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ABSTRACT: A large number of dams, built in Italy in the last century, have been dimensioned using hydrological data sample
limited in length of time series. Therefore, the design flood was affected from the scarcity of data and a poor knowledge of the
flood formation processes. Nowadays, besides the data availability, sophisticated statistical methods addressed for extreme
events have been developed and can be fundamental to review the hydrological safety of old dams.

Based on the previous contents, in this paper a bivariate statistical approach, describing the dependence structure between
flood peak and flood volume, is proposed. The analysis is carried out through the application of a one-parameter Archimedean
copula, particularly useful in the practical hydrology. Since the Archimedean copula represents a family of functions, a
procedure based on the goodness-of-fit statistics for selecting the best one has been carried out. The chosen copula function
provided an estimate of variables flood peak and volume for a given joint return period. The bivariate probability distribution
has been expressed in terms of marginal probability distributions of the two considered variables, that can have different form.
Pairs of flood peak and volume with a fixed joint return period have been selected and a hypothetical shape of the flood
hydrograph has been surmised. The proposed method has been applied to the Calcione dam, a small reservoir located in
Central ltaly, in order to re-assess its hydrological safety by comparing the copula method results with those obtained from a
hydrological lumped conceptual model.

INTRODUCTION 2000). However this approach doesn’t take into
account the important role played by flood volume in
the reservoir routing capacity of the dam, particularly
in the definition of the spillway design flood, affecting
the hydrological safety of the dam. Moreover, an
univariate frequency analysis neglects the typically
positive dependence structure between the two afore-
mentioned random variables (flood peak and volume)
and, for this reason, may lead to an overestimation
or underestimation of the design flood, resulting, res-
pectively, in a waste of money or in dam at high risk
(Salvadori and De Michele, 2005). So, the complexity
of flood processes makes a flood more likely to be a
multivariate event that is characterized by a few corre-

A large number of dams have been built in Italy in the
first decades of the last century to supply the need of
industrial, electric power, agricultural and drinking
purposes. However, for that period data availability was
limited, in terms of length of time series as well as of
density on the territory. For this reason, the knowledge
of the involved processes and the modelling techniques
were affected from the scarcity of information. In the
last years, the monitoring of numerous existing dams
has allowed to collect a large amount of data, useful to
develop sophisticated statistical methods addressed
from extreme events that can be fundamental to review
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the hydrological safety of a reservoir.

Main part of the recent scientific literature has dealt
with frequency analysis of flood peaks, which is the
primary random variable in estimating the design flood
of a dam (Stedinger ef al., 1993; Rao and Hamed,

lated random variables, such as flood peak, volume
and duration (Yue and Rasmussen, 2002). Multivariate
models can offer improved understanding and modelling
results regarding the hydrological safety of dams but also
require considerably more data as well as sophisticated
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mathematical analysis. In order to overcome the draw-
backs in using the univariate approach, many authors
have proposed bivariate distribution for frequency
analysis of flood peak and volume (Singh and Singh,
1991; Yue et al., 1999; Yue et al., 2001; Yue and
Rasmussen, 2002; Shiau, 2003). All these methods
were based on the assumption that the two variables
have the same type of marginal probability distribution.
However, in general this assumption is restrictive
because the two afore-mentioned variables could follow
different kinds of marginal probability distributions
(Zhang and Singh, 2006). The use of copula approach
to construct bivariate distributions can overcome this
difficulty. In fact, copulas are functions that express
the joint cumulative distribution function of two
random variables in terms of their marginal probability
distributions. The main advantage of using copulas is
that they can separate the effect of dependence between
the two variables from their marginal distributions
(Shiau et al., 2006). This allows to simplify greatly the
calculations and may even yield analytical expressions
for the isolines of the return periods.

The main purpose of this paper is to address the
issues on hydrological safety of existing dams through
a bivariate frequency analysis of flood peak and
volume based on copula approach. To this end the
results of the copula approach are compared with those
obtained from a lumped rainfall-runoff model applied
to the basin subtended by the dam. The proposed
approaches have been applied to the Calcione dam,
a small reservoir located in Central Italy, in order to re-
assess its hydrological safety by checking the routing
capacity of the dam.

THEORETICAL BACKGROUND ON COPULAS
AND BIVARIATE JOINT PROBABILITY

Copulas are functions that connect multivariate
probability distribution of correlated variables to their
one-dimensional marginal probability distributions
(Nelsen, 1999), synthesizing the essential features of
the existing dependence structure. Thus, the estimate
of multivariate distributions is reduced to the selection
of the marginal distributions that better fit the data set
of correlated variables and to find the most suitable
function that links them. As we are interested in
determining the bivariate distribution of flood peak
and volume, the following description refers to a
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bivariate case. Let X, Y be continuous random
variables, their joint probability distribution function,

F)(_ }{x, y), iS,
Fyy(xy)=P(X<xY<y)
X

x ¥y
= [ [ fey(xiy) ax'ay - (D)

-0 —o0

where x is a value of X, y is a value of ¥, P is the
nonexceedance probability, fy Wx, y) is the joint
probability density function. According to the Sklar’s
theorem (Sklar, 1959), Fx y(x, y) can be estimated as,

Fyy(%y)=C[Fy(x).Fy(»)]=C(w,w) ...(2)

where C is the copula function, Fi(x), F(y) the marginal
probability distributions of the variables X and ¥,
respectively, and u a specific value of U= Fy(X) and w
a specific value of W= Fy(Y).

Among the families of copulas proposed in literature,
the Archimedean one has received much attention in
hydrological analyses because it presents a large variety
of copulas easy to construct (Nelsen, 1999). On this
context, the one-parameter Archimedean copulas are
chosen here to describe the joint probability distribution
between flood peak and volume, that typically are
positively correlated variables. The structure of a one-
parameter Archimedean copula, Cs, is given by,

s (19) =87 (b () ()

where ¢ is the copula generator, a convex decreasing
function, with domain (0, 1] and range in [0,0). It
depends on the copula parameter, 8, that can be estimated
through its relationship with Kendall’s coefficient of
correlation, T, between X and Y. Different analytical
expressions of ¢ produce different copulas applicable
to hydrologic variables with positive or negative corre-
lation. In particular, the copula families considered in
this study are listed in Table 1 along with their main
relationships.

O<u,w<l...(3)

Considering the expression of 1(3), we note that the
Gumbel-Hougaard and the Cook-Johnson copulas can
be applied only to bivariate data showing a positive
dependence structure. On the contrary, the Ali-Mikhail-
Haq copulas are suitable to construct joint probability
distribution functions of both positively and negatively
correlated variables.
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Table 1: One-Parameter Archimedean Copula, C;, for the Families of Gumbel-Hougaard (G-H), Ali-Mikhail-Hag (A-M-H)
and Cook-Johnson (C-J) (t, Kendall's Correlation Coefficient, §, Copula Parameter, ¢, Generating Function)

Family 7(3) 5 Constrain | gt &), t=u, w Cs (u,w)
/s
G-H -5 621 (-In ) exp{—[(—lnuﬁ%-(—lnw)s} }
B-2Y 2f. 1Y 13 (1-7) uw
AMH | | —=|-Z|1-=| In(1-8) | -1=8=] | Ihn—————=
[ 5 J 3[ 5) (1-8) T 1-8(1-u)(1-w)
o -1/8
< e -8 6 ;g
o T 520 31 (u +w 1)

Copula Fitting Procedure

Given a sample of N bivariate observations (x, y1), (x2,
¥2), ...» (Xn, yv), the procedure to construct the joint
probability distribution function, Fy(x, y), of correlated
variables X and Y is synthesized by the following steps:

1. estimate of the marginal distributions, Fi(x) and
Fy);

2. estimate of the dependence function, Cs, between X
and Y for each copula family;

3. identification of the most appropriate copula.

The first step can be carried out through the classical
univariate frequency analysis. The second part of the
procedure involves, first of all, the determination of
the generating function, ¢, through an estimate, Ty, of

Kendall’s coefficient T from observations as,

-1
w=(¥) Tewn(s-x)i-n)] @
i<j
where the function sign is defined as sign = 1 if

(x—=x) () > 0, sign = -1 if (x—x)(y—>)<0, i, /=1, 2,
..., N. As it can be seen in Table 1, the value of ty
defines the parameter & and the function ¢.

Finally, following Genest and Rivest (1993), the
most suitable Archimedean copula to be used for
obtaining the joint probability distribution function is
identified through the following steps:

(a) define a new random variable Z = Z(z) with
probability distribution function K(z), linked to
copula generator ¢ as,

K (z) =z— M
¢ (2)
where ¢’ is the derivate of ¢ with respect to z;
(b) determine a non-parametric estimate of K,
indicated as Ky, by computing:
e z; = N/N=-1), for i = 1, 2, ..., N, where N,
represents the number of pairs (x;, y;) such that x;
<x;andy,<y;,forj=1,2,...,Nandj#1,

..(5)

» Kz, equal to the ratio of the number of
observations z; (j = 1, 2, ..., N) with z;<z; over
the total number of observations;

(c) determine a parametric estimate of K(z,), by Eqn. 5,
with z; obtained in step b;

(d) for each Archimedean copula, plot Ki(z;) versus
K(z) to derive the copula that better fits
observations;

(e) control the choice of the best copula using the AIC
Akaike Information Criterion (Akaike, 1974), by
means of Eqn. 6: specifically, the best copula is the
one that has the minimum AIC value.

AIC=N.log{ﬁi[K(z,)—KN (z,.)]z}+ 2 ...(6)

i=l

Bivariate Return Period

In the bivariate analysis two joint return periods may
be defined. The first one, Tpp, is defined as the return
period in which either X or ¥ or both exceed given
thresholds x or y, respectively,

1 1
TP(X>xorY>y) 1-Fyy(xy)
1

Tor

T 1-Cy (u,v)
where P(X > x or Y > y) is the OR-exceedance

probability of pair (x, ).

The second one is denoted by T,y and is defined as
the return period in which both X and Y are larger than
fixed values x and y, respectively,

1
T =
i P(X >x and Y>y)
1

1= Fy (x) = Fy (9)+ Fyy (%)
1
T 1-u ~v+Cy(u,v)

.. (8)
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where P(X > x and ¥ > y) is the AND-exceedance
probability of pair (x, y).

Since for Archimedean copulas Cs(w, u) < u (De
Michele er al., 2005), the relationship among the
corresponding return periods is,

TOR Smin(Tx,Ty)Smin(TA',Ty)STAND P (9)

where Ty and 7y are the univariate return periods for X
and Y, respectively. This relationship is extremely
useful for a better understanding of the stochastic joint
dynamics of the variables of interest. Moreover, it
highlights the importance to choose which joint return
period to use, as the same pair (x, y) may have greatly
different return periods if considering Tor or Tynp.

DESIGN FLOOD HYDROGRAPH

A Tumped conceptual approach is employed in order to
estimate the design flood. According to this approach,
the basin is schematized as homogeneous in terms of
soil hydraulic properties and rainfall spatial distribution,
and the design hydrograph is given by,

q(1)=4 IJ-E(T) h(t-1)dx

where ¢ is time, g(¢) is the direct discharge at the basin
outlet, 4 is the basin area, € is the effective rainfall and
h is the Geomorphologic Instantaneous Unit Hydrograph
(GIUH). The GIUH depends on only one dynamic
parameter, the basin lag-time Ly, defined as the time
interval between the centroids of effective rainfall and
direct runoff.

wusi(10)

For effective rainfall estimate two different approaches
are considered: the first one is based on bivariate
frequency analysis by copula and the other on the
design rainfall hyetograph abstracted by infiltration.

Copula Based Approach

For a fixed joint return period, the copula approach
allows to select different couples of peak and flood
volume (Q, V). Every pair has to be turned into a
design hydrograph with a shape suitable to the
geomorphologic characteristics of the basin. To this
end, for each pair (Q, V) the flood hydrograph is
derived through the convolution of a constant effective
rainfall rate and the GIUH. Thus, the flood hydrograph

g(#) is given by,

Vr

— |A(t—-1) dt
fogfu( ) L (1D
V

— |h(t-1) d
o Jit-) &

q(t)=
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where ty is the duration of effective rainfall,

determined by assuming max g(f) = Q.

Rainfall-Runoff Model Approach

For a fixed return period the design rainfall hyetograph
is obtained with the same duration of the GIUH and is
derived by the alternating block method using an areal
rainfall depth-duration curve (Chow et al., 1988). The
effective rainfall is estimated considering infiltration
as the main loss and simulating the process of
infiltration with a parametric local infiltration model
(Flammini et al., 2004). This model is a new
formulation of the semi-analytical model developed by
Corradini et al. (1997) for the estimate of rainfall
infiltration into a homogeneous soil under complex
rainfall patterns, including successive infiltration/
redistribution cycles. Assuming an initial soil water
content, 0;, invariant with depth, z, and the dynamic
wetting profile, 6(z), of distorted rectangle shape, the
time evolution of surface water content, 8, is described

by,

{[,, —e(t)]- Ko - (% —9,)G(8,-}90)B(80)pK0}
ver A1)
where r is the rainfall rate, K, is the surface hydraulic

conductivity,  is the cumulative dynamic infiltration
depth, p and B are parameters linked to profile shape,
G(0;, Bo) is the net capillary drive at the wetting front
depending on the soil water matric potential, ‘P, and
hydraulic conductivity, K, according to,

¥(0p)

1 Kd'¥Y

G(GI,BO):—O 5
(9,

4/(13)

Eqn. 12 may be solved numerically during each of
infiltration process phases (infiltration-saturation-
distribution-reinfiltration), expressing the soil hydraulic
properties by functional forms (Corradini et al., 1997)
which incorporate the well-known pore size distribution
index, A, the air entry potential, ¥, the residual soil
water content, 6,, and the water content at natural
saturation, 6,, as well as two empirical coefficients, ¢
and d. The new model version incorporates para-
meterizations of a few hydraulic properties through
empirical parameters and allows the estimation of time
evolution for infiltration rate and surface water content
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through simple explicit relations. In particular, the
quantity G is parameterized according to,

G(Bi,eo)z%(w]3+%

0 (90 —9,)

|
4 ek 2 4

9, -0,)"5" ] 0.-0)c'a

¥, ( s1+h ) 3 +d —( 4 r)ci
(GD —9,-) (es —80)56‘ (es —90)26

. (14)

where K, is the saturation value of K. Eqn. 12,
rewritten for time to ponding, #,, and for the post-
ponding stage produces,

’p r _ _(95 _BE)G(ei’es)KsB(es)p a
J((Q K,)dt= (4%)—KJ ... (152)

(6, —ef)G(ef,és)KsB(es)p
I

where f; is the infiltration capacity for 1 > ¢, and G is
given by Eqn. 14. In the infiltration model adopted
here, Eqn. 12 is also parameterized in order to derive
6, as a function of time during the unsaturated stages.

f=K,+ ... (15b)

Lastly, during a reinfiltration stage due to an intense
rainfall, starting at a time f,, a new time to ponding
could be reached; it may be computed by considering
t, as the new initial time. Then, during the new post-
ponding stage the infiltration capacity is assumed to
be, at each time, the maximum of the two values derived
assuming as initial time the start of the complex rain-
fall event and the beginning of the last reinfiltration
period. The parameterizations here described lead
to represent any stage during successive infiltration/
redistribution cycles by eliminating computations of
complex integrals and the numerical solution of the
ordinary differential equation (Eqn. 12). In particular,
during the stages of saturated soil surface, the effective
rainfall rate, €, is derived as,

e=r—f ... (16)

DESIGN HYDROGRAPH RESERVOIR ROUTING

In order to re-assess the hydrological safety of a dam, a
simulation of the reservoir behaviour can be carried
out considering flood events related to a fixed return
period that should represent the expected design life of
the dam. In particular, operating the routing of design

hydrographs allows to check adequacy of the dam
spillway. The simulation of flood routing requires the
definition of the initial reservoir level, chosen according
to cautious criterion. The mathematical model for
flood routing is based on the continuity equation
expressed in the form,

_dv
L
where g, is the inflow to the reservoir, g, is the over-
flow spillway discharge, the unique outlet considered,
and V represents the water volume stored in the
reservoir. Eqn. 17 can be solved numerically through
the Runge-Kutta algorithm (Castorani and Moramarco,
1995) when the initial volume is known. The dam
spillway can be considered adequate if during the
routing of design hydrograph the reservoir level does
not overcome the maximum water level.

.. (17)

CASE STUDY
Dam Basin Description and Data Used

The procedures described in the previous sections have
been applied to the Calcione dam, a small reservoir
located in Central Italy, with a subtended drainage area
of 20.4 km’. The maximum water storage of the
reservoir is about 4.010° m’, while the maximum
regulation level, the maximum water level and the
crest level are 362.50, 364.00 and 366.00 m a.s.l.,
respectively. In the catchment a hydro-pluviometric
network has been operating since 1983, consisting of
one rain gauge station and one hydrometric station
both situated at the dam. Hourly data of the level
reservoir along with information on the bottom outlet
discharge were available from 1983 to 1997 (except
for 1988) and from 2004 to 2006. Through Eqn. 17 the
more salient flood hydrographs entering the lake were
determined. In particular, 29 flood events have been
estimated and the maximum annual flood, characterized
by both the maximum flood peak and the maximum
flood volume, has been selected. The principal
characteristics of these events are reported in Table 2.

Application of the Copula Method

The application of copula method to the random
variables flood peak and volume implicates: 1) the
determination of marginal probability distributions that
better fit the empirical distributions af the two variables;
2) the identification of the most suitable Archimedean
copula to describe the dependence structure function.
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Table 2: Main Characteristics of Maximum Annual Floods Occurred in the Basin of the Calcione Dam: Peak Flow, Qror,
Direct Peak Flow, Q, Total Runoff Volume, Vro7, Direct Runoff Volume, V, Total Areal Rainfall Depth, R,, Storm

Duration, D, and Maximum Rainfall Rate, r,.,

Date (gggsr) (m?/s) (1V ™) (1o~"vm3) (r!;;]'r) (f,)) )
Feb 1983 18.5 177 8.98 7.79 59.2 24 9.8
Feb 1984 46 45 2.90 253 32.8 23 54
Mar 1985 8.5 7 3.27 259 29.0 15 78
Jan 1986 10.2 101 6.42 5.29 65.8 22 7.0
Dec 1987 25.9 252 5.33 437 44.0 12 100
Jun 1989 10.4 10.2 297 2.60 30.0 19 7.0
Dec 1990 38 3.7 2.32 1,66 56.2 26 6.2
Feb 1991 103 8.1 267 141 21.2 1 6.4
Oct 1992 468 46.7 5.93 5.33 526 8 24.4
Oct 1993 651 65.0 6.27 5.87 30.0 12 15.6
Nov 1994 17 16 0.47 0.34 18.2 1 8.6
Dec 1995 136 135 4.31 3.69 54.8 21 9.2
Nov 1996 53 5.0 2.16 166 56.0 18 10.0
Jun 1997 227 222 5.78 474 938 13 20.0
Oct 2004 85.0 84.6 12.22 11.00 146.2 9 39.4
Nov 2005 26.3 252 7.22 5.91 67.0 19 9.0
Jan 2006 38.7 38.6 16.59 15.18 83.0 27 12.0

Marginal Distributions of Flood Peak and Volume

The Gumbel, Lognormal and TCEV (Rossi et al.,
1984) distributions have been considered for univariate
frequency analysis of annual maximum direct flood
peak, O, and annual maximum direct runoff volume,
V. On the basis of the Kolmogorov-Smirnov test, all
the three theoretical distributions resulted to be
consistent with the data. Therefore, the choice of the
distribution was based on the comparison of the three
probability distributions versus the sample empirical
distributions shown in Figure 1. As it can be seen, the

1.0
a)
0.8
- 6
&
o
= 04
< sample frequency
0.2 - — = Gumbel
- - = Lognormal
—==TCEV
0.0 ; : -
0 20 40 60 80 100
Q (m¥s)

TCEV distribution can be considered as the most suitable
probability distribution function to fit observed values of
both flood peak and volume for the catchement of the
Calcione dam. In fact, this distribution guarantees the
better reproduction of the highest observed values.
Fixing a return period (7, and 7}) for both variables
equal to 1,000 years, which is the design return period
for the dam in accordance with the directives followed
in Italy, the fitted TCEV distributions furnished a flood
peak and volume value of 204 m®/s and 3.1 10° m’,
respectively.

1.0 e
b) e
0.8
—~ 0.6
-
&
0.4
¢ sample frequency
0.2 — = Gumbel
: - = = Lognormal
———TCEV
0.0 sty . :
0 02 04 06 08 1 12 14 16
V (10° m®)

Fig. 1: Lognormal, Gumbel and TCEV probability distributions versus sample empirical probability distribution of
(a) flood peak, b) flood volume
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Joint Probability Distribution of Flood Peak and
Volume

The couples of observed Q and ¥ for the Calcione dam
were found well correlated, with a Kendall’s coefficient
equal to 0.691. Their bivariate probability distribution,
Fo (g, v) has been estimated by the previously described
Archimedean copulas. Among them the Cook-Johnson
(C-J) copula was found to be the most suitable to
represent the bivariate distribution of the correlated
flood peak and volume for the study catchment. In
fact, it is characterized by the lowest value of the AIC
parameter as well as by the minimum deviation
between K and Ky, as shown in Figure 2. The selected
Joint probability distribution function is shown in
Figure 3.

Joint Return Period of Design Flood Peak and
Volume

The marginal return periods, 7, and 7}, and joint
return periods Ty and Tp, of variables flood peak
and volume for the catchment of the Calcione dam
have been calculated. In Figure 4 Tog and Ty, are
plotted versus 7, and 7}, while in Figure 5 observed
flood peak and volume couples are displayed with
reference to different return periods estimated by the
copula approach. The analysis of Figure 5 can provide
univariate and bivariate risk assessment of flood
events. In fact, univariate analysis reveals that the
flood event occurred on January 2006, characterized
by a peak flow value of 38.6 m’/s and volume of

Ly — 1
038 1 | " _os ‘
f:“ | Ios
=04 ; E 04 -
02 02 -
i = 0

0 0.10203040506070809 1
Ky

N

0 010203040506070809 1
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15.18 10° m’, presents an univariate peak flow return
period of 4.5 years and an univariate flood volume
return period of 25.5 years, while its Tog is 4.3 years
and its 7yp is 35.1 years. For the flood event occurred
on October 2004, with peak flow equal to 84.6 m’/s
associated to a volume of 11.00 10° m’, the values of
the afore-mentioned 7, Ty, Tor and Tuyp are,
respectively, equal to 19.0, 9.7, 7.5 and 45.5 years.
These observations mean that, if flood control
planning focuses on flood peak only, the second event
would be considered quite relevant. On the contrary,
by assuming also the volume as safety factor, the first
event would be relevant too. Then, the analysis of the
bivariate behaviour of flood peak and volume can give
an instrument to correctly evaluate the relevance of
flood events. In fact, the two above-mentioned events
are characterized by a similar joint return period.

Design Hydrographs for the Calcione Dam

Both the approaches considered in this study for design
hydrograph estimation require the determination of the
GIUH for the catchment subtended by the dam. This
has been derived from the dimensionless instantaneous
unit hydrograph estimated for a geographical area of
Central Italy including the catchment itself (Corradini
et al., 1995; Melone et al., 2002). The basin lag-time
was computed by the rainfall-runoff model applied for
simulating six observed flood events. In particular, Lg

——T S} (e

0 010203040506070809 1
Ky Ky

Fig. 2: Comparison of nonparametric Ky(z) and parametric K(z) for Gumbel-Hougaard (G-H), Ali-Mikhail-Haq (A-M-H),
Frank (F) and Cook-Johnson (C-J) copulas referring to correlated variables flood peak and volume

Foufav

o0

= o™

0D o

8.5 9

i ——Fgv=0.999
L Foy=0.998 |
45 : —B=Fov= 0.995 ||
el : | —Fqy=0.990/|
~
= 35

100 150 200 250 300 350
Q (m'fs)

Fig. 3: a) Joint probability distribution function Fq1q, v), according to the C-J copula model, b) contours of Fo g, v)
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Fig. 4: Joint return period of flood peak and volume for the basin of the Calcione dam, according to the C-J copula
model related to a) OR-case, b) AND-case, versus marginal return period
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Fig. 5: Contours of joint return periods Tor and Taup, @and marginal return periods T and Ty, of flood peak and volume.
Observed annual maximum peak and volume are also shown

Copula Approach

For a fixed joint return period, infinitive couples of
flood peak and volume (Q, V) can be determined
through the copula approach. Thus, an appropriate
selection of representative couples is necessary. In
particular, considering a 0.999-joint nonexceedance
probability curve and a Tpr = 1,000 years for cautious
reasons, three couples were selected: one couple is
characterized by intermediate values of peak and
volume, whereas the other refer to the asymptotic
values assumed by the two variables (Figure 6a). The
corresponding hydrographs are shown in Figure 6b.

Rainfall-Runoff Model

The rainfall-runoff model requires the determination of
both the design rainfall hyetograph and the model

parameters, that are the basin lag-time and the main
parameter involved in estimating the losses, 6,. These
parameters have been estimated for the catchment of
the Calcione dam through a procedure of calibration.
The other parameters involved were assigned on the
basis of previous analyses on the soil hydraulic
properties in the Upper River Tiver basin (K, = 0.4
mm/h, 6, = 0.41, 6, = 0.08) and subsequently tested
through the calibration procedure. At the purpose, the
rainfall-runoff events used are reported in Table 3
together with the calibration procedure results. In
particular, the calibration allowed to check that for
salient flood events the lag-time can be assumed
invariant and equal to 2.9 hours, whereas the
antecedent soil conditions can be represented by a
medium-high initial water content.
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Fig. 6: a) Selected design couples of flood peak and volume for a joint probability distribution function
Fao g, v) = 0.999, b) flood hydrographs derived from the selected couples

Table 3: Rainfall-Runoff Model Calibration Results (6;,
initial soil water content, €q, €;and €y, error on peak flow,
time to peak and volume, respectively)

Flood Event 4 €Q (%) (‘2 ) (f/:)
Jan 1986 0.297 27.7 0.0 2.0
Feb 1991 0.318 25 -10.0 1.4
Dec 1987 0.365 9.0 0.0 -0.1

Nov 2005 (1) 0.272 4.7 0.0 1.6

Nov 2005 (2) 0.298 -1.0 0.0 0.2
Jan 2006 0.409 -3.4 111 | -126

For a fixed return period of 1,000 years, the design
rainfall hyetograph has been calculated using the rainfall
depth-duration curve obtained from the regionalization
procedure referred to the area of Compartimento
Bologna-Pisa-Roma (CNR-GNDCI, 2000), that was
found in good accordance with local statistical analyses.
Considering a rainfall hyetograph of alternating block
shape and saturated initial soil conditions, the design
hydrograph estimated by the rainfall-runoff model was
characterized by a peak flow and flood volume of
193 m’/s and 3.4 10° m’, respectively. This design
hydrograph was compared with the results of the
copula-based bivariate analysis. As it can be seen in
Figure 7, the values of flood peak and volume derived
from the rainfall-runoff approach are quite close to the
ones related to a joint return period Tor equal to
1,000 years and greatly more relevant than the ones
corresponding to a joint return period Tanp equal to
1,000 years. In particular, the design hydrograph
derived from the rainfall-runoff model is characterized
by a Tor equal to 500 years and a Tanp equal to
183,000 years.
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Fig. 7: Design flood estimated by the rainfall-runoff model

in relation with the results of the copula-based bivariate
analysis (Tor, Tanp), for a return period of 1,000 years

Reservoir Routing of Estimated Design
Hydrographs

In order to re-assess the hydrological safety of the
Calcione dam, a simulation of the reservoir behaviour
has been carried out considering the four flood events
previously derived (three by the copula method and
one by the rainfall-runoff model) and assuming as
initial reservoir level the maximum regulation one.
This choice has been suggested by cautious reasons as
the reservoir levels observed before each maximum
annual flood never overcame the maximum regulation
level. Figure 8 shows the simulation results for the
design flood events estimated by the copula approach
and by the rainfall-runoff model. As it can be seen, the
maximum water level was never overcome during the
simulated flood events and this assess the hydrological
safety of the Calcione dam in terms of adequacy of
dam spillway.
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Fig. 8: Results of reservoir routing simulation for different design flood events (rainfall-runoff model one, events number
1 and 3 of Figure 6) with a return period of 1,000 years: a) inflow and outflow hydrographs, b) water level

CONCLUSIONS

The bivariate frequency analysis based on one-parameter
Archimedean copulas allowed to estimate the joint
probability distribution of annual maximum flood peak
and volume. These quantities are fundamental in order
to assess the hydrological safety of dams in terms of
flood design estimation and analysis of the reservoir
routing capacity through the spillway. Moreover, the
copula approach can be useful to verify the design
hydrograph estimated by a lumped rainfall-runoff
model, calibrated with few observed flood events.

On the basis of the results obtained for the Calcione
dam the following conclusions can be drawn: (1) the
univariate analysis provided 1,000 years flood peak
and volume comparable with the corresponding ones
from the rainfall-runoff model; (2) the bivariate
analysis led to significantly different evaluation of
design flood with regard to the chosen return period,
related to OR or AND conditions of critical peak and
volume occurrence; (3) for a return period of 1,000
years, the values of flood peak and volume derived
from the rainfall-runoff model were found close to the
ones given by the OR-condition of the copula method
and much greater than the ones obtained under AND-
condition; (4) the hydrological safety in terms of dam
spillway has been assessed by operating the reservoir
routing considering as inflows the design events
obtained from the rainfall-runoff model and the copula
method. The use of both the approaches investigated
here can be considered a valuable method for checking
the adequacy of dam spillway mainly for the existing
dams with short time series of flood peak and volume.

ACKNOWLEDGEMENTS

The authors wish to thank R. Rosi for technical
support; they are also thankful to Ente Irriguo Umbro

Toscano for providing the data. This work was partly
funded by the National Research Council of Italy, with
the financial support of Ente Irriguo Umbro Toscano.

REFERENCES

Akaike, H. (1974). “A new look at the statistical model
identification”. IEEE Trans. Autom. Control, AC-19(6),
716-722.

Castorani, A. and Moramarco, T. (1995). “Selecting the
optimal design flood”. International Journal of
Hydropower & Dams, (T), 74-80.

Chow, V.T., Maidment, D.R. and Mays, L.W. (1988).
Applied Hydrology. McGraw-Hill, New York, USA.

CNR-GNDCI (2000). “Sintesi del rapporto regionale per i
compartimenti di Bologna, Pisa, Roma e zona emiliana
del bacino del Po”. Rapporto di sintesi sulla valutazione
delle piene in Italia (in Italian).

Corradini, C., Melone, F. and Singh, V.P. (1995). “Some
remarks on the use of the GIUH in the hydrological
practice”. Nord. Hydrol., 26, 297-312.

Corradini, C., Melone, F. and Smith, R.E. (1997). “A unified
model for local infiltration and redistribution during
complex rainfall patterns”. J. Hydrol., 192, 104—124.

Flammini, A., Morbidelli, R., Corradini, C. and Saltalippi,
C. (2004). “A parameterized local infiltration modeling
for complex rainfall patterns”. Environmental Modelling
and Simulation, lasted Acta Press, Anaheim, 186-191.

Genest, C. and Rivest, L. (1993). “Statistical inference
procedures for bivariate archimedean copulas”. J. 4m.
Stat. Assoc., 88, 1034-1043.

Melone, F., Corradini, C. and Singh, V.P. (2002). “Lag
prediction in ungauged basins: an investigation through
actual data of the upper Tiber River valley”. Hydrol.
Process., 16, 1085-1094.

Nelsen, R.B. (1999). An introduction to copulas. Springer-
Verlag, New York, USA.

Rao A.R. and Hamed, K.H. (2000). Flood frequency
analysis. CRC, Boca Raton, Florida.



Bivariate Flood Frequency Analysis for the Hydrological Safety of Dams 631

Rossi, F., Fiorentino, M. and Versace, P. (1984). “Two
component extreme value distribution for flood
frequency analysis”. Water Resour. Res., (20). 847-856.

Salvadori, G and De Michele, C. (2005). “Bivariate
statistical approach to check adequacy of dam spillway”.
J. Hyd. Engrg., ASCE, 10(1), 50-57.

Shiau, J.T., Wang, H.Y. and Tsai, C.T. (2006). “Bivariate
frequency analysis of floods using copulas”. J. of
American Water Resour. Association, 1549-1564.

Shiau, J.T. (2003). “Return period of bivariate distributed
hydrological events”. Stochastic environmental research
and risk assessment, (17)1-2, 42-57.

Singh, K. and Singh, V.J. (1991). “Derivation of bivariate
probability  density = functions with  exponential
marginals”. Stochastic Hydrol. Hydr., 5, 55-68.

Sklar, K. (1959). “Fonctions de repartition a n dimesions et
leura marges”. Publ. Inst. Stat. Univ. Paris, (8), 229-231
(in French).

Stedinger, J.R., Vogel, R.M. and Foufoula-Georgiou, E.
(1993). Frequency analysis of extreme events. Handbook
of Hydrology, D.R. Maidment (Editor), New York.

Yue, S. and Rasmussen, P. (2002). “Bivariate frequency
analysis: discussion of some useful concept in hydro-
logical application”. Hydrol. Proc., 16(14), 2881-2898.

Yue, S., Ouarda, T.B.M.J., Bobée, B., Legendre, P. and
Bruneau, P. (1999). “The Gumbel mixed model for flood
frequency analysis”. J. Hydrol., 226, 88—100.

Yue, S., Ouarda, T.B.M.J. and Bobée, B. (2001). “A review
of bivariate Gamma distributions for Hydrological
Application™. J. Hydrol., 246, 1-18.

Zhang, L. and Singh, V.J., (2006). “Bivariate flood frequency
analysis using the copula method”. J Hyd Engrg,
ASCE, 11(2), 150-164.




