International Conference “Water, Environment, Energy and Society” (WEES—2009)
New Delhi, 12—-16 fanuary 2009

Statistics of Extremes in Hydrology

W.G. Strupczewski' and K. Kochanek®

Water Resources Department
Institute of Geophysics, Polish Academy of Sciences
Ksiecia Janusza 64, 01-452 Warsaw, POLAND
E-mail: 'wgs@igf.edu.pl; *kochanek@igf.edu.pl

V.P. Singh

Department of Biological and Agricultural Engineering
Texas A&M University
Scoates Hall, 2117 TAMU, College Station, Texas 77843-2117, USA
E-mail: vsingh@tamu.edu

ABSTRACT: The main objections to the use of a pure statistical approach in the analysis of hydrological extremes are small
sample size and unknown distribution function. The ML estimates of large quantiles are highly sensitive to the distributional
choice, while the power of discrimination procedures is unacceptably low for hydrological sample sizes. The L-moments
method seems to be the best for this purpose. Application of heavy-tailed distributions for extremes modelling is discussed.
Moreover two-shape parameter distributions, while some of them are heavy-tailed, are proposed. Keeping in mind that the
largest sample element is a low quality data, the effect of its omission on the L-moments accuracy of upper quantiles of two-
parameter heavy-tailed distribution is examined. Recent developments in the statistics of extremes are primarily related to the
maximum likelihood estimation in the presence of covariates. Its present and prospective hydrological applications are
discussed with emphasis on non-stationary flood frequency analysis. As an alternative a two level estimation technique is
proposed for estimation of non-stationary parameters of the distribution.
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INTRODUCTION

Statistics of extremes have played an important role in
engineering practice for water resources design and
management. The classical extreme value theory is
built on the assumption that observations in the time
series are Independent and Identically Distributed
(IID). The cornerstone of this theory is the “three
types” of distributions which can arise as limiting
distributions of extremes in random samples, i.e.,
Gumbel, Fréchet and Weibull. They are combined into
the Generalized Extreme Value (GEV) distribution,
which has been widely used for modeling the
distribution of flood peaks in at-site and regional
settings. The main objection to this is that hydrological
processes rarely produce observations that are IID. It
opens the room for using alternative distribution
families if they fit the data better.

In FFA, a Probability Density Function (PDF) is
selected more or less subjectively from among

'Conference speaker

positively skewed PDFs of continuous type. Some of
these distributions were introduced because of their
suitability to modeling different shapes of histogram or
perhaps simply because they had not been used already
(Cunnane, 1989). Few of them are supported on the
basis of deductive reasoning about the genesis of
floods. Since the theoretical arguments supplied for the
purpose can be easily undermined, empirical suitability
plays a much larger role in distribution choice than a
priori reasoning. Obviously, the effect of the model
selection is more pronounced and critical in the upper
tail of a distribution.

Nowadays there is a growing consensus that
hydrological extremes are heavy-tail distributed which
is inherited from presumably heavy-tailed maximum
precipitation. The present-day views on the causes of
the appearance of heavy-tailed (inverse-power) distri-
butions in nature are shortly presented in Section 2.
Hydrological records are too short to provide sufficient
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evidence for heavy-tailed property of extremes. The
evidence got by “regional averaging” of distribution
parameters of annual hydrological maxima (Hosking
and Wallis, 1997) (i.e., a trade-off between space and
time) can be undermined as an artifact of using the -
moments method (Klemes, 2000). Hence, a variety of
both thin and thick tailed distributions are equal as
alternative models for a given sample. Our findings on
the selection of the model that best fits a set of
observations are shortly presented in Section 3. The
possibility of correct identification of a PDF in the
case of normal hydrological sizes of samples is small
even in the ideal case when the set of alternative PDFs
contains the true (7) distribution function. Therefore,
in reality, one deals with the hypothetical PDF (H),
called here the false distribution function (F), which
differs more or less from the true one. This will result
in a model error (bias) in any statistical characteristic
of the distribution (Section 4). Its magnitude for a
given characteristic depends not only on how closely is
F to T but on the estimation method as well. In
practice to assess the accuracy of estimation, the
chosen model is considered as the true (7) one, i.e., the
standard errors (SE) of estimated quantiles serve as the
total error. However, an asymptotic bias caused by the
false distributional assumption can be several times
larger than SE. Section 5 discusses consequences on
hydrological design of using heavy-tailed distributions.
While scrutinizing annual flow maxima or the peaks
over threshold, the largest element in a sample are often
suspected to be low quality data, outliers or values
corresponding to much longer return periods than the
observation period. Section 6 deals with the effect of
omission of the largest sample element on the accuracy
of large quantile estimation obtained for two-
parameter heavy-tailed distributions by the L-moments
techniques. Introduction of the second shape parameter
instead of the lower bound parameter is the subject of
Section 7. Section 8 discusses the inclusion of
covariates into probability distribution by making the
distribution parameters functions of covariates. Special
attention is paid to time-trend inclusion in flood
frequency modelling (Section 9). Finally, the problem
of multivariate hydrologic modelling is outlined in
Section 10, and Section 11 concludes the paper.

CAUSES OF INVERSE-POWER DISTRIBUTION
IN NATURE

Many geophysical phenomena, because of their
complexity, manifest non-regular and chaotic
behaviour. It appears, however, that statistically some
observational distributions and patterns reveal that
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their nature is not purely random. The patterns have a
fractal or multifractal structure and distributions
resemble long-tail inverse power form. The observations
include (after Czechowski, 2001): streamflows,
topography, river networks, precipitations, rock
fragments, mineral deposits, clouds, turbulent eddies,
crack populations, fault distributions and magnitude
frequency. The revelation of these facts is quite
surprising—it  testifies to some universality of
behaviour of complex systems irrespectively of what
processes (physical, biological or economical) they
describe. Widespread appearance of inverse-power
distributions in nature and human activities put self-
evident questions about the reasons. The cause of
inverse-power behaviour can be explained both by the
non-linear approach (e.g., Czechowski, 2001) and the
privilege approach (Czechowski, 2005). There is a
relevance between these two approaches.

In the first approach, the structure of the medium, or
the behaviour of intrinsic processes, is purely random
on the lowest description levels, i.e., it may be
characterized by purely random distributions such as:
Poisson, exponential or Gaussian. Physical phenomena
are modelled as a kind of black box g that transforms
input variables x into an output variable y = g(x) that is
of interest in given phenomena. Unknown parameters
or the intrinsic structure of the model is used as the
input random variables. An amazingly wide class of
non-linear models transforms random (exponential)
distributions into a long tail distributions. The class
includes increasing functions between power one
(g(x) =x* for sufficiently large &) and those that
increase very fast along a vertical asymptote. In the
case of more non-linear functions g(x) the inverse
power forms of distribution functions appears for
sufficiently large values of y. When the models are
represented by differential equations, the degree of
non-linearity of equations may be lower. Chaotic
phenomena are caused by non-linearities of the model,
and therefore non-linearities can lead to inverse-power
distributions (see McCauley, 1995).

In the second approach, the inverse-power behaviour
was derived using the privilege concept (where the
privilege means the susceptibility of the state of the
system onto a change). Long tails mean an excess of
large events in comparison with purely random
distributions as the Poisson, exponential or normal.
This suggests that during the evolution of the system,
large events are in some way privileged. In a physical
planetesimal coagulation model, large bodies are
privileged because they attract other stronger bodies by
gravitational force. In the geometrical percolation
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model, larger clusters are privileged because they have
longer perimeter and therefore grow faster (the
geometrical privilege). In order to take into account the
privilege, the model based on the master equation for
the pure birth processes has been used with continuous
time and discrete state space (N = 1, 2, ...). According
to the form of the privilege function B(N), one can
obtain various forms of solution. For natural boundary
conditions, inverse-power appears for B(N) = N* when
a> 1. However, introducing the boundary conditions
of the source type, the inverse-power solutions (steady
state solutions) are obtained even for & > 0 (i.e., even
for a very weak privilege).

If the inverse power forms of distribution functions
appear for large values of an event, a heavy tail is
likely to hold for a distribution of annual extremes of
this process. Morrison and Smith (2002) relaxed this
condition showing that a mixture of Gumbel distri-
butions (i.e., thin-tailed distributions) of the two
independent random variables, as might arise when
extremal distributions depend on the origin of flood,
can resemble the GEV.

MODEL SELECTION

The selection of a correct or best-fitting distribution
can have a significant effect on the reliability of flood-
related structures. Even if the sample size is not
sufficiently large for making a correct selection with
high probability, a method of selection is still required
and whatever information is available it needs to be
utilized. In general, even though two models may
exhibit similar fits to given data, it is, nonetheless,
desirable for FFA to select the true (or more nearly
correct) model, since inferences based on the model
will involve tail probabilities where the effect of the
model selection is more pronounced and critical.

In practice, two statistical identification approaches
are employed as a decision procedure of statistical
model building or identification: (1) goodness-of-fit
procedure or (2) discrimination procedure. The
goodness-of-fit procedures test whether or not the
assumed distribution (also called the model) does
indeed fit the data to a specific degree of confidence.
They are of little value for model selection for
moderate or small size samples.

A discrimination procedure must define a test
statistic as well as a decision rule indicating the action
to be taken for each observed sample. Several test
statistics employed for this purpose are modifications
or extensions of standard goodness-of-fit tests. Having
defined a discrimination procedure, one selects from
the set of competing models the model that is,
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according to the decision rule, best fitted to the data.
One can also prioritize all competing models according
to the values of the selection criterion.

Five two-parameter probability distributions, Gamma
(Ga), Lognormal (LN), Weibull (We), Convective
Diffusion (CD) (Strupczewski et al., 2001a), also called
Inverse Gaussian distribution (e.g., Tweedie, 1957),
and Gumbel (Gu), were considered as alternative
models for the distribution of annual peak flow dis-
charges of Polish rivers (Mitosek et al., 2006); and
three estimation methods, MLM, MOM and LMM,
were used. Five test statistics were employed for this
purpose. The studies, comprising 39 historical time
series of 70 years length revealed: (a) small differences
in the values of the criterion function of the distri-
bution considered; (b) some impact of the estimation
method on the model selection; and (c) quite a high
influence of the observation period on the model
selection. In particular the CD model was selected as
the best model by the Likelihood Ratio (LR) criterion
in 27 of 39 cases, i.e., with a selection rate of 0.69,
while the LN model was selected by the OK statistics
(Quesenberry & Kent, 1982) with a selection rate of
0.97.

To evaluate the performance of each procedure,
simulation experiments were considered for the
analyzed cases of choice among any two and four
models, i.e., Ga, LN, We and CD (Mitosek et al., 2006;
Strupczewski et al, 2005). The variation in the
efficiency of the procedures was investigated for
various pairs of the considered distributions for
different values of the coefficient of variation and
sample sizes. These studies showed that the use of a
discrimination procedure without the knowledge of its
performance for the considered distributions may lead
to erroneous conclusions. Usually, one of the models is
favoured by the discrimination procedures. This
imbalance depends on the procedure, competing
models, parameters and the sample size. An example is
shown in Table 1, where the LR procedure gave the
probability of correct selection (PCS) of the CD model
twice as large as that of the LN model and the PCS
rarely exceeded 50% when the LN sequences were
generated. On the contrary, the QK procedure
(Quesenberry and Kent, 1982) highly favoured LN
over CD (not shown). This explains the reason for
selecting CD by LR as the dominant model for Polish
data, and LN if the QK procedure was applied. In fact,
what is considered in hydrology as a large sample is
indeed a small sample if the problem of distribution
choice is of concern. The use of several model
discrimination procedures, combined with the
knowledge of their efficiency for a given case, seems
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to be a promising way to increase the efficiency of the
model selection techniques in FFA. The studies on the
efficiency of discrimination of the true model show
that in the ideal case, i.., if the competitive set of
models contains the true PDF, the probabilities of
correct selection are probably unacceptable for
“hydrological” sample sizes, and samples of sizes
N=100 are usually required to give large levels for
these probabilities of correct selection. The dis-
crimination power decreases with a number of
parameters to be estimated from a sample. Therefore,
in reality, one deals with the hypothetical PDF (H),
called here the false distribution function (F), which
differs more or less from the true one. This produces a
model error in any statistical characteristic of the
distribution. Its magnitude for a given characteristic
depends not only on how closely is F to T but on the
estimation method as well.

Takle 1: Probability of correct selection for the LR procedure
got by sampling experiment. Convective diffusion (CD)
vs. Lognormal (LN) models—parameters estimated by
MLM. Legend: N - sample size, Cy - variation coefficient

C, =.10|Cy = .25|C,= 50| C,= .75 |C,= 1.00]C, = 1.50
CD |LN| D |LN|cD |LN| ¢ (LN] co [in]eol v
10| 59 |.19| 62 20| 69|:22] .73 | 28] .76 |28 80| 35
30| .63 .31) .65 |.32| .69 |:35| .74 (30| .77 | 45| .80( 54
50 | .66 |.34| 67 |.36|.70 | 41| .75 |46 .79 | 52| 83| 63
100 | .70 |.38| .71 | 41|.71].46] .76 | .55 .80 |63 88| 76
150 | .81 |.40| .81 |.43| .81 |.51| .80 |.61| .82 |.70|.92| 84

N

MODEL ERROR

In practice one deals with the “false” model and is not
able to assess the magnitude of model error of any
estimated statistics. To that end, the “true” PDF
together with its parameter values should be known.
The model bias of large quantile estimates depend on
both the estimation method and sample size. The
interest is to find a most robust estimation method for
large quantiles to the false distributional assumption.

Strupczewski er al (2002 a, b) analytically
evaluated an asymptotic bias of four estimation
methods caused by the assumption of a false
probability distribution. The estimation methods were
used by approximating the “true” model by the “false”
one. Several pairs of two-parameter distributions
bounded at zero showed that the asymptotic bias of
large quantiles is an increasing function of the true
value of the coefficient of variation (Cy), being
smallest for MOM and largest for MLM. The bias of
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LMM occupied an intermediate position. Figure 1
shows the asymptotic relative bias of quantiles if the
log-normal distribution asymptotic sample was falsely
recognized as the log-Gumbel distributed. This finding
essentially diminishes the practical usefulness of MIM
in hydrological extremes analysis, because its efficiency
may not compensate for the (frequently) huge bias
produced by the assumption of a false PDF in the
region of small exceedance probability quantiles the
user is often interested in. It marks a departure of the
hydrological extremes analysis from classic statistical
theory of extremes of which the core is maximum
likelihood method.

As shown in Figure 1, the upper quantile estimates
got by the Z-moment matching are much less sensitive
to false distributional choice than ML estimates.
Computational simplicity, small biases of sample
estimates of L-moments and applicability for heavy-
tailed distributions (namely, the Z-moments exist
whenever the mean of the distribution exists) all these
give preference to the Z-moments method in FFA.

Sampling bias can be smaller or greater than the
model bias. It depends on the signs of its two
components, i.e., estimation bias and model bias. In
view of that one can doubt whether the work on the
removal of the bias from estimation method for any
particular distribution made under (H=T) assumption
is important and relevant for FFM.

HEAVY-TAILED DISTRIBUTIONS IN
HYDROLOGY

Wallis er al. (1974) assessed the dependence of the
bias of sample Standard Deviation (SD) and skewness
(Cs) on the distribution function, population skewness
and sample size. Bias of both the SD and the Cs is
negative and its absolute value grows with increasing
Cs and sharply tends to zero with sample size. Extending
their assessment for heavy-tailed distributions, we have
found by simulation experiments that for two-parameter
bounded at zero distributions, if the skewness
coefficient is undefined, the sampling coefficient of
variation is heavily underestimated and moreover the
negative bias remains considerably high even for
statistically large samples (Figure 2). It cannot be
solely explained by the algebraic bound of Cy
(Katsnelson and Kotz, 1957). Note that the algebraic
bound depends on the~sample size but not on the
distribution and its population value of Cy. For a set of
N non-negative values x;, not all equal, the coefficient
of variation Cy cannot exceed (N-1", attaining this
value if and only if all but one of x;’s are zero. Hence,

for N = 10,000 one gets the upper bound éV <100,
while the largest population Cy considered equals two.
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Note that sampling moments are always finite, i.e.,
even if the respective population moments do not exist.
Therefore, to be strict, allowance for heavy-tailed
distributed samples ceases to apply MOM, unless one
takes for granted that the population values of the
matched moments are finite. In fact it is not easy to
accept by hydrologists with engineering background
that the inertia center or inertia moment of a figure
may be undefined while quantiles are still finite values.

L-moment ratio diagrams for Polish rivers stations
(Figures 3 and 4) do not point to heavy-tailed distri-
butions as the best fitting models. The stations cluster
around the log-normal and Gamma distributions. In
general, lack of convinced arguments for preference in
FFA of heavy-tailed models over thin-tailed models or
vice versa gives a certain freedom for distribution
selection.

Leaving the evidence for heavy tail of hydrologic
extremes aside, one should evaluate practical importance
of the problem, i.e., what consequences in terms of
hydraulic design values arise from replacement of thin-
tailed distributions by thick-tailed distributions. One
can expect that whatever estimation method is used,
upper quantiles of a heavy-tailed distribution will
exceed the magnitude of the respective quantiles of
any thin-tailed distribution matched to a sample.
Values of two upper quantiles of seven two-parameter
distributions, i.e., Log-Gumbel, Log-logistic, Log-
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normal, Gamma, Gumbel, Weibull and normal, and
then five three-parameter distributions, i.e., Generalized
Extreme Value, Generalized Log-Logistic (GLL), Log-
normal, Pearson III type and Weibull, got by the L-
moments and conventional moments methods, have
been used for comparison. The results for the two-
parameter distributions with mean equal to 100 are
displayed for the L-moments method in Table 3 (the
first L-moment: A; =100) and for MOM in Table 4
(the mean: a; = 100). For the L-moments, the quantiles
of LG and LL are greater than those of other distri-
butions for any value of the coefficient of L-variation
(7). The differences grow with the 7 value and the
influence of thick tail is much more pronounced for
greater cumulative probability (F) values. The relation
of rand CV is displayed in Figure 5.

The MOM estimates of quantiles (Table 4) are more
robust to distributional choice than those of L-
moments, which is also visible in Figure 1. The heavy-
tail impact on upper quantile estimates is less
noticeable here than using L-moments. Although for
Cy=0.3 and 0.6, the values of LG and LL are still the
largest of all, for Cy=1.0 and 1.5 both LG and LL
produce for F = 0.99 lower values than all other distri-
butions but normal. For F" = 0.999, which corresponds
to a major structure design value, and Cyy < | the values
of LG and LL are greatest of all.
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Fig. 3: L-moments ratios diagrams for 39 Polish rivers stations

(two-parameter distributions)
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Table 2: Upper Quantiles vs. the Coefficient of L-variation for Various Two-parameter Distributions

Xe=0.99 Xr = 0.999
L-Cy (7
il }ﬁ ) 0.1 0.2 0.3 0.35 0.1 0.2 0.3 0.35

Log-Gumbel 160.9 2707 395.0 467 1 2064 4978 9448 | 12692
Log-Logistic 157.5 236.3 3412 405.8 199.6 376.9 6833 913.1
Log-Normal 149.1 2158 3071 360.5 170.9 2837 466.3 587.2
Gumbel 159.6 216.1 2757 303.9 193.8 282.6 3764 | 4208
Gamma 146.6 202.1 269.8 308.7 165.0 2487 3570 | 4224
Weibul 135.8 182.1 248 9 289.8 1445 207.3 307.1 3733
Normal 141.9 183.8 2233 2442 1556 2113 263.8 2016

Table 3: Upper Quantiles vs. the Coefficient of Variation for Various Two-parameter Distributions

xg=0.99 XF= 0.999
e 0.3 0.6 1 15 0.3 0.6 1 15
Log-Gumbel 210.0 318.3 416.7 480.5 3277 6532 | 10373 | 13350
Log-Logistic 197.6 312.9 4337 518.7 284.1 5926 | 10225 | 13967
Log-Normal 189.6 3115 490.5 6933 2373 475.8 9265 | 15889
Gumbel 194.1 288.2 413.7 570.5 2481 396.1 593.6 8403
Gamma 182.7 289.0 460.5 707.7 218.7 388.9 6908 | 11729
Weibul 167.1 272.9 460.5 719.2 186.4 345.6 690.8 | 13003
Normal 169.8 239.6 3326 449.0 192.7 285.4 409.0 563.5
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Table 4: Upper Quantiles vs. the Coefficient of L-skewness for Various Three-parameter Distributions

Xxr=0.99 XxF=0.999

L'gfgff) 0.17 0.2 0.25 0.3 0.33 0.17 0.2 0.25 0.3 0.33
GEV 5.80 6.21 6.93 7.70 8.17 9.13 10.37 12.86 15.96 18.14
GLL 6.36 6.73 7.36 8.02 8.43 12.25 13.62 16.25 19.39 21.55
Log-

- — 5.75 6.09 6.72 7.40 7.83 9.08 9.97 11.68 13.74 15.16
Pearson 5.58 5.85 6.34 6.85 717 8.38 8.96 9.96 11.04 11.74
Weibull 5.35 5.65 6.18 6.78 7.17 7.69 8.29 9.43 10.78 11.71

Table 5: Upper Quantiles vs. the Coefficient of Variation for Various Three-parameter Distributions
xF=0.99 xF=0.999
Cs
PDF 1.14 1.5 2 3 5 1.14 1.5 2 3 5

GEV 3.14 3.31 3.48 3.64 3.1 495 5.58 6.33 7.34 8.14
GLL 3.09 3.23 3.42 3.46 3.54 5.49 6.02 6.97 7.23 7.96
Log-Normal 3.12 3.31 3.52 3.78 3.96 4.93 5.51 6.24 7.42 8.88
Pearson 3.1 3.33 3.61 4.05 4.57 4.73 5.23 5.91 7.15 9.22
Weibull 3.09 3.33 N.A. N.A. N.A. 4.55 513 N.A. N.A. N.A.

The results for the three-parameter distributions vs.
the skewness are displayed for the L-moments method
in Table 4 (4,=0; A;=1) and for MOM in Table 5
(aq =0; SD=1). For L-moments, the GLL and GEV
quantiles exceed the respective quantiles of thin-tailed
distributions for any L-skewness coefficient value. The
difference between quantile values amounts a few and
tens percentage for = 0.99 and F'= 0.999, respectively.

Different ranking is noticed for MOM quantiles
(Table 5), where for F=0.99 and any value of the

skewness coefficient, and for F=0.999 but small
skewness the values of GEV and GLL quantiles
are less than those of thin-tailed distributions.

Moreover, quantiles for a given Cjs differ less than
those of L-moments pointing to a greater robustness of
MOM large quantiles to a distribution function.
Note that GEV quantiles are greater than those of
GLL, while quantiles from L-moments show an
opposite order. The relation of 7; and Cy is displayed in
Figure 5.
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Concluding, replacement of thin-tailed models by
thick-tailed models while using the L-moments
estimation technique raise hydrologic design values,
which may be particularly significant for major
structure designs.

LARGEST SAMPLE ELEMENT OF
HEAVY-TAILED DISTRIBUTED DATA

While scrutinizing annual flow maxima or peaks over
a threshold, the largest elements in a sample are often
suspected to be low quality data, outliers or values
corresponding to much longer return periods than the
observation period. Since, in the case of floods, the
interest is focused mainly on the estimation of the
right-hand tail of a distribution function, sensitivity of
large quantiles to extreme elements of a series arises to
the problem of special concern. It was investigated by
simulation experiments using the L-moments method
for both censored and complete samples generated
from two-parameter heavy-tailed distributions, namely,
from Log-Gumbel, Log-logistic, and Pareto. The
results of simulation experiments show that omission
of the largest sample element need not result in a
decrease in the accuracy of large quantile estimates
measured by RMSE (Kochanek er al., 2007).
Unfortunately, one has to bear in mind that this
improvement occurs mostly at the expense of negative
bias. Figure 7 shows for the LG quantile x;~ g9 got by
the L-moments the ratio (E) of RMSE from censored
sample applying the probability threshold value
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minimizing it to RMSE of complete sample, and
Figure 8 the associated bias related to the population
value of the quantile, i.e., RB(%g9)=B(%99)/xg9 -

DISTRIBUTIONS WITH TWO-SHAPE
PARAMETERS

Taking into account the interest of flood frequency
analysis in the right tail estimation and the doctrine of
parameter parsimony, a replacement of the lower
bound parameter by the second shape parameter seems
to be advisable. The background and arguments for
adding the second shape parameter as a replacement of
the lower bound parameter are discussed by
Strupczewski et al. (2007). In principle there are three
ways of introducing the second shape parameter, i.e.,
power transformation of the variable (Tx), of its
density function (Tf) and/or its cumulative distribution
function (TF). Feasibility of such transformations in
respect to commonly used two-parameter distributions
is summarized in Table 6. Note that each of the three
ways of introducing the second shape parameter is not
feasible for every distribution. In some cases the
transformation does not give the second shape
parameter, i.e., after a conversion of transformed PDF
one gets the initial distribution function (marked by
“—*9), in other cases the transformation is cumbersome
(marked by “+ —). The gamma Tx distribution is
light-tailed for positive values of shape parameters and
heavy-tailed for negative ones.
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Table 6: Feasibility of Second Shape Parameter Addition

Distribution Function Tx Tf TF
Gamma + = + =
Weibull - + -
Inverse Gaussian + + +—
Log-Normal - + +—
Log-Logistic - + +
Log-Gumbel - + -
Pareto + - +

PROBABILITY DISTRIBUTION WITH
COVARIATES

Recent developments as to the statistics of extremes
are primarily related to the maximum likelihood
estimation in the presence of covariates. Covariates
can be either deterministic or random variables. They
could incorporate trends, cycles, or actual physical
variables (e.g., GCM indices) (Katz er al., 2002). By
fitting the extremal distribution conditional on the
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values of a covariate, the problem reduces to the ML
estimation of covariate-dependent parameters. It has
found application in non-stationary flood frequency
analysis (Strupczewski et al., 2001b, Katz et al., 2002)
and statistical downscaling of hydrologic extremes
(Katz et al., 2002) and may be useful to develop more
rigorous statistical methodologies for regional analysis
of extremes as well as in Bayesian methods (Katz et
al., 2002). In most cases, the fitting of covariate
relationships has been based in least squares
regression. Replacing conventional regression analysis
techniques with the statistics of extremes can improve
the rigor of hydrologic applications, such as trends and
downscaling and make such analyses more physically
meaningful and appealing,

The Points Over Threshold (POT) approach developed
for independent events occurring several times a year
is considered as a compromise between the annual
maxima FFA and the classical time series analysis
which is focused on modeling the auto-correlation
structure of the time-series. Smith (2001) developed a
statistical theory to apply the POT process approach to
the statistics of extremes making allowance for
covariates. The Poisson-Generalized Pareto model
(i.e., the occurrence of exceedances and the excess
over the threshold) is considered as a two-dimensional
non-homogenous Poisson process. In this way, the
GEV distribution can be indirectly fitted via the POT
method, but still in terms of the GEV parameterization.
The parameters of the GEV distribution could actually
depend on time or other covariates. The basic idea of
regional analysis is that the estimation of extreme
quantiles at a given site can be improved by using
extreme observations at the other side. There are some
attempts (Buishland, 1991, Sveinsson er al, 2001,
Smith, 1989) to express regional analysis in terms of a
formal statistical model including spatial dependence
of extremes, i.e., parameters of the distribution
dependent on location of a site within a given region.

To use the ML method in the presence of
covariates, both probability distribution function and
functional relations between its parameters and
covariates should be defined. A larger number of
parameters has to be estimated by the ML method if a
covariate is included. More generally, the covariate
could actually be a vector. However, one has to invoke
the principle of parsimony in parameters. The number
of parameters, which can be estimated reliably and
efficiently from a hydrological sample which is of
relatively small size, is very limited. Moreover, the
ML is known to be extremely erratic for small samples
(e.g., Kochanek er al., 2005).
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NON-STATIONARY FLOOD FREQUENCY
ANALYSIS

The rejection of the stationary assumption with regard
to the PDF parameters but not to its type reduces the
problem to the stimation of time-dependent parameters
(h) of an assumed PDF: f(x; h). Three-parameter
lower bounded distributions can serve as models. For
the estimation of time-dependent parameters (h,) of a
given PDF from observed time series (1, X200y By
x7), the assumption of continuous functional form of
time dependence is needed, i.e., h,=h(t, ) and Ax;
6, 1). Following the doctrine of parameter parsimony,
the smallest possible number of parameters 8 is
recommended. The linear function can be used to
approximate trend in location and scale parameters,
while the shape parameter can be considered constant.
The probability distribution function with time-variant
parameters is the preferable output of non-stationary
FFA for further use in hydraulic design and water
resources planning,

The model in NFFA means a type of probability
distribution together with a class and form of time
trend. In order to unify various PDFs in terms of
parameters, the original set of parameters of each PDF
would be replaced by the statistical moments using the
relationships  between moments and parameters
available in the statistical literature: [h] = [m, g, ¥].
The respective population moments are assumed to
exist. Hence the reparameterized stationary PDF has
statistical moments as parameters: fx,m, o, ).
Consequently, the trend can be explicitly introduced in
the mean and Standard Deviation, keeping the
skewness constant (although non-stationarity in y
would be permissible as well), i.e., s my, o, 7).
Dealing with heavy-tailed distributions, one cannot be
sure whether the population skewness exists. Therefore
the original shape parameter may be left as it is.
Introducing the trend function into PDF we get the
vector of parameters 6=[0 ™ 6° y] of PDF
fx; 0, 1), where y stands for the skewness coefficient
or for the original shape parameter.

Assuming a linear trend in the first two moments,
my=a™ 15" ., o, =a?+p0) . (1a, b)
we get all together five parameters to be estimated

") =(d, 5

o(°) :(a(d) ,b(c)) and y. The number of parameters

from time  series, i.e.,

can be decreased by one if the trend is in the only one
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moment or the constant value of the coefficient of
variation (Cy) is assumed. Other functional forms of
trend in the moments or in original parameters could
be considered. Therefore time-dependent quantiles are
functions of cumulative probability F and time-
dependent moments, i.e., x(F,?) =x(F,m, o,y or
introducing the parameters of trend functions
XF,)=x(F, ;0 ™ 0 5. The 0 estimates are
obtained from the condition,

i
lnM:mealenf(x,;t,B) .. (2)
t=1

Strupczewski ef al. (2001) developed the identification
of distribution and trend (IDT) package which serves
to identify an optimum flood frequency model with
time-dependent moments from a class of competing
models. Originally it included six PDFs, namely,
normal, two- and three-parameter log-normal, two-
and three-parameter Pearson type III and Gumbel.
Concerning the forms of trends, linear and parabolic
options were included. Its extension for ten other two-
and tree-parameter PDFs, namely, GEV, GLL, Inverse
Gaussian, Inverse Gamma and Weibull, is in progress.
For every model, from the time series the IDT
software estimates model parameters by the ML
method, derives the asymptotic covariance matrix of
estimates and estimates for any given year or period
the probability distribution of exceedances together
with confidence intervals. The Akaike Information
Criterion (4IC) is used to select the optimum model in
a class of competing models AIC =-2InML + 2k,
where £ is the number of independently adjusted
parameters within the model. When several models for
a given time series are available, the model that
possesses the minimum value of A/C is considered as
the most likely and it should be selected. For
hydrological sizees of time series the 4/C values of
different models do not differ much and the number %
highly influences the ranking of models.

Since the model error is not known, it is the
standard error which is aliased with a measure of
estimation accuracy. The approximate standard errors
for the ML-estimated parameters and time dependent
quantiles have been produced by the Fisher
information matrix. It is quite difficult a task in case of
complex multi-parameter distributions. Moreover as
shown by simulation experiments, such standard errors
can be quite unreliable for hydrological sample sizes.

“Resampling”™—an alternative approach for deter-
mining standard errors is more handy than the
information matrix approach and more universal as it
is applicable for any estimation procedure. However it
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cannot be directly applied to nonstationary FFA as it
requires 11D data. Katz er al. (2002) overcame this
difficulty by developing a multi-stage procedure.
Making use of the fitted model the original time-series
is converted to a sample consisting IID data. Using this
sample, new samples are generated by bootstrap and
then converted back by the inverse relation giving the
bootstrap time-series. By refitting the model to a large
number of bootstrap time-series and calculating the
standard deviation, the standard error of desired
statistics is obtained.

Replacement of original parameters by moments,
aimed to bring closer FFA and trends in climatological
time series investigation, discloses practical weaknesses
of the ML method application to trend in the flood
time series investigation. If the distribution is miss-
specified, the ML-estimate of time-dependent moments
will be biased and the estimate of trends as well its
time. Therefore, different hypothetical distribution
functions lead to trend estimates which may considerably
differ, sometimes even in the sign of a trend. It is con-
fusing as the clear-cut estimates are expected in climato-
logical studies. It inclines towards an estimation of
time-dependent moments by distribution-free techniques.

To deal with the trend in the two first moments, The
Least Squares method has been generalized by
Strupczewski and Kaczmarek (2001) to the situation
where the assumption of constant variance does not
hold and functional form of a trend in mean and
standard deviation is given. Its generalization is the
Weighted Least Squares (WLS) method where
parameters of the trend in the mean and standard
deviation are to be estimated simultaneously.

The WLS method does not require as rigorous a
distribution assumption as does the ML method. The
only assumptions are the existence of population
moments upto the third order and the time invariable
skewness. Note that the normal and Gumbel distri-
butions have the constant skewness equal to zero and
1.14, respectively, while the skewness of three-
parameter lower bounded distributions is defined by
the shape parameter which can be assumed inde-
pendent of time. Since the ‘true’ distribution functions
of hydrological variables are not known, the
restrictions do not seem to have much influence on the
limitations of the WLS estimation in hydrology. The
derived equations of WLS method are identical with
those obtained for normal distribution by the ML
method if trend in the both parameters are assumed.
The AIC based on the normal distribution is employed
to select the best fitting trend model. The four classes
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of time trends are analyzed: A. in the mean value; B. in
the standard deviation; C. both in the mean and the
standard deviation related by a constant value of the
variation coefficient (Cy); D. unrelated trend in the
mean value and the standard deviation. The basic
option is the time-invariable parameters, called the
stationary option (S).

The simulation experiments were applied to assess
the performance of WLS estimates for non-normal
distributions. The three-parameter Lognormal distri-
bution with time-dependent mean and standard deviation
and the constant skewness up to Cs=5 was employed
to generate time-series of different lengths. The bias of
both trend estimates was found satisfactorily small.
PCS of the trend model among A, B or C alternatives
is high even for the hydrological size of time-series.
However a longer time-series is required to discriminate
the D-trend among A, B, C and D competitive models.

Having derived the time-variant mean (1) and
standard deviation (G,) one can stationarize the time
series X =(X,X,,..X,,..X7) by removing the trends
from data,

:X,—m,

) E)

S
getting the series ¥ = (1, 1,,...%,,... 1) .
Subsequently stationary FFA can be performed on
the Y data resulting in the quantile Y (F ) estimates. To

limit the influence of distributional choice on upper tail
estimates, the L-moments method is advocated. F inally

the time dependent quantile X (Ft) is obtained as,
X(Fyt)=Y (F)-6,+, e ()

Having estimated time-dependent parameters of the
selected distribution f(x;é,z), one can derive the

cumulative probability for any single year. In
hydrological design under non-stationary conditions
the exceedance probability should refer to the whole
period of life of a hydraulic structure. Denoting the
service life as T-years and the beginning of operation
in # year, the probability of exceedance of peak
discharge x, during this period is,
Hn+T-1x4

Br(X>x)=1- T] [ f(x:6,0)ax .. (5)
= -

For a given probability of exceedance one can find by an
iterative technique the design flow discharge x,. Having
asymptotic covariance matrix of parameter estimates

cov(é,-,é J-) one can derive the standard error of X .
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Hydrologic design under non-stationary conditions
is a direct consequence of accepting the idea of
environmental changes. It requires a two-dimensional
extrapolation, namely, in probability and in time, to
cover the design life of a flood control structure, which
can be over 100 years in the case of a major structure.
One can wonder whether the statistical prediction for
such a long period is reliable, i.e., whether the trend
detected during, e.g., 50 years will last for the next 100
years. A physical explanation of the observed trend can
make the prediction more meaningful. It is possible if a
trend is a consequence of gradual change in land cover.

A special attention is paid to heavy floods and their
time variability. Presumably heavy floods are generated
by a different mechanism than small and medium
floods. However the data are too short to implement it
in FFA. Hence, in FFA the same distribution is
assumed for all annual peaks of flow discharge. For a
separate statistical analysis of heavy floods extra-
ordinary long systematic records are required including
historical flood information. The POT approach using
the Poisson-Exp model with a high threshold g can be
employed for the purpose. The assumption of
independence of the number of events and their
magnitude allows to estimate the time-dependent
Poisson parameter and the exponential distribution
parameter separately. The ML method was used by
Strupczewski et al. (2001b) for the purpose.

MULTIVARIATE EXTREMES

Application of the statistics of multivariate extremes in
hydrology is rather limited and it is mainly confined to
bivariate extremes. A flood hydrograph is a very
difficult object for stochastic modelling. Subjectively
determining flood event starting and ending dates, and
multiplying peaks make such characteristics as flood
volume, time to peak or recession rate difficult to
assess. A flood event as a multivariate event can be
characterized by several variables like its peak, volume,
duration, and time to peak. The usual practice in FFA
is to consider a flood event as a univariate event and
analyze separately flood peak or volume as a function
of frequency. This is partly because a practical
methodology for multivariate FFA is lacking due to
the difficulty of deriving multivariate frequency
distributions using conventional techniques. Each
multivariate model must have the same marginal
distributions. In practice, the two hydrologic variables
may not have the same distribution and then their
transformation is necessary. Except for the bivariate
normal distribution, other bivariate models can hardly
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be extended to more than two dimensions as their
correlation structure among variables is not known.
Recent work on multi-dimensional copulas reported in
the statistical literature may shed new lights on the
afore-mentioned limitations. The concept of copulas is
the two-step approach consisting of estimating the
dependence function and the marginals separately. It
allows to combine different types of mariginal distri-
butions. A copula is such a tool which can be employed
to derive multivariate distributions without the drawbacks
of current multivariate distributions techniques. In
FFA there is interest in copulas that emphasize
correlation among extreme flood characteristics, i.e., in
the right tails of the distributions. Several copulas that
have this characteristic are offered in statistical
literature and differences in shape among copulas can
be discerned using descriptive functions.

The methodology for application of multivariate
modelling in water resources management is not
straightforward. Much useful to apply are conditional
probability density functions based on the normal
distribution. Analogously to the intensity-duration-
frequency (IdF) model commonly used for rainfall
analysis, the flood-duration-frequency model has been
developed (e.g., NERC, 1975). It circumvents classical
multivariate modelling. The object is the estimation of
probability distribution of annual maximum mean
discharge for the period of various durations (d). For
each duration, a frequency distribution of maximum
discharges is analysed and used to produce a continuous
formulation of quantiles as a function of both
probability and duration (Javelle et al., 1999, 2002).
This technique is worthy of special attention as not
basing on the ML estimation in the presence of
covariate (d), produces duration dependent location
and scale parameters by the cost of the only one
parameter, which is estimated separately from para-
meters of the standardized GEV distribution.

CONCLUSIONS AND RECOMMENDATIONS

The main objections to the use of a pure statistical
approach in hydrological extremes analysis are small
sample size and unknown distribution function. The
hydrologist’s interest is in the upper tail of the flood
distribution, where various functions that fit the
observed data satisfactorily may differ considerably
and where estimates of extreme floods are unstable.
Even if the true Probability Density Function (PDF)
were known, it might, in all probability, contain too
many parameters. These parameters cannot possibly be
estimated reliably and efficiently from a sample of
‘normal’ hydrological size. Since no simple model can
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reproduce the dataset in its entire range of variability
and the interest in FFA is in the estimation of upper
quantiles, a statistical approach, based on the assumption
of the known true frequency distribution function, falls
short of accurately representing extreme hydrological
events. The increasing mathematization of FFA has
not increased the validity or accuracy of the estimation
of high floods. The real potential for improving on
standard extreme value techniques in hydrology comes
not in finding estimates which improve slightly on
existing ones, but in generalizing and adjusting the
methods to handle richer sources of data (e.g., Katz et
al., 2002), i.e., the time series of daily flows, regional
data and global atmospheric circulation. Such additional
information is included into modeling by the cost of
the assumptions concerning the model structure or
relations between distribution parameters and covariates,
and the number of parameters to be estimated. All
these assumptions as well the functional relationships
between parameters of extremal distributions and
covariates should arise from physics. In general, the
impossibility of ‘true’ model identification even if it is
of simple form, sample constraints in multi-parameter
estimation, the assessed magnitude of the model error
of upper quantile estimation, the non-stationarity of
river flow process, and problems of ungauged
catchments lead to the conclusion that we should go
back and start to work on the physics of extremes in
hydrology. The hope is credited to the development
and application the non-linear geophysical theory of
floods in river networks (e.g., Gupta, 2004). This
theory, called the scaling theory, has the explicit goal
to link the physics of run-off generating processes with
spatial power-law statistical relations between floods
and drainage areas across multiple scales and time.
Poveda et al. (2007) showed that power laws describe
the relationship between annual flood quantiles and
drainage areas and the flood scaling parameters can be
expressed as functions of run-off obtained from water
balance. Observed power laws in floods for individual
rainfall-run-off events may be related to annual flood
frequencies. The scaling theory of floods provides the
scientific foundations for making flood predictions and
FFA under a changing hydro-climate.
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