International Conference “Water, Environment, Energy and Society” (WEES-2009)
New Delhi, 12-16 January 2009

Sequential Neural Network with Error Updating for Improved
Higher Lead Time Flood Forecasts

Om Prakash', K.P. Sudheer? and K. Srinivasan®

Department of Civil Engineering, Indian Institute of Technology Madras
Chennai - 36, INDIA
Email: 'omprakash@iitm.ac.in; *sudheer@iitm.ac.in; *ksrini@iitm.ac.in,

ABSTRACT: A novel ANN architecture is proposed for forecasting river flows at higher lead times with greater accuracy. The
paper predominantly demonstrates the potential in computing paradigm, through ‘sequential ANN (SANNY', to extend the lead
time of forecast. In SANN, a series of ANNs are connected sequentially,, each of them taking forecast value from an immediate
preceding network as input. The output of each network modifies itself by adding an expected value of error so that residual
variance of the forecast series is minimized. The efficacy of the developed model has been tested through a real case study for
.the data on hourly river flow forecasting for Kolar River, India. The binary-coded genetic algorithm is used to establish the
weights among the neurons because of the dynamic nature of input layer in SANN model. The main objective function of the
proposed model is to minimize the root mean square error. Our results demonstrate that the SANN is capable of providing
accurate forecasts up to 8 hours ahead. The SANN model tends to preserve the performance at higher lead times compared to

both ANN1 and ANN2 models.

INTRODUCTION

Flood forecasting essentially aim at ensuring the
structural safety of the hydraulic structures like dams;
providing optimum protection against inundation of
urbanized area; minimizing the adverse impact on the
commercialized activities like hydropower generation;
navigation and the living habitat in the downstream of
the river along with retaining sufficient storage to fulfill
the ever increasing demand of the multipurpose projects
associated with the adjoining river or reservoir. A good
flood forecasting system should address technical
issues that would make it possible to provide an
accurate forecast with sufficient lead time. Also, an
improvement in the accuracy of the higher lead time
flood forecast enables better mitigation of anticipated
flood damage at the control points through improved
operation of the reservoirs.

HISTORICAL PERSPECTIVE

Traditionally, flood forecasting systems have been
developed by coalescing conceptual hydrological
models for the land-phase with suitable hydraulic
routing models to simulate flood propagation through-
out the drainage network (Arduino et al., 2005). Such
models are highly complex usually compromised by
linearity, analogous to nonlinear dynamics, and
calibration of such models is not trivial (Duan et al.,

1992; Hsu et al., 1995). The inherent limitation of
traditional conceptual models restricts its application
in representing the real world system dynamics. Owing
to the complexities associated with physically based
hydrologic and hydrodynamic simulation models,
nonlinear system theoretic techniques, called Artificial
Neural Networks (ANN) was developed, to provide
flood forecasting (Hsu ef al., 1995). The development
of ANN technique has resulted in a plethora of
application in hydrology, most of them pertaining to
rainfall-runoff modeling in flood forecasting (ASCE
Task Committee, 2000a, b; Maier and Dandy, 2000;
Dawson and Wilby, 2001; Dawson ef al., 2006). Despite
its successful functioning in rainfall-runoff modeling,
ANNs have not been deployed in operational flood
warning systems. This has been attributed to various
inherent practical limitations and inaccurate flood
forecasting at higher lead times (Dawson ef al., 2006;
Bruen and Yang, 2005; Birkundavyi et al., 2002). On the
contrary, Campolo ef al. (1999) noted that the capacity
of a basin to respond to the perturbation is more accurate
when recent input information is used. This emphasizes
the fact that, an improved forecast at higher lead time
is possible only when updated information about the
basin saturation is provided to the network.

Continued endeavors on updating the output variables
dates back to early 1990’s. Data assimilation procedure
implemented in the forecast system improves the
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estimate of initial state of the system and reduces the
simulation errors in the forecast period (Madsen and
Skotner, 2005; WMO, 1992). In addition, an error
correction mechanism is also been used successfully,
to update the output variables for better forecast at higher
lead time (Refsgaard, 1997; Madsen, 2000). Recently,
Shamseldin and O’Conner (2001) applied an error cor-
rection mechanism in ANNs for daily flood forecasting
(till 4 days) to improve the forecast accuracy. Since error
correction forecast model is superimposed on the
simulation model (ANN)), it can neither modify the model
parameters nor the model internal storage contents.

These restrictions of the existing models, entail the
need for a more sophisticated model for updating the
output variables. As a result, a novel ANN architecture
model is proposed in this paper, to forecast the river
flows at higher lead times with greater accuracy. This
paper predominantly demonstrates the computing
potential of the proposed model called ‘Sequential
ANN (SANN), in extending the lead time of forecast.
The ‘sequential ANN (SANN)’,which is a series of
ANNSs are connected sequentially to extend the lead
time of forecast, each of them taking a forecast value
from an immediate preceding network as input. The
output of each network is modified by adding an
expected value of error so that residual variance of the
forecast series is minimized. The applicability of the
model in flood forecasting is illustrated through a real
world case study. The paper also intends to evaluate
the relative performance of SANN with that of two
traditional ANN models (called as ANN1 and ANN2
considering single and multi-output neurons in the output
layer respectively), developed for the same case study.
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ARTIFICIAL NEURAL NETWORKS AND SANN
FOR FLOOD FORECASTING

Three-layer feed-forward neural networks have been
widely used for hydrological modeling. Earlier works
reveal that three layers are sufficient to simulate the
dynamic and nonlinear properties of the rainfall-runoff
transformation (Lippmann, 1987). A neural network
consists of a set of neurons, logically arranged into two
or more layers (Takahashi, 1993), namely, the input
layer, the hidden layer and the output layer. Input layer
consists of input neurons that receive the external
stimuli but do not carry out any signal processing.
There is one hidden layer between the input and the
output layers. The hidden layer is connected with the
input layer and the output layer using adjustable
weights as measures of correlation between each layer
of neurons. The output neurons, on the other hand, are
used for outputting the processed signals. Neural net-
works are trained using a set of observed input and output
data pairs (called patterns) (Camargo and Yoneyama,
2001), which is repeatedly processed to calibrate ANN.
During calibration, the network weights gradually
converge to values such that each input vector produces
output values that are in close proximity to the desired
target output vector. The activation function used in
the hidden layer as well as output layer is non-linear
sigmoid function. Moreover, in case of SANN that
integrates the series of ANN models, each taking input
from a previous ANN for extending the lead time of
forecasts, and an error updating procedure together in a
single framework (Figure 1).
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n = number of inputs neurons in the input layer, j = number of hidden neurons in the hidden layer; k = number of neurons in the output layer, in
this case k = 1, j = lead time; { = time; W = connection weight between the neurons; Q =network output; @ = forecast value (network output
after correction);, £ = forecast error; and € = output from the error neurons which employs an error model.

Fig. 1: Sequential Artificial Neural Network architecture
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The training of ANN1, ANN2 and SANN structures
entails a training algorithm or a learning algorithm to
establish the weights among the neurons. It is to be
noted that the SANN model parameters gets added at
every lead time of forecast because number of input
increases with forecast lead time. Hence, the network
parameter optimization by traditional methods becomes
tedious or infeasible. However, the parameter optimi-
zation of the SANN being a nonlinear optimization
problem, any nonlinear optimization algorithm can be
employed for SANN model identification. In the
contemporary work, binary-coded genetic algorithms
(Holland, 1975) have been deployed to train the neural
networks model. The objective function of the para-
meter estimation is to minimize the total forecasting
error defined in terms of root mean square error
(RMSE). The Genetic Algorithm Toolbox available
with the MATLAB has been used for parameter
estimation (Mathworks, 2004).

MODEL APPLICATION

The computing potential of the proposed SANN model
has been illustrated by applying it to a real case
example (Kolar River basin, India), to predict the river

flow up to 8 hours in advance. The rainfall and runoff

data on an hourly interval for Kolar basin in India during
the monsoon season (July, August, and September) for
three years (1987-1989) are used for the study which
is depicted in Figure 2. The Kolar River is a tributary
of the river Narmada that drains an area of about
1350 sq km before its confluence with Narmada near
Neelkanth. In the present study the catchment area up
to the Satrana gauging site is considered, which consti-
tutes an area of about 903.87 sq km. The 75.3 km long
river course lies in between north latitude of 21° 09’ N
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Fig. 2: Rainfall and runoff series of the Kolar basin

to 23° 17" N and east longitude of 77° 01’ E to 77° 29’
E. The rainfall data available were in the form of real
average values in the basin. The total available data set
was divided into two equal sets in terms of number of
patterns employed for calibration and validation of the
model.

DETECTION OF INPUT PATTERNS

The current study employs a statistical approach
suggested by Sudheer ef al. (2002) to identify the
appropriate input vector. The method is based on the
heuristic that potential influencing variables corres-
ponding to different time lags can be identified through
statistical analysis of the data series. The procedure uses
cross-, auto-, and partial auto-correlations among the
variables in question at 95% confidence interval. The
input vector identified for modeling the river flow,
include a total of 5 variables and the functional form of
the model is,

[Q(t +1),0(1+2),...0(¢ +8)]
= f[0(e-1).0(t-2),R(t-7),
R(t-8),R(t-9)]  ...(1)

where R(?) is the precipitation at any given hour ¢, O(¢)
is the river flow at any time ¢. Note that the current
study explores forecasting the time series up to 8 steps
ahead mainly for the demonstration of increased lead
time forecasts.

MODEL ASSESSMENT

The purpose of assessing the performance of a hydro-
logical model is to provide a quantitative appraisal of
the model ability to reproduce historic and predict
future behavior. Often, evaluations of model performance
utilize a number of statistics and techniques, usually
referred to as “‘goodness of fit> statistics. Many of the
principal measurements that have been used in the
hydrological literature is critically reviewed by
Legates and McCabe (1999); Hsu et al. (1995). The
effectiveness of any model could be ascertained by
some of the statistical error measurements like correlation
coefficient, coefficient of efficiency, relative error, etc.
Due to the non availability of single evaluation
measure (Sudheer and Jain, 2003), a multi criteria
assessment was performed in the current study with
different goodness of fit statistics. These measures
could be grouped into two types: relative and absolute.
Relative goodness of fit measure are nondimensional
indices, which provide a relative comparison of the
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performance of one model against another. The relative
statistics indices which are considered in this study
include Coefficient of Correlation (CC), the Coeffi-
cient of Efficiency (CE) (Nash and Sutcliffe, 1970)
and the Relative Error Peak Flow (REPF). In contrast,
absolute goodness of fit statistics is measured by the
units of flow measurement. The criterion for evaluation
that is employed is the Roat-Mean-Square Error (RMSE)
between the observed and forecasted values, the
Standard Error of Estimate (SEE) and the noise to
signal ratio (Nayak ef al., 2005; Dawson and Wilby,
2001; Kneale et al., 2001).

RESULTS AND DISCUSSIONS
Forecasts at 1-Lead Time

The statistical performance indices of the identified
models for the 1 hour ahead forecast for Kolar basin is
summarized in Table 1. The correlation statistics,
which evaluate the linear correlation between the
observed and computed runoff (Hsu et al., 1985), is
consistent (> 0.97) for all models during calibration as
well as for the validation period. The model efficiency
that evaluates the capability of the model in predicting
runoff values away from the mean are found to be
more than 93% during the calibration and validation
periods for all models, which proves to be very
satisfactory in accordance to the works of Shamseldin
(1997). The RMSE statistic, which indicates a
quantitative measure of the model error in units of the
variable, is also satisfactory for all the models during
both calibration and validation periods. The mean bias
error that measure the efficiency of the model, is found
to be very-very less in SANN when compared to other
models. The Volume Error (VE) statistics, which
measures the error in volume (bias) between the
observed and computed runoff hydrographs, was
negligible and showed consistently good performance
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for SANN model. In general, for a 1-step ahead
forecast, although the performance of all the models
are compatible performance of SANN model is proved
best as measured by statistical indices.

Forecasts at Higher Lead Times (> 1 Step)

The variation of RMSE with different lead times is
presented in Figure 3. From the Figure 3, it can be
observed that the models ANN1 and ANN2 shows an
increasing trend in RMSE with lead time, while SANN
model has no significant increase of RMSE with lead
time. Also , it is evident that the slope of the RMSE vs.
prediction time horizon is the least in case of SANN
model during both calibration and validation period.
The SANN model forecasted the flows with a RMSE
of values of 76.69 m’/s, whereas ANN1 and ANN2
models forecasts an values of 130.80 m/s and 137.45
m’/s respectively during validation period at a lead
time of 8 hours. Note that SANN has a slightly higher
value of RMSE compared to other two models at 1
hour ahead forecast, but SANN showed little
deterioration at higher lead times of prediction. On
average, the model SANN perform best as measured
by this statistics for higher lead times.
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Fig. 3: Variation of RMSE along the forecast time
horizon for Kolar basin

Table 1: Performance Statistics of All Models at 1-Hour Lead Forecasting for Kolar Basin

Calibration Validation
P“"”;‘r’,'é’;i”ce ANNT SANN ANN2 ANNT SANN ANN2
cC 0.9892 0.9830 0.9830 0.9801 0.9711 0.9735
CE 0.9781 0.9650 0.9648 0.9602 0.9405 0.9464
RMSE 28.7442 36.3379 36.4674 38.6877 47.3295 449176
VE -0.0716 0.0000 -0.1203 —0.0667 0.0000 -0.1208
SEE 29.0854 42.8219 37.3490 39.1470 55.7747 46.0035
NS 0.1496 0.2203 0.1922 0.2018 0.2875 0.2371
REPF —0.0490 —0.0124 —0.0331 —0.0619 ~0.0301 —0.0463

(—ve) values indicate underestimation; (+ve) values indicate overestimation.
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The noise to signal ratio statistics is shown in Figure
4 at different lead times. From the Figure 4, it can be
illustrated that although all the models have
comparable value of this performance index at 1¥ lead
time, the performance of models ANN1 and ANN2 is
found to deteriorate at higher lead times, while SANN
model has trivial increment with lead time. It is also
noticed that SANN model has lowest noise to signal
ratio gradient with lead time. However, it is worth
mentioning that the value of the noise to signal ratio is
less than 0.5 for the model SANN even up to 8" lead
times, while the models ANN1 and ANN2 are also not
exceeded the limiting value but more than the SANN
at higher lead times. The model SANN performs best
as measured by this statistics.

The error statistics discussed above provide relevant
information on overall performance of the models, but
do not provide specific information about model per-
formance at peak flow, which is of critical importance
in any flood forecasting context. Hence two additional
event-specific evaluation measures were considered:
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percentage relative error peak flow and time difference
to peak. The relative error peak flow is computed as
the ratio of peak residual and observed values
expressed as a percentage, whereas, time difference to
peak is computed between observed and predicted
value. The forecast error on a few typical peaks flow
during the period of the analysis is presented in Tables
2 during the validation period. From the results, it can
be concluded that the value of the percent error in peak
flow prediction, which is a useful index in simulating
floods events, is within acceptable limits by model
SANN. Note that these peak flows were observed at
different periods of time, and do not correspond to the
same flood event. Furthermore, the model SANN was
able to forecast most of the peaks with reasonable
accuracy even up to 8 hours in advance, while the error
increased drastically with an increase in prediction
lead time for models ANN1 and ANN2. On the other
hand, it is worth mentioning that the model SANN was
able to forecast the peak flows with minimum error,
irrespective of the magnitude of the peak flow.

Table 2: Comparison of Model Estimated Hydrograph Characteristics at Different Forecast Lead Times
during Validation Period for Kolar Basin

Percent Error in Forecasted Peak Flows time D’fﬁz?gj I Fk
Fore?r?;;"ead —Obseggipeak ANNT SANN ANN2 ANNT | SANN | ANN2

1 hour 13921 5.064 —26.945 11.443 0 0 0
1 hour 24277 3.188 3.011 4613 -1 -1 0
1 hour 2029.0 5.352 7.935 4.071 1 0 1
2 hours 13921 7.155 -7.931 14.367 0 0 0
2 hours 2427.7 9.495 1.495 9.804 0 -1 0
2 hours 2029.0 9.803 2.489 7.447 1 -1 1
3 hours 13921 6.113 —4.526 17.140 -1 -1 -1
3 hours 24277 13.276 7.031 10.557 1 -1 1
3 hours 2029.0 14.993 7.156 10.907 0 0 0
4 hours 1392.1 9.288 10.639 17.887 -1 -1 -1
4 hours 2427.7 18.161 2.130 15.995 1 -1 1
4 hours 2029.0 17.122 3.499 18.847 2 -1 0
5 hours 13921 20.473 -14.733 25.867 -2 0 -2
5 hours 24277 11.352 -7.798 23.224 0 0 0
5 hours 2029.0 9.783 12.400 26.925 1 -1 0
6 hours 13921 31.436 -30.659 30.864 -2 -1 -2
6 hours 24277 12.716 -23.339 29.180 1 2 1
6 hours 2029.0 9.783 -34.825 8.167 3 1 3
7 hours 1392.1 30.423 6.724 34.178 -2 —1 -3
7 hours 24277 25.695 1.594 35.342 -1 -1 0
7 hours 2029.0 15.392 2.440 18.216 0 -1 1
8 hours 1392.1 39.530 —26.227 35.824 -2 -1 0 '
8 hours 24277 32.084 -8.209 39.239 0 0 -1
8 hours 2029.0 16.284 -2.109 23.968 1 -1 1
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Fig. 4: Variation of noise to signal ratio along the forecast
time horizon for Kolar basin

SUMMARY AND CONCLUSIONS

Despite innumerable methods available for flood fore-
casting, none of them are effective in providing accurate
forecasts at higher lead times. The accuracy of fore-
casts gets deteriorated as the forecast lead time increases.
This paper presents a novel ANN architecture model
that can be employed for forecasting river flows at
higher lead times with greater accuracy. The focal
point of the paper is to demonstrate the potential of the
proposed computing paradigm in extending the lead
time of forecast. The proposed model, called
‘sequential ANN (SANN)’, is a series of ANNs
connected sequentially to extend the lead time of
forecast, each of them taking a forecast value from an
immediate preceding network as input. The output of
each network is modified by adding an expected value
of error so that residual variance of the forecast series
is minimized. The developed model is tested for Kolar
Basin, India for a hourly river flow forecast. Since,
SANN model parameters gets added at every lead time
of forecast , a binary-coded genetic algorithms is used
to train the SANN model parameters with the objective
of minimizing the total forecasting error, in terms of
root mean square error (RMSE). The results of the
study shows that the model SANN is implicitly doing a
better job than the contemporary models ANNI and
ANN2 in modeling the rainfall-runoff process. The
_ performance of these models was acceptable at 1* lead
time, but only the model SANN excels in preserving
its performance at higher lead times as compared to the
ANNI and ANN2 models. This data put forth the
arena for a new and promising research area in the
field of flood forecasting.
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