limb of UH (or pdf) nears right side asymptotically,
approaches the x-axis rather than culminating at a
finite #3 as required for UH. Therefore, while using a
gamma pdf for SUH derivation, computations are
carried out up to the point, considered as #z, after
which ¢ is negligibly small; this observation is
particularly valid for positively skewed gamma. Since
beta distribution can skew on either side (positive and
negative) similar to an UH encountered in practice,
they are more flexible in description of SUH shape.
This is also confirmed in applications of these methods
to field data by giving least fitting errors.

SUH as an Analogous Triangular Hydrograph

In this section, the mean and variance of the unit
hydrograph computed using an analogical triangular
hydrograph are expressed in terms of time base and
time-to-peak of the unit hydrograph. The approximate
expression obtained by this procedure is then used to
check the sensitivity of the beta distribution parameters.

Assuming a triangular UH, and its peak discharge,
time-to-peak, and time base as parameters, the mean
and variance of the UH is given as follows,

N
D (g,)@)A
Mean(u) =2 = (0 +1,)/3 ... (28a)
quAt
i=1
and
N
D(t—-p)(g)A
Variance (0%) = -=— ... (28b)

2 a.A

i=1

where ‘N’ is the number of intervals of the time ordinate,
‘Ar’ is the time increment, ¢ is the time up to the /™

interval, and ¢; is the discharge at the i" interval, deriv-
able for any point of time ¢ in the triangular UH as,

qi=q—pr 0<t<t,
!
P
(IB—t)
L =q ——2—Lg <1<t .. (29)
P (IB_tp) P

In the limit Af — 0, the summation (¥) in Eqn. 28
approximates the integral form as follows,

p= [ (a)0dt/(1/2g,1,)

o’ = [(t- 1) (g,)dt/(1/2,1,) .. (30)
0

where g, = g;. The substitution of Eqn. 29 in Eqn. 30
leads to,

o’ =Cm(1fp)2

(a+a’-a?)
“7 30(1-a)

For the bridge catchment, u and o calculated using
the actual UH data are 7.76 and 8.76 hrs, and using the
triangular approach equations (Eqns. 29a and 30) the
moments of the UH are calculated as 7.33 and 8.45 hr?,
respectively. Therefore, the triangular analogy of the
UH yields the moments of the hydrograph to a fair
degree of accuracy. It can be verified that the p—,
relationship indicates f, to behave like a location
parameter. Similarly, variance gives the spread or
dispersion of discharge ordinates of hydrograph. A
high variation indicates that the discharge ordinates are
evenly spread and a low variance means high
discharge values cluster at the centroid of UH giving
rise to a steep middle part. This is also evident from
Eqn. 31; a large 3 and small #, gives a large value of
o and, in turn, high variance. It can occur if rising or
recession limb varies asymptotically, showing high
spread of ‘g’ ordinates. It can be checked that o’
increases more rapidly for any increase in #, compared
to the rate of increase with rise in o i.e. the dispersion
of UH ordinates is largely sensitive to #, than #5. This is
also evident from the o — ¢, relationship. Yue et al.
(2002) have expressed the parameter ¢ of the beta
distribution (Eqn. 8), which can be computed using the
method of moments as follows,

.. (31)
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o H

Replacing x as 1/1, (since o= 1/, and 13 = 1) the
parameter r can be expressed as a function of i, o7, b
and #3 however, this shall also give an approximate
parameter estimate.

s3]

CONCLUSIONS

The following conclusions are drawn from the present

study:

1. The beta distribution describes the SUH better than
the existing synthetic methods for limited data and
no data situations.

2. The parameter estimation for the beta distribution
using the proposed analytical equation compares
well with the similar results obtained earlier. The
proposed method has an advantage over the existing
numerical methods in that it allows study of

relationship between the distribution function
parameters and the UH parameters.

3. The non-linear optimization and ANN technique
proposed for deriving the empirical regional
equations showed good performance when used for
ungauged catchments, even when the equations
were derived using data from a non-homogeneous
region.

4. Parameter » in beta distribution is similar to the
parameter » in gamma distribution

5. The beta distribution parameters are rejated to g,
exponentially; for small values of p the rate of
decrease in peak flow is small compared to higher
p-values, further g, is more sensitive to # than p.

6. Representing UH by an equivalent, the analysis
shows #,to behave like a location parameter. Further,
the dispersion of UH ordinates were observed to be
more sensitive to £, than #3.
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Appendices
Appendix A Appendix B

Assuming Eqn. 8 represents a UH of unit duration, the
peak condition occurring at ¢ = #, can be given by
dq,dr = 0. Eqn. 8 can therefore be written as follows,

dg 1 I
dt  B(r,p-r) v I)("’)_ !
(p-r-Db-1,)"" (1) (-1)
()"
=0 ... (al)
Thus,
. (b—I )p—r—-l
(r=1)(7p) i ﬁ—
_ (=104, e)"”
by
b(l-r)

Or (r = 1)(b—t,) = (pr-1) tyor t, = . (a2)

2-p)
It follows from Eqns. (8) and (a2) that,

e [b(l—r)]'[l_b(l—r)]"
B(r,p-r)\ (2=p) 2-p

... (a3)
At, t = ty, ¢ = 0. Therefore, from Eqn. 8,
r-1
t, =0
b—t5)"""
or LB)—_I=0 orb=tg .. (ad)
(p—r)p”
Denoting o = #3/t, in Eqn. (a2),
5
_1- €= .. (a5)
a

Conditions at peak of the hydrograph (refer Eqn. 8),

r-l s S P )
tp (tB—tp)p 1 _ tplzJ (tp) (a_l)p

T B p-r B.p-nty”
... (b1
(a-1)""
=q.t, :ﬂza’"lB(r,p—-r) ... (b2)

Substituting the value of ‘p’ in terms of r (from Eqn.
as),

(a " 1)(1~.-)(|~a)
= .. (b3
A (@™*)Blr,2-r)-(1-r)a] o
Appendix C
Using Eqn. (9a),
p=2-a(l-r)sp-1=1-a(l-=) v (e1)

Considering first two terms of Eqn. 11, the beta
function can be approximated as,

Iplr Nrr(p—r)(p_r) e e (P
L(p+r)

B(r,p-r)=
p? SR

R 1 o (c2)
Ut lZZr)(lJr 12(p—r))

1
14—
( 12p)

On simplifying and rearranging the terms Eqn. (c2)
can be written as follows,

Jr +1/6/13 =600 + 60ur — 61

B(r,p-r)=5/2

J13 - 60+ 607
P2 -o+oar )" ED Qg ) @)
... (€3)




