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ABSTRACT: Water distribution networks are one of the most important infrastructures in urban areas. As design and
management of these networks include many components and issues, there are a variety of methods and models that could
be considered as design and operating tools. These methods should be capable of considering the complexity and
nonlinearities in simulation and optimization of water distribution networks. Among optimization methods, GA algorithms are
widely applied in the optimization of water distribution networks because of their flexibility. However recently a new
evolutionary algorithm has been emerged called Scatter Search (SS). The application of this model in different scientific fields
has shown the high ability of this method. The greatest advantage of the SS method over GA is its higher speed in achieving
the optimal solution. In this paper the application of GA and SS to water distribution networks are evaluated.
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INTRODUCTION

The performance of water distribution networks highly
affects the performance of other sectors in an urban
area. The performance of water distribution networks
is highly dependent on their design which should be
optimized considering their different elements. There
are many elements in each water distribution network
for water delivery which are widely scattered
throughout the system. The optimal design of the water
distribution networks could considerably decrease the
capital investment of network development.

Different optimization techniques are used for the
design of water distribution networks such as linear
programming (Jowitt and Germanopoulos, 1992),
nonlinear programming (Chase and Ormsbee, 1993),
dynamic programming (Lansey and Awumah, 1994),
fuzzy logic (Angel et al., 1999) and genetic algorithms
(Savic et al., 1997; Gupta et al., 1999, van Zyl et al.,
2004). Most of these techniques have limitations and
some simplifications are necessary. Sometimes these
simplifications affect the optimal solution and introduce
errors in using them in operation and simulation of the
system. Some new optimization algorithms introduced
in recent years such as different types of GA, require
less simplification. Different improvements are made
on GA algorithms such as messy GA (Halhal et al.,
19997), hybrid GA (van Zyl et al., 2004) and variable
length GA (Kerachian and Karamouz, 2007). But as

these techniques are based on random events, it may
take considerable time to search the decision space and
find a global optimal solution.

SS is an evolutionary optimization algorithm intro-
duced by Glover (1977). It has been used in different
fields such as unconstrained optimization, multi-objective
assignment, optimizing simulation and mixed integer
programming. The results of these studies have demon-
strated the practical advantages of this approach over
other evolutionary algorithms for solving different types
of optimization problems.

In this paper the SS and GA algorithms have been
applied to the optimal design of a sample and a real
water distribution network. The objective function is to
minimize the cost of the network development with
constraints to provide reliable supply of adequate
water with desired pressure in all the demand nodes.

In the next section, the structure of the optimization
model has been described. In the following section the
application of SS and GA to two-loop network example
and Chahar-Dangeh water distribution network in Iran
are evaluated. Finally a summary and conclusion is
given.

OPTIMIZATION MODEL STRUCTURE

The water distribution network design problem
considered in this paper involves minimizing the
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network construction costs subject to meeting minimum
allowable pressure constraints under design demand
levels in all demand nodes. As most of the water
distribution development costs are related to piping, so
the construction costs have been considered equal to
the cost of pipes and their installation in the network.
The decision variables of the model are the diameter of
the water distribution network pipes.

The minimum pressure requirement at each demand
node is implemented in the optimization model as a so
called “soft” constraint. So when a solution violates
the pressure requirement constraint, its fitness is
heavily penalized but not removed from the potential
optimal solutions. This approach is used, for large and
real problems, because a feasible solution is unlikely to
be reached in the initial stages of the optimization.

SCATTER SEARCH ALGORITHM

The Scatter Search (SS) process is built on the
principles that underlie the surrogate constraint design.
It is organized to (1) capture information that.are not
available separately in the original vectors; (2) take
advantage of auxiliary heuristic solution methods to
evaluate the combinations produced and to generate
new vectors (Glover, 1997).

Scatter Search in contrast with other evolutionary
procedures such as genetic algorithms provides unifying
principles for joining solutions based on generalized
path constructions (in both Euclidean and neigh-
borhood spaces). It utilizes the strategic designs where
other approaches resort to random search. Additional
advantages are provided by drawing the adaptive
memory on the foundations that link Scatter Search to
Tabu Search (Glover et al., 1999). Four basic methods
of SS proposed by Laguna and Marti (2004) are
extended in this study as presented in Figure 1. These
elements are discussed briefly as follows:

The Diversification Generation Method (DGM)

This method is used for producing a set of trial vector
solutions through heuristic processes designed for the
problem considered. The produced solutions are
scattered throughout the solution space as much as
possible. This initial set of solutions is called P set. A
particular mechanism in DGM prevents duplication of
solutions in the P set. In the generated P set which is a
large set of diverse vector solutions, each solution
consists of decision variables of the optimization
problem (here the diameter of each pipe).
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The Reference Set Update Method (RSUM)

In this method, a subset of the best vectors is designated
to be reference solutions. The reference set is the main
element in SS that consists of “desirable solution”
vectors according to both the “quality” of the objective
function and “diversity” of the solution.

RSUM must reset the reference set in each iteration
by monitoring the quality and diversity of trial solutions
that are produced by the DGM or solution combination
method. The size of reference set should be kept as
short as possible, typically less than 20 solutions (Laguna
et al., 1999). If the size of the reference set becomes
more than 20, it will be difficult to deal and needs
considerable computational effort.

The Subset Generation Method (SGM)

This method provides subsets from the reference set
that must be combined in order to produce new trial
solutions using the solution combination method. For
instance it can provide all or selected pairs of the
reference set. The pairs could be selected by random
number production.

The Solution Combination Method (SCM)

The subsets provided by SGM are combined linearly
through this method in order to produce new solutions.
These linear combinations are arranged to produce
solutions both inside and outside the convex regions
spanned by the reference solutions. Each subset can
generate more than one new solution. This method is
similar to the cross over function in the GA algorithm
but SCM is not limited by the number of members that
can participate in producing new solutions (just two
parents in GA), number of produced solutions after
combination (just two children in GA) and the way
that pairs of solutions are combined. This loop is
repeated until reaching the model termination criteria
which can be a pre-specified iteration limit or when the
objective function approaches a constant value.

These 4 methods form the general structure of the
SS algorithm even though they might be used in
different forms. There is an extra method, called the
Improvement Method (IM) in the SS algorithm. This is
not an essential method but is used in some studies for
increasing the convergence rate of optimization
problems. (Marti et al., 2006).

THE ADOPTED SS ALGORITHM FOR WATER
DISTRIBUTION NETWORKS

The size of the P set has been considered equal to 200
in this study. The initial reference set is built using
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RSUM. The size of the reference set (b) is considered
to be equal to 10 and the amount of the best quality
- (bl) and most diverse (b2) solutions are considered to
be equal to 5. After selecting the bl solutions with the
best quality from the P set, it is desirable to maximize
the minimum distance between the solutions in the
reference set to achieve the maximum diversity. For

each remaining solution ¥ in the P set and solution ¥
in the reference set, a measure of distance or

dissimilarity d(*, y ) is calculated. The solution that

maximizes dm,-,,(f ) is added to the reference set as
follows (Laguna and Marti, 2004),

Ainin (%) = { d(Z5) }. (D)

min

Ve Reference set
Then the solution vectors in the reference set are sorted
based on their objective function. After these two steps
the iteration procedure of the algorithm begins. SGM
generates subsets of the reference set and prepares
them for SCM. The simplest form has been considered
in this paper as all of the pairs of available solutions
have been considered for subset generation which
results in b(b—1)/2 number of subsets. By combining
the subsets, four new solutions are generated as
follows,

Cy=X;—d

Gy =% —d - @

El" - i[ + a’;‘

53 = fz + 3
where each element of vector d (d) is calculated as
follows,

|3‘1;‘—"‘2f|+1>< .

r) ()

* .
where # is a uniform random number.

d; = int(

The amount of the objective function is calculated
for all of the new generated solutions. Then the reference
set is updated using RSUM according to new trial
solution vectors and current reference set solutions. If
the reference set changes, it means that there are new
solutions that could join the reference set and the
algorithm continues running. If the reference set does
not change in two continuous steps, the diverse solutions
are extracted from the reference set and DGM is
repeated to produce a new P set and the new diverse
solutions are selected from it. This procedure is called
“Reference Set Rebuilding” (Marti et al., 2006).

In each iteration, the termination criterions are
checked. There are 2 terminating criterions considered
in this study including: (1) maximum number of
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hydraulic simulation of the water distribution network
and (2) achieving a specific amount of objective
functions.

TWO-LOOP NETWORK EXAMPLE

A hypothetical water distribution network has been
introduced by Alperovits and Shamir (1977) and is
subsequently used by many others in different
applications as a bench mark problem. This two-loop
network consists of 8 pipes which are fed by a 210 m
fixed head. Figure 2 shows the layout of this network.

Fig. 2: The layout of the two-loop network (after
Alperovits and Shamir, 1977)

All of the pipes have a fixed length and the Hazen-
Williams coefficient equal to 1000 m and 130,
respectively. The minimum acceptable pressure in all
of the demand nodes (nodes 2 to 7) is selected as 30 m
above ground level. The elevation and demand of
nodes 2 to 7 are presented in Table 1. The diameter of
the network pipes can be selected among the 14
available pipe diameters ranging from 25.4 mm to
609.6 mm (Table 2). The cost of each pipe size is
given in Table 2.

Both of the proposed SS and GA algorithms are
applied to the two-loop example network. The population
size of the GA model is 200 and cross over and mutation
probabilities are equal to 0.8 and 0.05, respectively.
The results of SS and GA algorithm converge to the
$420,000 cost unit which is the same as Savic and
Walters (1997). This solution satisfies the demand and
pressure requirements of water delivery and therefore
yields a zero head deficit. The average results of 100
runs of SS and GA algorithms are presented in Figure
3. This figure illustrates that SS has much a faster
convergence rate compared to GA.
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Fig. 3: The comparison between the average result of GA and SS in 100 runs

Table 1: The Nodal Characteristics of the Two-Loop

Network
Node ID. | Ground Level (m) Demand (lit/s)
1. 210.0 0 (Reservoir)
2. 150.0 27.78
3. 160.0 27.78
4. 155.0 33.33
5. 150.0 75.00
6. 165.0 91.67
- 160.0 55.56

Table 2: Available Pipe Sizes and Assumed Costs

Diameter Unit Cost Diameter Unit Cost

(mm) (US$/m) (mm) (US$/m)
25.4 2 304.8 50
50.8 5 355.6 60
76.2 8 406.4 90
101.6 11 457.2 130
152.4 16 508 170
203.2 23 558.8 300
254 32 609.6 550

CHAHAR-DANGEH WATER DISTRIBUTION
NETWORK DESIGN

Chahar-Dangeh is a small city located near Tehran, the
capital of Iran. It supplies water to about 200000
residents where the water consumption per capita per
day is equal to 170 liters. The layout of the Chahar-
Dangeh water distribution network is illustrated in

Figure 4. This is a complicated water distribution
network and the optimization of its design requires
considerable computational effort. The water demand
at nodes included in this water distribution network are
presented in Tables 3. All of the pipes assumed to have
a fixed Hazen-Williams coefficient equal to 130. The
costs given in Table 2, have also been used in this
problem. The network is fed by a 1131.9 m fixed head.

Node ®
Pipe —
Reservoir H
Seale
0 =0 1000

m — -

Fig. 4: The layout of Chahar-Dangeh water
distribution network

The GA and SS algorithms with the same structures 10
the pervious example have been applied to the Chahar-
Dangeh water distribution network. The results of
these algorithms are presented in Figures 5 and 6. Both
of the algorithms have found the same solution
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Table 3: The Characteristics of Nodes in Chahar-Dangeh Water Distribution Network

Node ID Grou?‘g)l_evel D?I?;g)nd Node ID Gmu?g)i'_eve! Dz?;z;id
1. 1097.9 0.95 41 1084.6 5
2. 1096.2 3.53 42 1082.7 12.36
3. 1097.1 0.28 43 1084.7 1.06
4. 1098.9 0.63 44 1087.6 1.06
5. 1098.1 1.37 45 1088.7 1.4
6. 1096.1 1.79 46 1090.2 1
7. 1095.2 2.54 47 1090.8 1.17
8. 1097 5.02 48 1094.5 1.4
9. 1094.6 34 49 1094.2 2.32
10. 1093.7 1.87 50 1096.1 - 8.31
11. 1096.3 0.28 51 1095.1 7.49
12. 1096.7 0.51 52 1093 7.71
13. 1096.9 0.4 53 1095.4 9.12
14, 1095.1 5.75 54 1097.5 7.29
15. 1096.1 1.14 55 1098.2 7.28
16. 1091.2 2.07 56 1097.5 4.36
17. 1090.1 12.86 57 1098.2 3.39
18. 1093.9 7.7 58 1100.3 0.95
19. 1092.4 11.01 59 1101.9 0.61
20. 1087.9 19.84 60 1099.6 3.49
21. 1087.9 8.12 61 1099 2.97
22. 1085.5 8.5 62 1098.7 1.44
23 1083.9 1.66 63 1099 1.3
24. 1087.2 0.96 64 1100.3 0.77
25. 1081.9 0.77 65 1102.4 1.38
26. 1083.4 9.56 66 1102.5 10.9
27. 1086.4 15.85 67 1101 20.78
28. 1088.3 9.38 68 1095.4 1.3
29. 1091.8 4.86 69 1093.8 3.2
30. 1091.2 14.67 70 1093 21.06
31. 1089.7 2.03 71 1091 22.54
32. 1086.5 5.57 72 1088.4 1.32
33. 1085.9 2.49 74 1089.1 16
34, 1084.6 4.12 75 1091.9 16
35. 1082.6 3.69 76 1092.4 3.19
36. 1082.7 2.61 77 1094.2 3.19
37. 1083.9 2.77 78 1093.2 3.2
38. 1085.8 1.25 79 1087.6 1.56
39. 1088.2 2.51 80 1084.7 2.07
40. 1086.5 2.33 81 1082.7 21.1
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Fig. 6: Convergence of SS algorithm for Chahar-Dangeh water distribution network

with a cost of one million US Dollars. SS algorithm
has found the optimal solution almost after 9000
hydraulic simulations. The optimal solution is found
after 15000 hydraulic simulations with GA. This
means that the SS algorithm has considerably less run
time and computation effort. As can be seen in the GA
algorithm the solutions are distributed around the
optimal solution but the SS results are more scattered.
This means that SS has searched the feasible solution
space more and tested most of the possible solutions.
This prevents the algorithm from getting trapped in the
local optimal solutions.

SUMMARY AND CONCLUSION

The optimal design of water distribution networks is an
important issue in integrated urban water management as
it can save considerable amounts of money. There are

different methods used for the optimal design of these
networks. A popular method is GA. Although this
method has shown good performance in producing an
optimal solution in the design of water distribution
network, it is very time consuming with possibility of
getting trapped in the local solutions. In this paper a
new evolutionary algorithm called the Scatter Search
(SS) has been used for the optimal design of a water
distribution network. This algorithm is more flexible
than GA and has performed better than GA in many
respects.

The results of this study showed that the con-
vergence rate of the SS model especially in the first
2000 iterations is considerably more than the GA
model. The application of SS to a real water distribution
network showed that it converges to the optimal
solution in about half time compared to GA to find the
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optimal solution. This is important in the design of
large scale systems. Another advantage of SS is that it
searches the feasible solutions guardedly. This
prevents finding the local optimal solutions which is
common problem in GA model. The performance of
SS can be further improved by extending the SCM and
SGM methods to include improvement method.
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