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ABSTRACT: With increasing water scarcity around the world, exacerbated by drought incidences in terms of spatial and
temporal variation along with the uncertainties associated with climate change, attention must focus on better understanding of
different aspects of droughts. This paper discusses the impact of climate change on decadal drought severity and drought
duration based on future climate scenarios derived from GCM outputs using downscaling techniques. It is observed that high
drought severity and drought duration likely to be occurring for decades 2031-2040, 2041-2050, 2061-2070, and 2081-2090.
The least drought decades are likely to be observed during 2021-2030 and 2081-2090. The observations were made based

on short-term drought indices (SPI 1 and SPI 3).

INTRODUCTION

Droughts are considered by many to be the most
complex but least understood of all natural hazards
affecting more people than any other hazard. Droughts
are a normal feature of climate and their recurrence is
inevitable. However, there remains much confusion
within the scientific and policy making community
about their characteristics. Research has shown that the
lack of a precise and objective definition in specific
situations has been an obstacle to understanding
droughts which has led to indecision and inaction on
the part of managers, policy makers, and others (Wilhite
et al., 1986). Droughts have been recognized as one
type of environmental disaster and have attracted the
attention of environmentalists, ecologists, hydrologists,
meteorologists, and so on. The global climate change
in recent years is likely to enhance the number of
incidence of droughts. While much of the weather that
we experience is brief and short-lived, a drought is a
more gradual phenomenon, slowly taking hold of an
area and tightening its grip with time. In severe cases,
a drought can last for many years, and can have
devastating effects on agriculture and water supplies.
Nearly 50 percent of the world’s most populated areas
are highly vulnerable to droughts. More importantly,
almost all of the major agricultural lands are located
there (USDA, 1994). Droughts produce a complex web
of impacts that span many sectors of the economy and
reach well beyond the area experiencing a physical
drought.
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Since almost one-half of the earth’s terrestrial
surface is susceptible to droughts, they are widespread
phenomenon having significant social, economic, and
environmental impacts. Human civilization has long
been deeply affected by the impacts of droughts on
economic, environmental, and social sectors (Wilhite,
1993). Only in the current decade large-scale intensive
droughts have been observed on all continents.
Droughts are the most costly natural disaster (FEMA,
1995; Wilhite, 2000; Svoboda et al., 2002). Of all the
20th century natural hazards, droughts are those that
have had the greatest detrimental impact (Bruce, 1994;
Obasi, 1994). But droughts are not easily defined and
need to be understood in terms of their hydrological,
agricultural, and socio-economic impact (Dracup et al.,
1980; Wilhite and Glantz, 1985). Droughts impact
both surface and groundwater resources and can lead
to reductions in water supply, diminished water quality,
crop failure, reduced range productivity, diminished
power generation, disturbed riparian habitats, and
suspended recreation activities, as well as a host of
other economic and social activities (Riebsame ef al.,
1991).

Due to population growth and expansion of agri-
cultural and industrial sectors, the demand for water
has increased in many parts of the world. Many other
factors, such as climate change and contamination of
water supplies, have contributed to water scarcity. The
flood and drought events have been experienced with
higher peaks and severity levels. The period between
extreme events has been shortened in certain regions.
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Lettenmiar et al. (1996) and Aswathanarayana (2001)
have made references to this change in the occurrence
of hydrologic extreme events. Decision makers and
planners need to understand the impacts related to
various levels of drought severity and the conditions
that are associated with drought in order to take
appropriate actions in the proactive management of

water and other natural resources during droughts
(Svoboda et al., 2002; Wilhite, 2000a).

According to the Intergovernmental Panel on Climate
Change (IPCC) report (IPCC, 2001), the surface
temperature of the earth has risen steadily since the
post-industry era of the 19th century. Sometimes it is
stated that the most dangerous consequence of global
warming is not the change in averages but the overall
increase of extreme events. Among the extreme
meteorological events, droughts are possibly the most
slowly developing ones, that often have the longest
duration, and at the moment the least predictability
among all atmospheric hazards. Global warming,
changes in precipitation patterns, and changes in resource
use by humans in response to climate change could
also significantly alter the quality of surface waters.
While there is abundant evidence for dramatic and
rapid climate warming in the past from lake-sediment,
paleo-hydrology, and tree-ring records (Fritz, 1996; Ely
et al., 1993; Woodhouse and Overpeck, 1998; Murdoch
et al, 2000), never before have climate changes
coincided with large-scale landscape fragmentation and
alteration as is occurring today (Dale, 1997). It is very
likely that the observed global warming has contributed
to a change in rainfall patterns on a local or regional
scale. Distribution of world agriculture shows adaptation
to the present-day climate patterns, but this situation
could change due to the likely global warming (IPCC,
2001). So, it is important to identify the water-scarcity
periods, their severity, duration, and statistical behavior.

Recent climate changes have had a significant
impact on the society. Some reports indicate that the
mean annual global surface temperature has increased
by about 0.3 to 0.6°C since the late 19" century and it
is anticipated to further increase by 1-3.5° C over the
next 100 years (IPCC, 1995). The Global Climate
Models (GCMs) are generally used to simulate the
present climate and project future climate with forcing
by green house gasses and aerosols. GCMs, which
describe the atmospheric cycle by mathematical
equations, are the most adapted tools for studying the
impact of climate change at regional scales.

This study aims to investigate decadal droughts in
terms of their severity and duration. The Standardized
Precipitation Index (SPI) (calculated from the probability
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distribution of precipitation using a two-parameter
gamma function) was used as drought index. The SPIs
were applied at the local scale using monthly rainfall
data for the period of 1965-2001 from five raingauge
stations in the basin. Using a Bayesian Neural Network
(BNN) model, monthly rainfall values were simulated
for the period 2000 to 2100. The basin is divided into
25 grid-cells of 13 x 13 km using Inverse Distance
Weighting (IDW) approach, with each grid corres-
ponding to approximately 4% of the total area for
understanding the nature of droughts at each grid
point. Finally, the decadal nature of drought severity
and duration was assessed from the estimated gridded
SPI values computed from precipitations based on
GCM outputs.

STUDY AREA

The physical area considered in this study is the
portion of the Kansabati River basin upstream of the
Kangsabati dam, in the extreme western part of West
Bengal state in eastern India. The region has an area of
4265 km®. The elevation ranges from 110 m to 600 m
above Mean Sea Level (m.s.l.). The average elevation
of the region is approximately 200 m. The basin
experiences very hot summer with the temperature in
the region reaching up to 45°C in May and June.
Generally, dry periods are accompanied by high
temperatures, which lead to higher evaporation
affecting natural vegetation and the agriculture of the
region along with larger water resource sectors. The
mean annual precipitation in the basin is about 1268
mm. Mainly three rivers contribute the flow in the
Kansabati catchment, viz., Kansai, Kumari and Tongo.
There is a dam called Kansabati dam constructed at the
confluence of three rivers in Purulia district of West
Bengal. The waters of the Kansabati dam are primarily
used for irrigation. The major crops grown in the
catchment are paddy, maize, pulses and vegetables.

The catchment is considered a drought prone area
with irregular rainfall and the soils are mostly lateritic
in nature having a low water holding capacity. About
50 to 60% of the study area is upland, which is managed
by farmers generally with limited economic resources.
Lands are mostly mono-cropped having limited surface
irrigation facilities. The water demand due to the
extensive cultivation has led to over exploitation of
groundwater resources. The over-exploitation of
groundwater, especially in summer has led to

degradation of water resources. Irrigated crops are not
widespread, because there is not always enough water
available.
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DATA USED

For this study, five raingauge stations were considered,
as shown in Figure 1, and the statistical properties of
rainfall series along with their geographic location are
shown in Table 1. The mean annual rainfall varied
from 1152.57 mm to 1345.7 mm during these years.
The standard deviation for Phulberia station is quite
high because of the high fluctuation of annual rainfall
from a minimum of 674 to a maximum of 2081 mm.
Since the basin is frequently affected by short-term
droughts, it is necessary to investigate droughts in the
basin. The basin was affected by severe droughts in the
year 1965, 1966, 1967 and around the 1980’s, the
droughts were for a longer duration. The severity of a
drought in 1990’s was for a short period. The
minimum rain gauge density for flat regions of
temperate Mediterranean and Tropical zone is one
station per 600-900 km’ (according to World
Meterological Organization), which seems reasonably
adequate for the present study.
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Fig. 1: Location of raingauge stations used in the study

Climate variables corresponding to the future
climate change scenarios were extracted from the
second version of the Canadian Centre for Climate
Modelling and  Analysis (CCCma), website
http://www.cccma.ec.ge.ca/models/cgecm?2.shtml.  This
simulation which was performed with the second
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version of the CCCma Coupled Global Climate Model
CGCM2 with late 20th century concentration of CO,.
This model is based on the earlier CGCM1 (Flato er
al., 2000), but with some improvements to address
shortcomings identified in the first version. In
particular, the ocean mixing parameterization has been
changed from horizontal/vertical diffusion scheme to
the isopycnal/eddy stirring parameterization of Gent
and McWilliams (1990), and sea-ice dynamics has
been included following Flato and Hibler (1992). A
description of CGCM2 and a comparison, relative to
CGCMI, of its response to increasing greenhouse-gas
forcing can be found in Flato and Boer (2001).

METHODOLOGY

Entropy

The concept of entropy has been popular in the
scientific literature over the last several decades and
has potential application to a range of problems in
hydrology and water resources engineering (Singh,
1997). Shannon defined the entropy of a discrete time
discrete alphabet random process {Xn}, denoted by
H(X), as the amount of information in the process.
Entropy, as defined in information theory, is a measure
of uncertainty of a particular outcome in a random
process, and provides an objective criterion in
selecting a mathematical model. Uncertainty of two
variables, X and Y, can be described by joint entropy
H(X, Y). The joint and marginal entropies are related
as,

HX, Y) = HX) + HT)-T(X, 1) - (1)

where T(X, Y) is the information transferred from X to
Y: called transinformation. Transinformation is a
reduction of the original uncertainty, and it can be viewed
as information about a predicted variable transferred
by the knowledge of a predictor. In other words,
Mutual information or Transinformation is a measure
of the information contained in one process about
another process, which is used in the present study for
selecting predictors for downscaling experiments.

Table 1: Raingauge Stations in the Kansabati River Basin

Elevation Geogr_aphic Statistical Properties of Annual Rainfall Series
Raingauge (m) Coordinates (1965 fo 2001)

Statians (a.m.s.l) | Latitude | Longitude ?fg;’; (f:’n E::;) (m) gg}gggg Skewness | Kurtosis
Simulia 220.97 23°10' 86°22' | 130068 |[1840 | 828 | 260.32 0.174 —0.605
Rangagora 222.92 23° 4 86° 24' | 115257 [1729 | 743 | 2191 0.782 0.656
Tusuma 158.6 23° 08' 86°43' 1268.3 1683 | 746 | 239.31 -0.221 —0.547
Kharidwar 135.96 23° 00' 86°38' 1216.97 | 1814 | 827 | 248.2 0.637 —-0.306
Phulberia 144.32 22° 55' 86° 37" [1345.7 2081 674 | 322.73 0.329 —-0.006
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Artificial Neural Network (ANN)

The Back Propagation Network (BPN), developed by
Rumelhart e al. (1986), is the most prevalent of the
supervised learning models of Artificial Neural Networks
(ANN). BPN uses a gradient steepest descent method to
correct the weight of interconnective neurons. BPN
easily solves the interaction of the processing elements
by adding hidden layers. In the learning process of
BPN, the interconnection weights are adjusted using an
error convergence technique to obtain a desired output
for a given input. In general, the error at the output layer
in the BPN model propagates backward to the input
layer through the hidden layer in the network to obtain
the final desired output. The gradient descent method
is utilized to calculate the weight of the network and
adjusts the weight of interconnections to minimize the
output error. In this paper an ANN using back
propagation algorithm was used to simulate future
monthly rainfall values.

Bayesian Neural Network (BNN)

The Bayesian approach is applied here because of its
particular advantage compared with classical models.
ANNs have been successfully used in rainfall-runoff
modeling for more than a decade. Since its inception,
many researchers (ASCE, 2000) demonstrated its
capability in complex non-linear rainfall-runoff
modeling. The main conclusions of those studies are
that the artificial neural networks can be considered as
a robust modeling tool alternative to conceptual and
physically based hydrologic models. However, there
are major limitations in the conventional neural
network approach (Coulibaly ef al., 2001). One of the
main limitations is that the network is trained by
maximizing a likelihood function of the parameters or
equivalently minimizing an error function in order to
obtain the best set of parameters starting with an initial
random set of parameters. Sometimes a regularization
term with an error function is used to prevent
overfitting. In this method, a complex model can fit the
training data well but it does not necessarily mean that
it will provide smaller errors with respect to new data.
This happens because of not considering uncertainty
about the model parameters or the uncertainty about
the relationship between input and output mapped by
the network during training. The Bayesian approach
attempts to overcome that problem, and provides
prediction with an uncertainty estimate in form of
confidence intervals.

In the Bayesian approach, the uncertainty about the
relationship between input and output is represented by
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a probability density function of the parameters. Before
observing data, parameters are described by a prior
probability density function, which is typically broad
to reflect the fact that we have little idea of what
values the parameters should be. Once the data are
observed, using Bayesian theory the corresponding
posterior probability density function is derived (Khan
and coulibaly, 2006). The posterior distribution may be
found narrower than the prior distribution because
some values of the parameters are more consistent
with data than others. Taking account of uncertainty in
parameter estimation enables the network to predict
more accurately, reducing the problem of overfitting
while dealing with new data. Moreover, the posterior
distribution over network weights will provide a
distribution over the outputs of the network, which is
known as predictive distribution for the new data. If a
single-valued prediction is needed, one might use the
mean of the predictive distribution but the full
predictive distribution also tells how uncertain this
prediction is. It has been shown in the work of Sarle
(Sarle, 1995) that even the crudest Bayesian computation
(maximizing over both parameters and hyperparameters)
is capable to generalize better than early stopping
when learning nonlinear functions. Furthermore, the
overfitting problem can be solved by using Bayesian
methods to control model complexity. In the Bayesian
approach, cross-validation is not required, because
Bayesian methods allow for the values of regularization
coefficients to be selected using only the training data.
A detailed description of the BNN as used herein can
be found in Khan and Coulibaly (2006).

SPI

A drought index can be considered as a prime variable
responsible for assessing the effect of a drought and
quantifying different drought parameters. Common to
all types of droughts is the fact that they originate from
the deficiency of precipitation that result in water
shortage for some activity or some group. As a result,
practically all drought indices and drought definitions
use this variable either singly or in combination with
other meteorological parameters (WMO, 1975). The
goal of a drought index is to provide a simple
quantitative assessment of four drought characteristics,
viz., severity, intensity, duration, and spatial extent.

The Standardized Precipitation Index (SPI) has been
developed for the purpose of defining and monitoring
droughts. A deficit of precipitation affects soil moisture,
stream flow, reservoir storage, and ground water levels,
etc. at different time scales. McKee et al. (1993)
developed SPI to quantify precipitation deficits on
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multiple time scales. Shorter or longer time scales may
reflect lags in the response of different water resources
to precipitation anomalies. SPI permits to determine
the rarity of a drought or an anomalously wet event at
a particular time scale for any location that has a
precipitation record. A drought event is considered to
occur at a time when the value of SPI is continuously
negative and ends when SPI becomes positive. Table 2
provides a drought classification based on SPI. Some
of earlier application of SPI can be referred to Mishra

et al. (2007, 2008).

Table 2: Drought Classification Based on SPI

SPI Values Class
>2 Extremely wet
1.5t0 1.99 Very wet
1.0t0 1.49 Moderately wet
—0.99 to 0.99 Near normal
-1to-1.49 Moderately dry
-1.5 to—1.99 Severely dry
<=2 Extremely dry

Calculation of SPI. SPI is computed as follows
(Guttman, 1999): (i) First, a probability density
function that describes the long-term time-series of
rainfall observations is determined. (ii) The base time
of rainfall observation series can be any, depending on
the time scale of interest. In the present study, running
series of total precipitation corresponding to 3 months,
6 months, 9 months, 12 months, 24 months were used
and as result the corresponding SPIs were calculated:
SPI 3, SPI 6, SPI 9, SPI 12, SPI 24. (iii) Once the
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cumulative probability of an observed precipitation
amount is computed. (iv) The inverse normal (Gaussian)
function, with zero mean and unit variance, is then
applied to the cumulative probability distribution
function, which results in SPIL.

RESULTS AND DISCUSSION

Downscaling Experiment

The ANN and BNN model were used to downscale
GCM outputs for the Kansabati basin. Monthly
precipitation was used as predictant for the down-
scaling experiments. In this present study five stations
with 37 years of rainfall data were used for down-
scaling. Climate variables corresponding to the future
climate change scenarios were extracted from the
second version oi the Canadian Centre for Climate
Modelling and Analysis (CCCma) Coupled Global
Climate Model (CGCM2) data.

Selection of Variables

The selection of predictors is one of the most
important steps in the downscaling experiment.
Several attempts have been demonstrated in different
parts of the world for identifying predictors. As the
predictors vary from one region to another there are no
general guidelines for the selection of predictors. In
this study, predictor variables were screened using
entropy as well as the coefficient of correlation. The
predictors sharing the maximum information with the
predictant were chosen for the downscaling
experiment. The predictors having transinformation
value above 0.25 were chosen as possible predictors.

probability density function is determined, the
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Fig. 2: Coefficient measures between predictants and predictors
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The plots comparing trainsinformation and correlation
coefficient are shown in Figure 2. The probable
predictors selected for downscaling experiment include:
Surface pressure (ps), 200 hPa wind velocity (u200),
500-1000 hPa Geop. Height (dgz), Sea Level Pressure
(pmsl), Screen (2m) Temp (st), Mean Daily Min
Screen Temp (stmn), Screen Spec. Humidity (sq), Skin
(surface) Temp/SST (gt), Mean Daily Max Screen
Temp (stmx), Mean 2m Wind Speed (sva), 500 hPa
Geop. Height (gz500), 200 hPa V wind "Variance
(vpvp200). The variables chosen seemed physically
sensible for downscaling in the study area.

Development of Neural Network Downscaling
Model

The available data set was divided into a training set
consisting of 70% of data and a testing set consisting
of 30% of data. This model is a non-linear regression
type in which a relationship is developed between a
few selected large-scale atmospheric predictors and
basin scale meteorological predictants. In setting up
the standard Artificial Neural Network (ANN) model,
a multilayer perceptron network has been used along
with the input variables obtained based on entropy.
Altogether 12 input vectors have been used to simulate
precipitation. The above input variables have been
found optimal in producing network outputs closer to
the observed data, and providing the minimum
Normalized Mean Square Error (NMSE) and the
highest correlation coefficient.

For modeling BNN, the same Multilayer Perceptron
(MLP) network has been used with the same set of
input variables. The network architecture is similar to
ANN, this includes one hidden layer with tangent
hyperbolic (tanh) activation function and one output
layer with linear processing unit. The trial and error
approach has been used in network training based on
the minimum NMSE and maximum CC. For simulation
of precipitation with BNN, 10 neurons were found to
be optimal in the hidden layer to obtain the best
network. Unlike the standard ANN model, the
initialization of the parameters in BNN is done using a
distribution of parameters. The initial values of the
weights and biases are obtained from a Gaussian prior
distribution of zero mean and inverse variance a (also
known as regularization coefficient or prior hyper-
parameter). Gaussian prior has been chosen to favor
small values for the network weights because a network
with large weights will usually give rise to a mapping
with large curvature (Nabney, 2004). Moreover, the
Gaussian prior also provides computational simplicity.
For prior hyperparameter a, a single initial value has
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been chosen for both hidden and output layer weights.
In defining the objective function in the Bayesian
framework, an error model for the data likelihood
function is required. It is assumed that the target data is
generated from a smooth function with additive zero-
mean Gaussian noise. Thus, for the noise model, a
Gaussian distribution with zero mean and constant
inverse variance is used as defined in Khan and
Coulibaly (2006). After defining prior and likelihood
functions, the objective function has been set as
posterior distribution of weights.

The network training is done by a trial and error
approach as described above, and the network weights
are optimized using the scaled conjugate gradients
optimization technique to find the most probable
weights (wy,») by maximizing the posterior distribution
of weights p(w|D) or it can be said by minimizing the
error function S(w). The hyperparameters denoted by a
and b, have also been optimized during training
process using the evidence procedure (Bishop, 1995)
in which hyperparameters are set to a value that
maximize the evidence of the model p(D| a, b). Once
the network has been trained, the simulations were
carried out, in which posterior distribution has been
approximated to Gaussian.

The ANN and BNN models initially were applied to
test their capability for predicting monthly precipitation.
Since yearly precipitation values are mostly
concentrated in the monsoon period, the yearly time
series were divided into three groups (i.e., March—
June, July-October, November—February), and ANN
and BNN were used to simulate the individual groups.
The results of BNN model are shown in Table 3 and
the plots of ANN and BNN models are shown in
Figure 3. It is observed that BNN models are able to
capture peaks better than ANN and hence used in the
study for downscaling experiment.

Decadal Drought Analysis

After monthly rainfalls were downscaled to the grid
level using GCM outputs, the monthly SPI values for
each grid were calculated, based on time scales of 1
and 3 months, which are known as SPI 1 and SPI 3,
respectively. These indices are used for short-term
drought analysis (Mishra and Desai, 2005). Drought
parameters, known as annual drought severity (sum of
negative SPI values in dry spells) and annual drought
durations for each station using run theory, were
calculated. Two types of the threshold level was used
for calculating drought parameters: (i) zero threshold
was used to calculate drought severity and duration,
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Table 3: Statistical Properties of BNN Simulated Results

; Observed BNN Simulated
Station
Name Mean (mm) S(:g%" ’;fﬁ;’)’ S(ﬁfn'j" cc NMSE
Simulia Mar-Jun 119.56 122.34 86.3 70.28 0.70 0.56
Jul-Oct 227.25 126.81 262.2 81.5 0.61 0.82
Nov-Feb 8.78 10.96 18.18 11.53 0.55 1.12
Rangagora Mar—Jun 85.06 105.01 82.35 61.83 0.80 0.3748
Jul=Oct 216.42 128.11 229.7 63.35 0.52 0.85
Nov-Feb 1.53 3.01 9.82 1.82 0.53 1.05
Tusuma Mar—Jun 93.5 87.4 81.9 67.1 0.79 0.36
Jul-Oct 196.5 92.38 277.2 79.6 0.60 0.98
Nov-Feb 6.92 18.78 17.8 9.88 0.51 1.43
Kharidwar Mar-Jun 91.83 110.85 75.48 64.54 0.75 0.49
Jul-Oct 202.31 119.47 253.9 126.68 0.62 0.93
Nov-Feb 15.1 29.26 9.21 17.31 0.59 1.01
Phulberia Mar-Jun 91.56 103.4 84.01 62.63 0.72 0.49
Jul-Oct 244,12 133.91 282.6 89.67 0.64 0.63
Nov-Feb 17.93 35.69 13.01 18.54 0.55 1.1

which indicates all periods starting from ‘near normal’
to ‘extreme dry’ periods; (ii) the threshold of ‘-1’ was
used to calculate drought severity and duration
indicating all periods starting from ‘moderately dry’ to
‘extreme dry’ periods. In order to compare the decades
in terms of their drought severity and duration, the
mean drought severity and duration for individual
grids (consisting of 25 grids) were calculated for nine

decades for period 2010 to 2100.
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Fig. 3: Comparison between BNN and ANN for
simulating monthly rainfall

The decadal drought severity based on SPI 1 using
zero thresholds is shown in Figure 4. It can be seen
from the figure that the drought severity for the period
2011-2020, 2021-2030 and 2081-2090 are less in
comparison to other decades. For these periods the
drought severity bands for all grids are close to each
other, indicating uniform drought severity across the
basin. The drought severity for 2041-2050 is high in

comparison to 2031-2040, where the drought severity
bands are clustered at a higher severity level except at
a few grids. There is another interesting observation
made for decade 20612070, indicating a mix drought
severity for the basin. For this period nearly 50 percent
area will be on a higher dry level and another 50
percent will be on a lesser dry level. In order to
compare the decades with higher dry conditions, the
decadal drought severity based on SPI | using —1 as
threshold were calculated as shown in Figure 5. This
threshold calculates all periods considering moderate
dry to extreme drought conditions. It can be seen from
the figure that the drought severity for period 2031
2040, 2041-2050 and 2071-2080 are on the higher
side with severity bands clustered together indicating a
uniform drought condition for the basin, where as for
period 2061-2070, the basin undergoes a mixed
condition of high and low dry conditions. Similar
observations are made when SPI 3 is considered as a
drought indice. The drought severity is likely to be
high for period 2031-2040, 20412050 and a mix type
condition for 2051-2060 and 2061-2070. The least dry
conditions will likely to be observed during 2081-—
2090, followed by 2021 to 2030. Plots for SPI 3 are
shown in Figure 6 and Figure 7.

The decadal drought duration based on SPI 1 using
zero threshold is shown in Figure 8. It can be seen
from the figure that the nature of drought duration is
different from drought severity. The drought duration
band seems to be more scattered in comparison to
drought severity bands. The higher drought durations
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likely to occur in the period 1941-1950. In order to
compare the decades with higher dry conditions, the
decadal drought duration based on SPI 1 using -1 as a
threshold were calculated as shown in Figure 9. It can
be seen from the figure that drought durations are
highly random in comparison to drought severity. The
bands of drought duration do not follow a regular
pattern, with longest periods occurring around 1941-
1950 and 2071-2080. Similar observations are made
when SPI 3 was considered as drought indices (Figure
10). The drought duration seems to be in a mixed state,
indicating nearly half of the grids following longer
drought durations and the remaining shorter drought
durations. These mixed conditions seem to be
occurring for 2031-2040, 2041-2050 and 2071-2080.
The least drought durations seem to be occurring in
2081-2090. When the —1 was used as a truncation
level for SPI 3 (Figure 11), it was observed that the
drought durations likely to be more during 2041-2050
and 2071-2080, where as the less drought duration
_period is likely to occur during 2021-2030 and 2081-
2090.
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Fig. 4: Decadal mean drought severity for SPI 1
based on zero truncation level
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Fig. 5: Decadal mean drought severity for SPI 1
based on —1 truncation level
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SUMMARY

The following conclusions can be drawn from this study:

1. Future projection of monthly rainfall is a key
parameter in the present study. It is important to

Water, Environment, Energy and Society (WEES-2009)

develop a proper downscaling model for assessing
future scenarios. BNN seems to be performing
better in comparison to the ANN model and the
model needs to be calibrated carefully as it is highly
sensitive to diffeerent inputs and model parameters.

2. As the choice of predictor variables can
significantly affect the predictants in downscaling
experiments because of highly spatio-temporal
variability in hydrometeorological variables, it is
important to identify suitable predictors. The
entropy based approach for selecting the predictors
seems to be an important development for down-
scaling experiments.

3. Using GCM outputs, the projected decadal mean
drought severity and drought duration will be
useful for studying anticipated drought in future, in
order to better prepare for water resources planning.

4. The high drought severity and drought duration
likely “to be occurring for decades 2031-2040,
2041-2050, 2061-2070, and 2081-2090. The least
drought decades are likely to be observed during
2021-2030 and 2081-2090. The observations were
made based on short-term drought indices (SPI 1
and SPI 3).
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