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ABSTRACT: This study compares three different approaches to continuous-time modelling of the daily rainfall-runoff response
of the Dedtalai basin, India. The main objective is to compare the modelled response of the watershed using a Conceptual
Rainfall-Runoff (CRR) model, a Data-Based Mechanistic (DBM) model, and an Artificial Neural Network (ANN) model. The
Dedtalai watershed is a large semiarid basin (6,705 km?) with ephemeral rivers and it is located within the Tapi basin (65,145
km?). Daily forcing climate and discharge data are available from 1990 to 1998, although with very limited spatial coverage.
The CRR model is based on a deterministic model chosen subjectively based on modeller experience. The DBM modelling
philosophy identifies a rainfall-runoff transfer function using only the input-output data, with no prescribed conceptual structure.
The physical interpretation of the transfer function, in terms of conceptual stores, is compared with the simplified hydrological
representations of the applied CRR models. The ANN model is a three layer back propagation ANN, with observed climate and
streamflow data as inputs. The models are identified and validated using two periods each of about four years. The estimate
flows are compared visually and using least-squares objective functions. The ANN and DBM models performed best in
validation, with NSE values of 0.95 and 0.64 compared to 0.41 for the CRR model. However the CRR model has wider
applicability to simulation because it does not need observed flow inputs. This paper concludes by providing discussion and
guidance about how the different approaches can be used in a complementary manner for modelling rainfall-runoff response in
large semi-arid areas.

INTRODUCTION compare the accuracy of simulated response of the

Numerous modelling options are available for
continuous-time modelling of rainfall-runoff relation-
ships (Wheater, et al., 1993), with conceptual modelling
being by far the most common approach. However, for
some modelling tasks data-based methods, specifically
data-based mechanistic modelling and neural network
modelling, may be more useful. This may be especially
true in arid and semi-arid catchments, which have
presented particular challenges for conceptual type of
models.

This study compares three different approaches to
lumped mode[ling of the daily rainfall-runoff response
of the 6,705 km® Dedtalai catchment, located in the
semi-arid Tapi basin, India. The main objective is to

watershed using: Conceptual Rainfall-Runoff (CRR)
models, Data Based Mechanistic (DBM) models, and
Artificial Neural Networks (ANNs). In each case, the
model structures are different, and parameters are
identified using different techniques. The paper also
discusses the tasks for which the different approaches
may be preferable, and how the different approaches
could be used in a complementary manner for
modelling large semi-arid areas.

CONCEPTUAL RAINFALL-RUNOFF MODELLING
(CRR)

CRR models are an established way of simulating
streamflow time-series as a function of climate inputs.
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They aim to represent the physical rainfall-runoff
processes in a simplified manner. Conceptual models
range from relatively complex models which attempt
to explicitly represent all known components of the
system including equations of water balance and
conservation of energy (sometimes called ‘physically-
based’ models), to simple models which lump many of
the components into a small number of conceptual
storages considering only water balance and may have
as few as two parameters (Wagener, et al., 2004; Singh
and Frevert 2005). CRR models may be applied in a
spatially distributed manner, with different parameter
sets or even different model structures being employed
for different parts of the catchment, however here we
limit our discussion and application to lumped modelling,

Typically, a lumped CRR model includes a loss
model or soil moisture accounting (to generate effective
rainfall from total rainfall) and a routing model (to
route effective rainfall to the catchment outlet).

DATA-BASED MECHANISTIC
RAINFALL-RUNOFF MODELLING (DBM)

The DBM modelling is introduced and described by
Young (1998), Young (2001), Young (2005) and re-
ferences therein. This is an inductive approach to
modelling stochastic, dynamic systems. One important
generic model class that facilitates the DBM approach
is the Transfer Function (TF) class of model. TFs are
simple and convenient representations of continuous-
time, stochastic differential equation models, or their
discrete-time equivalents. They provide a useful inter-
pretation of the input-output dynamics of the system
under study that can be decomposed straight-forwardly
into physical meaningful sub-systems (Young, 2005).
Young (2005) includes discussion of other potential
advantages over more conventional methods of rainfall-
runoff modelling and flow routing, in the context of
real-time flow forecasting. These advantages include:
the DBM model is not biased by prior perceptions of
how a particular catchment functions, however the
model structure can be constrained to those structures
which are physically plausible; the method is essentially
stochastic thereby inherently allowing for input-output
errors; it is statistically rigorous if implemented using
Instrumental Variable methods and allows statistically-
founded estimates of uncertainty; it sits easily within
an adaptive mode of modelling, where parameters
and/or states are updated by real-time data; although
normally linear TFs are employed to represent routing,
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non-linearities can easily be introduced using state-
dependent parameters . A case study of the semi-arid
ephemeral Canning catchment (544 km®) in Australia
is used by Young (2005) to demonstrate the power of
the DBM method for identifying dominant hydro-
logical modes and non-linearities in continuous-time
runoff generation, and impressive performance in real-
time forecasting of daily flows. Other applications of
the DBM method to runoff forecasting include
Mwakalila et al. (2001), Young (2002), and Romanowicz
et al. (2006).

The DBM method, in application to rainfall-runoff
modelling (e.g. Young 2005), generally consists of a
filter to transform catchment-average rainfall, r;, to
effective rainfall, # (e.g. Eqn. 1), followed by a linear
TF to represent flow routing Eqn. 2. The filter is a non-
linear empirical function in which the (time-
dependent) effective rainfall is a function of an index
of catchment wetness. In the case of Eqn. 1, y;is the
observed discharge which acts as a surrogate variable
for the antecedent moisture status of the catchment, o
is a scalar factor to force a water balance between
effective rainfall and streamflow, A a parameter to be
optimised, and 7, is the rainfall, where subscript k&
represents the discrete time-step. The estimated runoff,
Vi » is represented in Eqn. 3,

w =ty et s+i(lL)
by+bz +byz 2 4. +b 2"

xk = 0 b] 1 2 ;) L = 'uk_a i (2)
l+az +ayz " +..+a,z

Vi =X + & .. (3)

The discrete linear TF may be any combination of
linear reservoirs in parallel and in series, represented in
general form by Eqn. 2. The TF model parameters are
estimated using the Refined Instrumental Variable
(RIV) method (Young, 1984) or the Simplified RIV
(SRIV) method (Young et al., 1996), which identify
the models by using overall statistics such as the
Coefficient of determination (CD)' or the Young’s
Information Criterion (Young, 1989), among others.

DBM modelling has so far been applied to lumped
catchment modelling due to the underlying philosophy
of statistical efficiency and hence the need to avoid
using correlated sets of rainfall inputs. Potential
limitations of DBM modelling compared to conceptual
modelling are discussed later in this paper in the
context of our case study results. The major differences

"The CD used here is a normalised measure based on the variance of the error between the sample output data and the simnlated model
output, which is equivalent to the Nash-Sutcliffe efficiency measure. CD should not be confused with the classical Coefficient of
Determination used in classical regression and time-series analysis.
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are: (1) a conceptual model has a prescribed model
structure according to prior perception of what
structure is suitable (or convenient) whereas the DBM
approach avoids this; (2) a conceptual model generally
has loss and runoff thresholds and other non-linearities
which mean that non-linear optimisation methods are
required and that formal stochastic treatment of errors
in rainfall and flow is very difficult; (3) conceptual
models are not generally parsimonious and therefore
have inherent parameter non-identifiability problems.

ARTIFICIAL NEURAL NETWORK MODELLING
(ANN)

A number of researchers have investigated the potential
of ANNG, also called artificial neural nets, in modelling
the rainfall runoff process (e.g. Nazemi er al., 2003;
Imrie et al., 2000, Campolo ef al., 1999, among many
others). The non-linear nature of the rainfall-runoff
relationship and the complexity of physically-based
models are some of the reasons that have caused
researchers to look at alternative models being ANNSs a
logical choice. An excellent overview of the
preliminary concepts and hydrologic applications of
ANNs was provided by the ASCE (2000a,b). The
ANN models essentially belong to black box model
category and due their lack of physical basis, and lack
of parsimony there is usually a sceptical attitude
towards this methodology.

An ANN model has an input, hidden and output
layer, being each one made up of several nodes, also
called neurons, which are interconnected by sets of
correlation weights, see Fig. 1. In most applications,
the input (first) layer receives the input variables for
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the problem at hand and the output (last) layer consists
of values predicted by the network, representing
the model output. The number of hidden layers and
the number of nodes in each hidden layer are usually
determined by a trial-and-error procedure. The archi-
tecture that represents the pattern of connection
between nodes can be defined using different net-
work trainings or learning processes, such as, back-
propagation, conjugate gradient algorithms, a radial
basin function, recurrent ANNs, among others.

The most popular and commonly used ANN is a
feedforward propagation with an error back-propagation
training algorithm, which is the algorithm used in this
study to simulate daily streamflow. The interconnections
between neurons defined using an error back propagation
consist of two phases: a feed forward phase that
propagates forward the observed input variables
(rainfall etc.) at the input nodes, computing estimated
discharge at the output node; and a backward phase in
which modifications to the connections strengths are
made based on the difference between the estimated
and observed streamflow. Initially, random values are
assigned to the connection strengths. The optimization
process modifies the weights in each iteration until
convergence based on Eqn. 4 is achieved, where
Aw;(n) and Aw,(n-1) are the weight increments

between node 7 and j during the nth and (n + 1)th pass.
The variables € and o are called learning rate and
momentum, respectively,

AWU-(H)=—S-8—E+OL'AWU»(H—1) . (4
ow;
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Fig. 1: Configuration of Feed Forward Three-Layer ANN, (ASCE, 2000a)
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STUDY AREA

The study area is the Dedtalai catchment (6,705 km?)
located within the Tapi River basin (65,145 km?) in
India, see Fig. 2. The Dedtalai catchment has an
elongated shape with two well defined physical regions,
hillslopes and the plains. The area is dominated by
forest (59%) followed by agricultural (16%), pasture/
fallow land (14%) and barren lands (11%).

The climate of the region is characterised by a dry
summer and winter, and the South-West monsoon
which breaks by the middle of June and withdraws by
the middle of October. The basin receives around 90%
of the annual average rainfall during the monsoon
period, with the average annual rainfall equal to 1300
mm. The rivers are ephemeral; measures of discharge
at the catchment outlet are smaller than 0.25 mm/day
for approximately 58% of the time from 1990 to 1998.

Daily time series (precipitation, streamflow, mean
temperature and potential evaporation) from the 1% of
January 1990 to the 31% of December 1998 are
available for this study. The rainfall data correspond to
average precipitation based on seven rain gauges
within the area. The streamflow, temperature and
potential evaporation time-series have missing data.
The potential evaporation data correspond to pan
evaporation measures applying a correction factor
equal to 0.7 and missing values are completed using
estimated mean daily values. Missing streamflow and
temperature data are not filled in.

METHODS AND RESULTS
CRR

A simple nonlinear CRR model composed of a
probability-distributed soil moisture model (PDM)
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[Moore 2007 and references therein] and two parallel
linear reservoirs routing is used to model the daily
streamflow response at the outlet of the basin. This
CRR model is referred as PDM-2PAR. The PDM
model assumes that runoff production is a saturation
excess process and detailed explanation of its
formulation can be found in the previous reference.
The evaporation is modelled.as directly proportional to
soil wetness, reaching a maximum of potential
evaporation at soil saturation.

The PDM-2PAR model has five parameter values to
be estimated via calibration: the maximum storage
capacity in the catchment, cmax, the degree of spatial
variability of the soil moisture capacity within the
catchment, b, the factor distributing the flow between
the two parallel reservoirs, %(g), and the residence
times of the fast and the slow response of the
catchment, k(g) and k(s) respectively.

Table 1: Range of Parameter Values Used in Calibration,

PDM-2PAR
Parameters Lower Upper Units
cmax 100 1000 mm
b 0.01 2 -
k(q) 0 10 day
k(s) 10 300 day
%(q) 0.01 0.99 %

Calibration is performed using Uniform Random
Search (URS) with 100,000 parameter samples, and
four years of data (1990-1994). The best out of all
these samples in terms of model performance in the
calibration period (neglecting a warm-up period of une
year) is selected to identify the model, parameter set.
Two criteria are used the Nash-Sutcliffe Efficiency
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Fig. 2: Location of the study area, Dedtalai subcatchment, India
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(NSE) and the root mean square of the log transformed
streamflow (RMSELOG).

Calibration of the PDM-2PAR model using the NSE
and RMSELOG objective functions generate reasonable
values of efficiency between the observed and the
simulated discharge (NSE = 0.83, RMSELOG = 1.12).
However when comparing the observed and estimated
hydrographs, see Figure 4 and Fig. 5, the model is not
able to predict well the low flows in the recession part.
This situation has been recognized in the literature, as
overall functions try to fit the high peaks
overestimating the lower streamflow. The estimated
parameter values using each criterion are summarized
in Table 2.

Table 2: Calibrated Parameter Values, pdm-2par

Parameters NSE RMSELOG
cmax 915 743
b 0.49 0.01
k(q) 0.24 0.18
k(s) 94.4 38.4
%(q) 85.5 86.2

Validating the model structures from 1995 to 1998,
and using a year as warm-up period, provides a
significant deficit in performance on the NSE criteria
but improved simulations using the RMSELOG
criterion. Table 3 summarises the criteria values for the
two models using the parameter sets shown in Table 2.

DBM

For this study, DBM modelling functions available in
the CAPTAIN toolbox (Taylor et al., 2006) were
integrated into the Rainfall Runoff Modelling Toolbox
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(RRMT) developed by Wagener et al. (Wagener et al.,
2002). Instrumental variable methods were used to
identify parameter values for a series of possible
transfer function polynomials (i.e. subsets of Eqn. 2).
The criterion used to evaluate the relative efficiencies
of the models is CD; but the NSE and RMSELOG
values are calculated to compare streamflow
simulations to the other modelling approaches. Based
on the rainfall-streamflow input-output data, a second-
order TF model with zero time delay between the
estimated effective rainfall and streamflow was
selected from the identified models, see Fig. 3. The
upper reservoir represents relatively fast runoff
responses (e.g. overland flow and throughflow) while
the slow pathway represents the base-flow behaviour.
This structure was also found to be optimally efficient
in other studies which used daily data (e.g. River
Hodder catchment (Young, 2003). The selected model
had values of NSE and CD equal to 0.93 and 0.94, and
RMSELOG equal to 4.91. The fit to the observed data
is shown in Figure 4 and Figure 5,

Uup =0.16'F‘k 'ka‘Ms
A A 1
#~ bo+ b1z~
yk = ~ - 'uk_a + gk (5)
l+arz  +ayz”

being & = —0.920 (0.024), G, = 0.044 (0.010), b =
0.572 (0.004), b, =-0.465 (0.013), 6=0

The numbers in parentheses represent the approximate
standard deviations on the parameter estimates
(obtained from RIV estimation). The parallel decom-
position of the TF in Eqn. (5) yields to the following
description of the two buckets:
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Fig. 3: Two-bucket diagram of second-order, parallel pathway DBM model (Young, 2003)
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Where y/ and y; are the partitioned quick and slow-
flow components, respectively; I denotes the mean
residence time and P the partition percentage of
generated runoff i.e. the estimated percentage of flow
of water down each pathway.

Using the parallel decomposition of the estimated
linear TF model over the remaining validation period
(1995-1998) the model performance decreased
compared with the calibration period, obtaining NSE
and CD criteria values of 0.64, but there is a slight
increase in the RMSELOG criterion.

ANNs

Input variables used were rainfall, average temperature,
potential evaporation. The lead-time of the ANN model
has been considered as one day, i.e. observed stream-
flow for the previous day was also included as input.
Thus four nodes were considered for the input layer.

A three layer error back propagation ANN was used
as non-linear sigmoid activation function uniformly
between the layers. The number of nodes in the input
layer are equal to the number of input variables; in the
hidden layer the number of nodes varies between the
number of inputs to approximately double of input
nodes (Zhao ef al., 1980); and in the output layer there
is one node. All the inputs and output variables were
re-scaled to values between 0 to 1 using the maximum
value of the variables to avoid any saturation effect
that may be caused by the use of the sigmoid function.
All interconnection weights between nodes of
successive layers were initialised at random values
between +0.5 to —0.5 (Dawson and Wilby, 1998).
Constant values of 0.15 and 0.75 were considered for
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the learning rate 1} and momentum term o (Lorrai and
Sechi, 1995; Raman and Sunilkumar, 1995). The
learning process, i.e. the process applied to find the
optimal weight matrices, minimized the error of each
pattern, one by one in sequence, and the weights
continuously being updated with the processing of
each pattern. The nodes in the hidden layer were equal
to the number of inputs and were increased if the
sensitivity of the error of each weight was check and
the nodes in hidden layer were increased if required.
At the end of the learning process five nodes were
used in the hidden layer.

For the calibration period the ANN model achieved
values of NSE and CD equal to 0.98 and RMSELOG
of 2.39; for the wvalidation period of the NSE
performance was slightly decreased (0.95) but there
was an improvement in the RMSELOG value (1.94).

Results

The estimated streamflow at the Dedtalai catchment
using the three different methodologies during wet
seasons for the calibration and validation period are
shown in Figures 4 and 5. The streamflow are plotted
using a flow transformation suggested by Hogue ef al.
(2000) for visualization purposes. In terms of the shape
of the hydrograph all models seem to predict well the
time to peak and the peak flows. However, the fit to
the recession part of the hydrograph is less accurate.

The DBM model identified a routing structure
similar to the subjectively chosen routing in the CRR
model. Both, the calibrated routing parameter values
and the parallel decomposition of the identified TF,
Equation (5) and (6), identified a residence time of the
fast reservoir less than a day but the percentage of flow
acting as quick response is higher in the CRR model
than in the DBM estimation. There is also a clear
difference in the residence time of the slow response of
the catchment, using the NSE and RMSELOG criteria.
The mean residence time is at least 5 times higher than
the physical TF decomposition of the DBM approach.

Table 3: Efficiency Measures, Calibration and Validation Periods

— Calibration Validation
NSE RMSELOG NSE RMSELOG
pdm_2par (NSE) 0.83 217 0.41 1.77
pdm_2par (RMSELOG) 0.77 1.12 0.29 1.07
DBM 0.93 4.91 0.64 342
ANN 0.98 2.39 0.95 1.94
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In terms of the two criteria used, the ANN model is
~ the. one which performs better in both calibration and
validation periods. But this model uses temperature as
information which is not included neither in the CRR
model or the DBM approach.

CONCLUDING DISCUSSION

The Dedtalai catchment is not an ideal case study for
comparing rainfall-runoff methods because it is a large
basin with limited data (e.g. only seven rain gauges).
However the ANN and DBM modelling approaches
perform well. Reasons why the CRR performs poorly
may-be due to systematic rainfall errors, which the
other methods may better compensate for.

Also, the CRR model does not use flow as input
data, so errors are compounded over time. The DBM
modelling approach uses observed flow as an input,
but only to represent a wetness index in the non-linear
filter, not to update the state in the linear TF. The ANN
uses flow as an input in a more direct role, being a
one-step prediction model, and hence is expected to
perform best.

Hence, although CRR performs the worst, the facts
that it is a simulation method based around physics-
based conceptualisations and does not require
observed flow as an input except for calibration, it is
potentially a more flexible method for different types
of application. For example, it could be more suitable
than the DBM and ANN methods for evaluation of
land-use impacts on hydrological processes, while
DBM and ANN are expected to perform better for
real-time forecasting. Also, the DBM and potentially
the ANN methods can be used to identify the principal
response components.

There is a potential scope to integrate the CRR and
DBM modelling approaches to combine their
_strengths, using the information extracted from the
data by the DBM approach. The transfer function
identified as optimal by the DBM method, can be used
in the conceptual model, and the non-linear filter can
be used to remove noise from the rainfall data. The
CRR and ANN methods may also be integrated. For
example, Chen and Adams (2006) suggest a hybrid
model structure composed of a semi-distributed CRR
model and an ANN to transform runoff from
individual subcatchments into the total runoff at the
catchment outlet; their results were promising.

A priority extension to the work presented in this
paper is the inclusion of uncertainty analysis, to
estimate confidence intervals on the results in Figure 4
and Figure 5.
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