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ABSTRACT: Extant process-based hydrologic and water quality models are indispensable to water resources planning and
environmental management. However, models are only approximations of real systems and often calibrated with incomplete
and uncertain data. Reliable estimates, or perhaps further, reduction of prediction uncertainty, contribute directly to successful
risk management and the formulation of environmental policy. This paper discusses widely used and promising methods for
estimating model prediction uncertainty in complex environmental systems; and lays down a framework for probabilistic risk
management and its application to one of the most important watershed-based regulatory programs, the Total Maximum Daily
Loading (TMDL). In TMDL development, a Margin of Safety (MOS) is applied to account for the uncertainty embedded in the
analysis or modeling exercise. However, in most TMDL developments, MOS is arbitrarily selected and the related degree of
protection provided by the safety factor often remains unknown. A formal risk-based approach linking required load reduction in
a TMDL to the analysis uncertainty and required degree of protection is presented along with a formal estimation of MOS is
also presented. Bayesian-based probabilistic approaches, such as Classical Bayesian Estimation (BEA), Generalized
Likelihood Uncertainty Estimation (GLUE), and Ensemble Kalman Filter (EnKF) hold promise for TMDL development under
conditions of uncertainty. Current TMDL practices need to be revised taking into consideration recent advances in model
uncertainty estimation. The paper ends with a list of future challenges in uncertainty estimation and research needs to reduce

its magnitude.

INTRODUCTION

Population growth and urbanization worldwide threaten
to undermine water resources availability and degrade
water quality and the environment. With the recognition
that the watershed approach furnishes an effective
strategy for the restoration of impaired ecosystems and
protection of waters from pollution comes the need for
tools to identify and quantify the contributions of
different land uses to pollutant loading, as well as
evaluating the effectiveness of various management
practices in controlling different sources of pollution.
To this end, the role of extant process-based hydrologic
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and water quality models in water resources planning
and environmental management cannot be overem-
phasized. However, models are not immune from
errors, and their predictions are subject to uncertainty
arising from our limited conceptual understanding of
complex natural systems and imperfect data.

Traditionally, the role of mathematical models,
empirical or process-based, has been limited to testing
scientific hypotheses, predictions, and interpreting
experimental and field data. Recently, however,
models are being used as tools for decision making and
formulation of environmental policy. In addition to
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forecasting and common applications, hydrologic and
water quality models are also used in ecological
sciences (e.g., Canham ef al, 2003; and Wu et al,
2006) and environmental management and regulation,
e.g., in risk assessment (USEPA, 2004), Regulatory
Impact Analysis (RIA) (Krupnick et al., 2006, Circular
A-4, 2003), Total Maximum Daily Loading (TMDL)
program (e.g., USEPA, 1999), and in many other enacted
environmental laws. In almost every -category,
uncertainty analysis plays a critical role. Successful
risk management and the formulation of environmental
policy are hinged on realistic estimates of uncertainty
(NRC, 2004; and Reckhow, 1994 (a), (b)). Failure to
communicate model uncertainty, however, can lead to
undesirable environmental consequences, with societal
and economic implications (see Oreskes, 2003, citing
the catastrophic 1997 Red River flooding in North
Dakota).

The TMDL program, implemented at the watershed
scale, is one of the most important environmental laws
in the United States enacted to regulate point source
and nonpoint sources of pollutant discharges to the
nation’s waters. Analysis uncertainty in the TMDL
calculation is accounted for by applying a margin of
safety (MOS). However, in currently practiced
TMDLs, MOS is arbitrarily selected, and the degree of
protection provided by the selected value is often
unknown (NRC, 2001). Formal methods for the
estimation of TMDLs and MOS on the basis of model
prediction uncertainty are lacking. While the use of
probabilistic techniques to characterize uncertainty has
been promoted in risk assessment (e.g., USEPA, 2004),
they have been limited to analyses a posteriori to model
calibration. Further, rigorous applications of probabilistic
methods to risk management have yet to find their way
to environmental protection and regulation.

This paper identifies and discusses advantages and
limitations of prominent approaches for uncertainty
estimation in hydrologic and water quality modeling. It
also presents a probabilistic framework that can be
applied to risk management, in general, and TMDL
calculation, in particular. The application of the risk
management paradigm is illustrated by means of a
hypothetical  lake-sediment  phosphorus TMDL

calculation. A formal procedure is also presented for
the estimation of the TMDL and associated MOS, as a
function of model predictive uncertainty and desired
degree of protection. The paper ends with conclusions
and future challenges in research and applications of
model uncertainty estimation to environmental decision
making.

UNCERTAINTY ESTIMATION METHODS IN
HYDROLOGIC MODELING

First-Order Approximation

The First-Order Approximation method (FOA) is a
widely used methodology for estimating model output
uncertainty due to its relative simplicity. However,
related applications have been limited to post model
calibration where model parameters are perturbed
either based on experimental evidence or judgment.
FOA can be used to estimate the mean and variance of
the dependent variable Y, due to uncertainty of the
dependent variables, X (Haan, 2002; and Ang and
Tang, 2007). Consider Y as a given model output (e.g.,
runoff, streamflow, pollutant concentration, etc.) and X
= (X, Xo, ..., Xy) as a vector of » random variables
denoting uncertain model input variables (e.g.,
precipitation intensity) and parameters (channel
roughness coefficient, soil hydraulic conductivity, SCS
dimensionless curve number, etc.). Mathematically,
any of the outputs of hydrologic and water quality
models can be described by the general functional
relationship,

Y = g(X) e GI)

where g denotes either a statistical or empirical
relationship relating ¥ to X, or a process-based,
mechanistic model. Expanding Y in Taylor series
around the means of n random variables and truncating
higher order terms yields the following (first-order)
approximations to the mean and variance of ¥,

py =EX)~g(y), py =EX) v (2)
o} =Var(¥)~Vg(uy) Ty Ve(uy), Zx = E(X XT)
.. (3)

where E is the expectation operator; Ly is the mean of
the random vector X; V is the gradient operator; Zx is
the covariance matrix of X; and T is the matrix
transpose operator. Note that in Eqns. (2) and (3), g
and Vg are evaluated at px. Eqn. 3 can be described in
a more useful form as,

CV,~0'I1 © N C

in which,
CN, cr? P12CNICYy - CVICY,
0= M| | PuChlH CV3 = p2uCVoCY,
CN, P iCV,CV; cr?
.. (5
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where CN, = (pyiy)0g(1y)/0X,,; CV;is the coefficient
of variation of X;; and p;, is the cross-correlation
between X, and X. © is a vector whose typical element
CNy, is a measure of model sensitivity to X, and is
referred to as condition number (Chapra, 1997).

Besides computational efficiency and relative
simplicity, one of the advantages of Eqn. (4) is its
utility in estimating the relative contribution of each
random variable to the overall spread (uncertainty) of
the model output. An interesting point worth
emphasizing is that Eqns. (4) and (5) transparently
distinguish parameter sensitivity from parametric
uncertainty, an issue that has had its share of confusion
in the literature. The former is solely measured by CN;
and is essentially deterministic in nature, whereas the
latter is measured by the product of CN, and CV, and
thus inherently stochastic. Unless highly uncertain, the
most sensitive parameter may not dominate model
output uncertainty (e.g., Hantush and Kalin, 2005).
Depending on the value of the condition number, CN,
corresponding parameter uncertainty might either be
magnified or attenuated during model computation of
the output variance.

In spite of the widespread applications of the FOA
in hydrologic modeling (e.g., Lee and Mays; 1986; Lei
and Schilling, 1994; and Johnson and Rinaldi, 1998)
and water quality modeling (e.g., Zhang and Shaw,
2004; Bobba et al., 1996; Melching and Yoon, 1996;
and Warwick, 1997), the errors committed by
neglecting higher order terms in the Taylor series
expansions can be significant for highly nonlinear
systems, such as complex watershed models.

Generalized Likelihood Uncertainty Estimation

Recognizing model structural errors, parameter
interactions, and nonlinearities inherent in many
hydrologic models, GLUE method replaces the
concept of the “optimum parameter set” with the
concept of “equifinality” (Beven, 1993, and 2006).
The latter is used in the sense that many different
model structures and many different parameter
combinations (behavior sets) within a chosen model
structures are valid (acceptable) simulators of the
observed system behavior. The methodology starts
with the generation of an ensemble of parameter sets
by sampling random parameter values from their
respective prior distributions and conducting a

simulation for each parameter set. A likelihood
measure is then computed for each simulation and
corresponding parameter combination by comparison
of the results with observations using, e.g., Nash-
Sutcliffe efficiency criterion (Beven and Binley, 1992),
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2
L©|r)=1-"L .. (6)

0

where L(®|Y) is a measure of the likelihood of
simulating the data set Y given the parameter set ©,.
o is the variance of residual errors; and og’ is the
variance of observations. L(®,|Y) is used here as a
fuzzy measure of the probability of how well the
parameter set allows the model to describe the data; a
generalization in a sense to the likelihood function
often used in classical Bayesian estimation. Once the
likelihoods of all parameter sets are computed, those
parameter sets whose likelihoods exceed or equal to a
prescribed threshold value, 0 is typically chosen, are
retained as behavior sets, and those which fail the test
are assigned zero likelihood weights and disregarded
as nombehavior sets; i.e., the corresponding model
output is dissimilar to the behavior of the system under
study. The likelihood weights of the retained
simulations are then rescaled so that the sum of their
totals is 1.0. The scaled likelihood weights then are
combined with the priori parameter distribution using
Bayes theorem to yield the posterior likelihood weights,

F(©,|N=cL®,|1)f(®)) e (7)

where ©; is model parameter set i; f (@,-IY) is the
posterior likelihood measure of ®, given the set of
observations Y; f (®,) is the prior likelihood measure
of ®; and ¢ is a normalization factor. The collective
values of f‘ (9,-|Y )over all parameter sets could be used

to estimate the marginal probability density function
(pdf) for model parameter 6.

The GLUE methodology constitutes a challenge to
traditional approaches that embrace the concept of
optimal parameter set in model calibration. Aside from
acknowledging that models are at best only approxi-
mations of the real world and that model structural
errors are implicitly accounted for in the methodology
(Beven and Binely, 1992), the methodology provides a
robust approach for the calibration and uncertainty
estimation of highly nonlinear and complex
environmental models, such as the case in watershed
modeling. The nuisance of conventional gradient-
based techniques in search of optimal solution in
highly nonlinear, complex response surfaces that have
several local optima is remedied by the global
sampling nature in GLUE. One other advantage of the
methodology is that by emphasizing parameter sets
rather than individual parameters, the effect of
interactions (covariation) among the parameters will
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be reflected implicitly in the value of the likelihood
measure associated with each set (Beven and Binely,
1992, and Schulz et al, 1999). The methodology,
however, is not without drawbacks, most notably is the
subjectivity in selecting the likelihood measure and
threshold criterion separating the behavior from
nonbehavior parameter sets. Different values of the
threshold can lead to different size of the output
uncertainty band (Schulz et al.,, 1999; and Zheng and
Keller, 2007). The implication of arbitrarily selected
likelihocd measure is that GLUE’s uncertainty limits
are no longer direct estimates of the probability of
observing a particular observation.

Classical Bayesian Estimation

Another widely applied Bayesian approach is the
classical Bayesian analysis, henceforth, referred to as
the Bayesian-error analysis (BEA). The BEA approach
recasts a deterministic model into a standard regression
form and conducts model simulations based on
Bayesian statistics to estimate uncertainties (e.g.,
Sorooshian and Dracup, 1980; Bates and Cambell,
2001; Vrugt et al., 2003a; Kavetski et al., 2006; Ajami
et al., 2007, and Samanta et al., 2007). With additive,
typically Gaussian white noise error term, observed/
measured quantity ¥; can be expressed as,

Y, =Y(X,0)+¢,, & ~N(0,6,%),i=1,2,..T ... (8

where Y(X, 0) is the model output; X denotes input
variables; 0 is a set of model parameters; €; is zero-
mean error with constant but unknown variance, o,’;
and T is length of observed record. In BEA, 06 and o,
are treated as probabilistic variables having a joint
posterior pdf. The likelihood function is derived with
the assumption that the errors are independent
identically distributed (iid), often but not always,
Gaussian and homoscedastic (i.e., with a constant
variance). For iid normal g and uniform (non-
informative) prior 0, using Bayes theorem and
assuming a nonuniform prior of the form p(8, o.%) o
1/c.2, the joint posterior distribution of 6 and o> may
be expressed as follows (Samanta et al., 2007),

P@®,0.7 |1 o{“’*”’Hexp{‘ ﬁ [¥ —Y(Xﬁ)]z}
i=l Gg

.9
where n here is the observed data sample size. The
error variance, o,’, can be estimated directly by
applying the maximum likelihood method to the
likelihood function (e.g., Thiemann er al, 2001).
Maximizing the likelihood function produces the

output with the highest probability of being closest to
the true value of the variable being forecasted.
Thiemann e al. (2001) presented a Bayesian Recursive
Estimation Algorithm (BaRE) through which various
posterior and conditional densities are approximated
via MC simulation and maximum likelihood estimation
of the variance of measurement errors in transformed
output space. The BaRE algorithm can be used to
compute the probability density of the output measure-
ment and update the forecast as new observation
becomes available. Further, the approach could be
used to construct posterior parameter set density and
update for new measurements. Another approach is to
sample posterior distribution in Eqn. 9 using the
Markov Chain Monte Carlo (MCMC) simulation (e.g.,
Samanta ef al., 2007). In the MCMC method, prior (or
proposal) parameter distributions are varied subject to
conditions that ensure convergence to the posterior
target distributions (Vrugt et al., 2003a).

The main advantage of the BEA over GLUE is that
in the former method marginal and conditional densities
are manipulated according to the rules of mathematical
probability embodied in Bayesian inferences without
the ambiguity of admitting any “likelihood measure”
L(®|Y) as an estimate to the “likelihood function” or
P(Y |®;), as the case in the GLUE methodology
(Thiemann ef al., 2001). On the other hand, BEA aims
at estimating the quantity P(Y]®;) exactly, of course,
after assuming /id, typically Gaussian residual errors.
The possibility of nonconvergence of Markov chains
to stationary distributions is a potential shortcoming in
BEA method. On the other hand, GLUE is relatively
easier to implement and computationally simpler.

Pareto Optimality

The Pareto Optimality method is inherently multi-
objective in nature (Gupta et al., 1998; Madsen, 2000;
and Vrugt et al.,, 2003b) and shares the parameter sets
equivalence of the equifinality concept of the GLUE
methodology in the sense that there are multiple ways
in which the best fit of a model to observed data can be
defined. The multiobjective equivalence of the
parameter sets is more commonly referred to as Pareto
Optimal. Similar to the behavior and nonbehavior sets
in GLUE, the parameter space in Pareto Optimality
can be partitioned into good or Pareto solutions and
bad solutions. The number of the good parameter sets
defines model output uncertainty.

In the most general form, the identification of the
equivalent parameter sets may be cast in a multi-
objective optimization problem,
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ming F(8)={ £,(0), 2 (O)..., £, (8)} ... (10)

where F' is a transformation of residual errors (e.g.,
min, weighted-sum of squares, Nash-Sutcliff
coefficient, etc.) of one or multiple model outputs
evaluated using the parameter values 6. The functions
f(©), i =1, 2,..., m, are selected such that they are
unrelated in the sense that they measure different
model output residuals, or different important aspects
of differences between the observed data and model
simulations that can be used to extract the useful
information contained in the data and transform it into
estimates for the parameters (e.g., Gupta et al., 1998).
The solution to the multiobjective optimization
problem (10) will consist of a Pareto parameter space
® corresponding to various trade-offs among the
objectives. Alternatively, the weighted sum of the
objectives £(0), i = 1, 2, ..., m can be minimized to
obtain the Pareto parameter space ©,

mineF(B)ziw,f,-(B), iw, ={

i=l i=1

.. (1)

where w; are weights whose values determined either
randomly or in some other fashion generate the Pareto
parameter sets by solving the essentially single-
objective optimization problem (11) for each set of the
weighting coefficients (e.g., Yan and Haan 1991). The
shuffled complex evolution (SCE-UA) global
optimization has been cited as effective algorithm for
generating as many discrete Pareto solutions as
necessary for (10) or (11) to obtain an acceptable
approximation of the Pareto parameter space ® (e.g.,
Duan et al., 2007, and Kuczera, 1997).

The multiobjective property of the method may lead
to identification of parameter values that are more
general in the scope of applications and better
describing the overall characteristic of a particular
model output. The Pareto Optimality, however, is
inherently a search-based technique as it requires the
identification of the Pareto optimum. Even with the
multiobjective complex evolution (MOCOM-UA)
algorithm, which alleviated much of the computational
burden associated with SCE-UA technique in the
solution for the Pareto optimum (@), its search-based
nature makes it more computationally demanding than
the GLUE methodology. Further, the selection of F(8)
in (10) and w;s in (11) remains subjective in nature.

Kalman Filter

Although received relatively much less attention than
the above described approaches in watershed and
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water quality modeling, Kalman filtering, especially
Ensemble Kalman Filter (EnKF) (Evensen, 2003) has
been extensively used in sequential data assimilation
to, among others, atmospheric and climate forecasting,
land-surface models, marine ecosystem models, and
oceanographic problems. Although less applied to
complex watershed and water quality models, EnKF
approach holds greater promise in forecasting and
conditional simulation in both areas. Kalman filtering
is a predictor-corrector recursive algorithm that was
originally developed for linear filtering problems
(Kalman, 1960; and Jazwinski, 1970), and has been
enhanced as the Extended Kalman Filter (EKF) for
nonlinear systems (Lewis, 1986). After initializing the
estimate of the state variable and associated covariance
structure, Kalman filtering recursions start with a time
update process for predicting state variable(s) and
associated error covariance(s), followed by a
measurement update (or correction) process for the
assimilation of observed data into the system
variable(s). Application of linear filters and EKF in
hydrology has been limited to rainfall-runoff
generation (e.g., Bras and Rodriguex-Iturbe, 1985),
simple water quality models (e.g., Lettenmaier and
Burges, 1976), and groundwater flow under conditions
of uncertainty (Hantush and Marifio, 1994, 1997).
Only recently, with the advent of EnKF (1992),
applications of Kalman Filter to hydrology at the
larger watershed scale gained momentum (e.g.,
Reichle et al., 2002; Gabriélle et al., 2007; and Kim
et al., 2007). The EnKF nonlinearly propagates a finite
ensemble of model trajectories, from which an estimate
of the state(s) pdf(s) gives a complete statistical
description of the state(s). These characteristics makes
the EnKF easier to apply than EKF and more suitable
for highly nonlinear problems.

In general, for higher dimension state variables,
Kalman filters are computationally demanding and
require accurate knowledge of first-two moments of
the process -and measurement noise. Common
applications of Kalman filters are limited to white
process and white measurement noise; autocorrelations
in the process and measurement noise and cross
correlation among the noise terms complicate the
analysis. Its worth noting that despite the advantage of
EnKF in the nonlinear projection of the state variable,
the recursive relationship it utilizes during the
measurement update remains an approximation derived
from a linear state-space representation.

Other Methods

There are numerous methods worthy of reporting that
overlap with and share some of the philosophy of the
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major approaches described above. We were not able
to report these to conserve space (e.g., Hantush and
Kalin, 2005, 2008; Carpenter and Georgakakos, 2004,
and van der Perk and Bierkens, 1997).

SCIENTIFIC UNCERTAINTY AND
ENVIRONMENTAL REGULATION

In spite of reported successes in controlling point
sources pollutant discharges in the US, water quality
impairments continue to exist in the Nation’s waters
primarily due to diffuse nonpoint sources from
agricultural runoff, forestry, land development activities,
and urban runoff (USEPA, 1999). To address the
combined, cumulative impacts of both point and
nonpoint sources, the United States Environmental
Protection Agency (USEPA) has adopted a watershed
approach, of which total maximum daily loads
(TMDLs) are a part. Section 303(d) of the Clean Water
Act (CWA) requires states, territories, and authorized
tribes to develop TMDLs for pollutants in impaired
waters, including those which are threatened to be
impaired also. A TMDL is the maximum of point and
nonpoint source loads that can enter a water body
without exceeding specified water quality standards.

The Comprehensive Environmental Response and
Liability Act (CERCLA), otherwise known as
Superfund, was enacted to address the legacy of
contamination from chemical waste (Stephens, 2008).
Numerous water quality regulations were put in place
to achieve compliance and protect groundwater and
surface water resources, most notably are the Safe
Drinking Water Act, The Toxic Substance Control
Act, and the Resource Conservation and Recovery Act
(RCRA). Other enacted environmental laws include
The Farm Security and Rural Investment Act which,
among others, aims at protecting water quality from
agricultural nonpoint source pollution. Of these
environmental laws, the TMDL program is now
considered to be pivotal in securing the nation’s water
quality goals (NRC, 2001); it establishes the allowable
loadings, thereby providing the basis for states to
establish water quality-based controls, the objective of
which is attainment of ambient water quality standards
through the control of both point and nonpoint sources
of pollution. In almost all of these environmental laws,
simulation models are used as to tools for regulatory
compliance, risk assessment, and environmental planning
and management.

In the following subsections, we establish the link
between model predictive uncertainty and risk
management and demonstraté its applicability to a

hypothetical TMDL problem with a steady-sate lake-
sediment phosphorus model.

Model Uncertainty and Regulatory Risk
Management

Similar to the risk of failure of a given system capacity
to sustain applied load, water quality compliance can
probabilistically be described by this risk inequality,

P{r=z} <P . (12)
Risk Risk
Assessment  Management

where Y is pollutant concentration [ML™] or loading
rate [MT '] measured or computed by an empirical
relationship or a process-based mathematical model; Z
is the compliance concentration [ML™] or loading rate
[MT'], such as the Maximum Contaminant Level
(MCL) and TMDL designated use criterion; and [3 is
the acceptable level of risk or frequency of violations
((1-B) being the confidence level or degree of
protection). According to the U.S. EPA (1997), for the
waterbody to be listed as unimpaired, no more than
10% of the samples (B = 0.1) collected from the
waterbody should violate water quality standards. In
general, Z also is subject to uncertainty, although,
fixed values are common in practice. For example, in
TMDLs, the uncertainty in Z depends on the criterion
selection process and its accuracy as a surrogate
measure to the designated use of the waterbody (NRC,
2001). Y is random due to measurement and modeling
errors combined.

The above inequality articulates the risk-assessment-
risk-management paradigm in tractable mathematical
form. The first term on the left-hand-side of (12) (i.e.,
P{Y > Z}) concerns the estimation of the risk which is
primarily a science issue, whereas the right-hand-side
of the inequality constitutes the risk management
component. The selection of acceptable risk value ([3)
is a policy matter that is left to decision makers.
Eventually, risk assessment is integrated with other
considerations in order to make and justify regulatory
decisions (U.S. EPA, 2004). Federal, local States,
tribes, and academic institutes in the USA together are
involved in efforts aiming at criteria development and
the selection of water quality numerical targets (U.S.
EPA, 2000).

Assuming that Z is fuzzy, varies in the range [a, b],
and statistically independent of Y, it can be shown that,

bz
P{Y > Z}} =1- [[fy 2 (y.2)dydz
0

. (13)

b
=1~ [Fy(2) f7(2)dz
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where Fy(z) is the cumulative distribution function of
Y; and fz(z) is probability density function of Z.
Equation (13) states that for a fuzzy compliance
criterion, the probability of compliance is equal to
weighted average of the cumulative probability
distribution of measured/computed water quality
indicator evaluated over all possible values of Z, with
the weights reflecting our degree of belief in rather a
fuzzy numerical water quality target.

To illustrate the applicability of Eqn. (12) to a
TMDL calculation, we consider a simple lake-
sediment phosphorus model and limit the analysis to
brute force application of MC method.

Application to Lake Phosphorus TMDL

Figure 1 depicts the conceptual lake-sediment
phosphorus model. The lake is divided into a water
layer and bottom sediments. Flow within the lake is
assumed steady with no net loss by evaporation and
groundwater seepage. Sediments are transported into
and out of the lake by advection and are subject to
deposition to and resuspension from bottom sediments.
The bottom sediment layer receives depositional flux,
releases some of the sediments back to the water
column, and is buried by sedimentation. Phosphorus is
usually highly sorbed to sediment particles and the
dissolved component is assumed to be at equilibrium
with the sorbed phase in both the lake water and the
bottom sediment. Mass transfer of dissolved
phosphorus is assumed to occur by diffusion across the
sediment-water interface.

Mathematically, the lake sediment-phosphorus hypo-

thesis can be posed in the following ordinary differential
equations for the lake and sediment environments:

Water, Environment, Energy and Society (WEES-2009)

Mass balance of sediment in lake,

dm.,
(ff“ = Qin My ip — VsAs m, . (14)
+v, Agmg — Qom my,
Mass balance of sediment in lake-bottom,
di
AH ;’:S =v, Am, —v, A,mg—v, Am, ... (15)
Mass balance of total phosphorus in lake water,
dc
Vgt ~9nCin = AEC .. (16)

+ad,(f4P-F;C)+v A4 f,P-0,,C
Mass balance of dissolved phosphorus in sediment,

2 ‘;—f =v, 4, E,C-0.4,(fyP-F,C)

"“VrAs_f:yP —VbASP

where m, is sediment concentration in lake water
[ML"J]; my,.in is inflow sediment concentration ML’3];
my is lake-bottom sediment concentration [ML™]; C is
total phosphorus concentration in lake water [ML™]; P
is total phosphorus concentration in sediment layer
[ML]; ¥ is lake water volume [L’]; O, is lake inflow
rate [L3T"l]; Qou is lake outflow rate [L’T™']; 4, is lake
surface area at the sediment-water interface [L*]; H is
sediment layer thickness [L]; ¥ is volume of sediment
layer [L7]; v, is settling velocity [LT'); v, is
resuspension/recycling velocity [LT™']; v, is burial
velocity [LT"']; and o is effective mass-transfer
velocity coefficient at the sediment-water interface
[T". For illustrative purposes, we assume o = D'/§,
where D' is free-water phosphorus  diffusion
coefficient [L’T™']; and & is thickness of sediment-
water interface diffusion boundary layer [L].

.. (1)

C=cyg+myc,

P=4py+myp,

ST 14 mKy

4 I+my, K,

Ja

T o+mKg
K4

Fig. 1: Conceptual lake-sediment phosphorus model
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Assuming Q;, = Qo = O and taking all time-
derivatives equal to zero, the steady-state solution of
the sediment equations can be shown to be,

v, A
My =My iy ———=(1-0)p, . (18)

Q

For sediment concentration in the lake, and for total
phosphorus, the solution is,

o fy+v, fi+v,
C= W ...(19)
vy, (voFy + aFy )+ O(a fy + v, f; +vy)

in which,

.. (20a)
.. (20b)

C=cy+m,cg
W= ch.m + Qmw in Cs in

where ¥ is total phosphorus loadmg rate [MT ']; ¢ is
sediment layer Eorosn:y [L’L™); ps is sediment particle
density is dlssolved phosphorus
concentratlon 1n lake water [ML N e is sedxment—
bound phosphorus concentration in lake water [MM™];
Cdin :s inflow dissolved phosphorus concentration
[ML?); ¢ is mﬂow sediment-bound phosphorus
concentration [MM™]; and f, £ [L’M™'], F,, and F,
[L°M™] are partition coefficients relating dissolved
and sorbed-phase phosphorus concentration to total
phosphor concentration (equations shown in Figure 1,
where p, is pore- water 3phosphorus concentration in
bottom sediments [ ; ps s sorbed phosphorus
concentration in bottom sedlments [MM™]; and Kj is
phosphorus sorption coefficient [L*M™]).

A more direct measure to eutrophication, which
reflects the nuisance conditions caused by excessive
algal blooms, is chlorophyll a, Ch/ a. Biocriteria, such
as Chl a, are better indicators of designated uses than
are chemical criteria and their use in TMDL
development should be promoted (NRC, 2001).
Without loss of generality, we select Ch/ a-phosphorus

regressed relationship reported by Schnoor (1996) (see
Chapra, 1997 for other relationships),

Y =0.081C"*¢ . R=0.95 . (21)

where Y denotes Chl a concentration; both ¥ and C
have the units of pg/L (mg/m’).

Table 1 lists the parameters of the lake-sediment
phosphorus model (Eqns. 19-20), their units, and
assumed probability distributions and related parameters
selected from typical values and ranges reported in the
literature. A hypothetical bottom lake surface area, 4,
of 5 x 10° m’ is assumed. Dissolved phosphorus is
assumed to be 5% of the sorbed phosphorus in (g/m’):
Cam = 0.05 myin 5im. Z is Chl a enforced water quality
target concentration; it is assumed to be a random
variable and follows a triangular distribution with
minimum, most probable (mode), and maximum
values of 2.7, 10, and 14 pg/L, respectively. P{Y > Z}
> (0.1 implies a eutrophic condition. If P{Y > Z} is
greater than 0.1, then for the TMDL to be achieved
with 90% compliance, total phosphorus loading rate,
W, should be reduced such that P{¥ > Z} is at least
equal to 0.1.

Vollenwieder and Kerekes (1980) reported Chl a
concentration between 2.7 and 78 pg/L as the range for
eutrophication and 3 to 11 png/L for mesotrophic status.
The overlap in Vollenwieder and Kerekes (1980)
trophic status classification scheme boundaries, the
variability of selected target values among states, and
variation in the methodology for selecting a numerical
target altogether provide a rationale for treating water
quality numerical targets (i.e., compliance values) as
fuzzy variables whose probabilities express the degree
in one’s belief that compliance based on particular
Z values would restore or prevent the degradation of a
targeted water body.

Table 1: Lake Sediment-Phosphor Model Parameters and Assumed Probability Distributions

Parameter Unit Distribution Parameter Unit Distribution
Q m>fyr ~N(2 x 108, 2 x 10°%)? D m2lyr ~U(1.5, 2.32)°
- g/m* ~N(35, 5) 5 mm ~log-N(1.0, 1.0)
Csin alg ~log-N(107%, 4 x 107%° ¢ m°m™ ~T(0.4, 0.7, 0.95)
Vs miyr ~log-N(37, 20) Ps glcm® ~T(1,2.6,2.7)
Ka m°lg ~log-N(4.87 x 107, 2.59 x 107°) Z mg/m® | ~T(2.7, 10, 14)
Vo miyr ~T(8 x 107, 0.005, 0.01)°

*N(A, o) denotes normally-distributed random variable with mean . and standard deviation o.

® log-N(%, o) denoted log-normally distributed random variable with mean 2 and standard deviation o.

°T(a, b, c) denotes triangular distribution of random variable with minimum value a, mode ¢, and maximum value c.
4 U(a, b) denotes a uniformly distributed random variable in the interval (a, b).
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For each MC simulation 100,000 independent
parameter sets were sampled by randomly generating
parameter values from their respective pdfs in Table 1.
An ensemble of model outputs was generated with
100,000 model runs of Eqns. (19-21), and an ensemble
of same size was generated for Z from its pdf in Table
1. The MC simulation and the sampled Z yielded P{Y
> Z} = 0.73. A reduction in total phosphorus loading
rate, W, was therefore needed to reduce P{Y > Z} to
0.1 and achieve the TMDL at 90% compliance. From
Eqn. (20b); it is evident that either or both of the two
variables m,,;, and cg;, will need to be manipulated
to achieve this target (recall, ¢, is assumed to be
a fixed fraction of c; ;).

Figure 2 depicts the results of two selected TMDL
strategies; the first seeks the reduction of sediment
loading concentration, m,,;,, and the second involves
the reduction of sediment-bound phosphorus
concentration, c;. MC simulation and a nonlinear-
based root’s finding technique were implemented to
identify the mean m,,;, or mean c,;, such that P{¥ >
Z'} = 0.1. The variance of both management-control
variables was held constant during the search
procedure. The search procedure was programmed and
executed in MATLAB computational package.

The upper panel (a) in Figure 2 shows relative
frequency (100 bins) and cumulative distribution
functions of precompliance sediment loading, m,,;,
and those required to achieve the phosphorus TMDL at

T
MOS=33% |

oy v
S i
E g " i
o 0.04 ’l \ Va \ ‘I
= H \ F [
@ H \ ;
= ] 1 i 1
w 0.02 ] ‘\ / ¥ 1
3 ! % \
14 i \% |
,J = N e .,
0 10 20 30 40 50 60
Sediment concentration (mg/l)
(1)), 7 SN SRS,
T 04l MOS = 40 %
g 1
g o3 /0
b i ‘I
2 0.2
s 0.1
& e
0 1 2 3

Sorbed phosphorus concentration (mg/g)

Water, Environment, Energy and Society (WEES-2009)

90% confidence (i.e., p = 10%). The lower panel (b)
shows similar output for the input sediment-bound
phosphorus concentration, c,;,. For the first strategy,
an estimated 62% reduction in mean total phosphorus
loading rate, W, was needed to meet the 10%
requirement; whereas the second strategy yielded a
higher 69% reduction in W.

The increased required load reduction in the second
strategy compared to the first highlights the
importance of parametric uncertainty on model
estimated TMDL. Inspection of data in Table 1 shows
higher uncertainty in ¢, than m,,,: the coefficient of
variation associated with the former is almost three
times higher than the latter. Although not shown in a
figure, the relative frequency of the computed
phosphorus TMDL was relatively more skewed to the
left for the second strategy, in favor of higher
probability densities for lower phosphorus loading rate
values, than for the first strategy; again, this is
attributed to higher uncertainty in .

A robust, perhaps more economically and socio-
politically acceptable, approach might have involved
the simultaneous reduction of both ¢, than .
Various management strategies could be implemented
to achieve the hypothesized phosphorus TMDL. On
one end of the spectrum, phosphorus input from
anthropogenic point and nonpoint sources could be
managed such that their discharges to watersheds and
receiving water bodies are reduced. Example strategies
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Fig. 2: Monte Carlo simulated precompliance (solid-line) and 10% compliance (B = 0.1) (dashed-line) relative
frequencies and cumulative distributions: (a) Loading sediment concentration, m,,;,; and (b) loading sorbed phosphorus
concentration, ¢, ;,. Results are based on MC simulation with 100,000 model runs
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include improved agricultural practices such as
increased nutrient retention in soils and crop uptake;
limiting excess nutrients in fertilizer applications; and
managing animal waste discharge to rangelands and
agricultural fields. Enforcing the National Pollutant
Discharge Elimination System (NPDES) insures
nutrients point source load reductions. On the other
side of the spectrum, sediment loading could be
reduced by implementing sound management practices
that reduce both soil and channel erosion and trap
sediments that are major carriers for sorbed-phase
phosphorus. Management strategies that combine both
ends, i.e., controlling both sediment and phosphorus
inputs with relatively varying degrees, may prove to be
the most efficient and effeciive.

TMDL MARGIN OF SAFETY (MOS)

Traditionally, MOS is used to account for uncertainty
in the relationship between pollutant loads and
receiving water quality. Explicit and implicit
approaches have been reported to have been used for
the estimation or selection of MOS (Dilks and
Freedman, 2004; and Shirmohammadi et al, 2006).
The most common approach for the estimation of
MOS is the explicit selection of MOS as a percentage
of the TMDL, a concept that is equivalent to a safety
factor. The implicit approach is another widely used
approach in which the margin of safety is introduced
implicitly through the use of conservative assumptions
in calculating the allowable load. Only a few studies
considered uncertainty analysis as a base for
estimating MOS (e.g., Borsuk et al., 2002; and Zhang
and Yu, 2004).

Its worth noting, however, that in the course of
calculating the TMDL for the above hypothetical lake-
sediment phosphorous model, formal account of model
uncertainty was made (assuming parameters are the
only source of uncertainty), but without having to
make an explicit reference to the margin of safety
(MOS). For completeness, however, a MOS may be
computed as a function of the desired degree of
protection, but in a more rigorous and formal way than
the currently practiced implicit and explicit approaches.

The following is one way of calculating MOS in a
relative sensem,

MOSzwaOO, LR1
P
=L,~L,LR2=L, - . (22)
where L, is precompliance load computed with

expected parameter values (i.e., deterministic); L. is

compliance load computed with expected parameter
values and expected Z; L, is mean precomplmace load
based on random parameters and Z; and L. is mean
compliance load based on random parameters and Z.
Noting that L, is a first-order approxlmatxon of L,, , and
in this particular example, L~ L, , we have,

L L
MOS ~ s (23)
P
Note that the reduction in the required mean
phosphorus load is expressed relative to the

deterministic precompliance load. For the data m
Table 1 and MC simulation, MOS = 33% for the
TMDL strategy involving m,,, as the management-
control variable, whereas the strategy based on ¢y,
control yieldled MOS = 40%; these results are
consistent with the estimated larger mean load
reduction required for the second strategy, as discussed
above.

The variation of MOS with 3 is shown in Figure 3.
The larger the value of B, the smaller the level of
protection against violating the designated use
numerical target, the smaller the MOS. Smaller B is
associated with larger MOS, consequently, larger load
reduction and costlier management actions. Assuming
that MOS values can be translated into cost, the
computed relationship in Figure 3 approaches the
TMDL problem with an attitude toward risk and
provides decision makers with the option of weighing
risk of violating compliance targets versus the cost of
impending management actions. Current practices in
TMDL development and approaches for estimation of
the MOS are inadequate at producing such an explicit
relationship.

MOS

0 01 02 03 04 05
B

Fig. 3: MOS as a function of B. 1—p is the probability of
compliance (confidence level)

It’s worth noting that as new observations of Chl a
and/or P are collected, a Bayesian update of the
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TMDL distribution and associated MOS could be
obtained. In this regard GLUE, BEA, and EnKF
methodologies are ideally suited to address a TMDL
within the probabilistic framework described above,
since these methods produce an estimate of the
probability distribution of the model output, ¥. The
value of data collection in improving a TMDL
calculation through Bayesian deductions has not been
addressed here or in the literature hitherto, but
certainly constitutes an endeavor worthy of future
research.

SUMMARY AND FUTURE DIRECTIONS

The use of simulation models as a tool for scientific
analysis and environmental —management and
regulation is constrained by the inability of these
models to replicate the exact systems’ responses they
aim to simulate. This problem is further confounded by
uncertainty in the data available and lack thereof to
calibrate these models in complex environmental
systems. Research efforts, therefore, should be directed
toward quantifying predictive uncertainty of models,
and communicating that uncertainty to decision
makers to evaluate the consequences of alternative
actions and possible events.

Multitude of methods has been reported in the
literature dealing with model uncertainty estimation.
From these methods, we identified five prominent and
promising approaches in hydrologic and water quality
modeling, namely, First-Order Approximation (FOA),
classical Bayesian Estimation (BEA), Generalized
Likelihood Uncertainty Estimation (GLUE), Pareto
Optimality, and the Ensemble Kalman Filter (EnKF).
Merits and demerits of each approach were discussed.
Among these approaches, the BEA, GLUE, and EnKF
methodologies standout, and hold great promise for
forecasting and probabilistic risk management in
complex, highly nonlinear environmental systems. The
multiobjective idea in Pareto Optimality is novel and
can be extended to GLUE methodology. Both BEA
and EnKF produce estimates of the pdfs of model
outputs, whereas in FOA, GLUE, and Pareto
Optimality, pdfs are crudely estimated. The dis-
advantage of assuming independence across parameter
distributions often cited in traditional MC simulation
can be remedied through Bayesian inferences in both
BEA and GLUE, whereby prior distributions are
updated by conditioning on observed data to produce
posterior parameter sets that reflect covariations
among the parameters.

Water, Environment, Energy and Society (WEES-2009)

It is known that models are unrealistic in modeling
current conditions and are expected to produce poor
predictions in ungauged watersheds, or when
observations and measurements of input variables are
sparse. However, it might also be argued that under
such conditions models could still be used to predict
the relative magnitude of change for different
scenarios. To conserve space, we were not able to
report lessons learned from past studies that support
such an argument. Such case studies included the
application of semidistributed watershed models to
two different watersheds, one that is impaired by
nutrients (Arabi et al., 2007), and the other threatened
by urbanization (Kalin and Hantush, 2006). These
studies showed that the impact of Best Management
Practices (BMPs) and land-use changes could be
forecasted (with much less uncertainty) even when the
models are relatively less accurate in modeling current
conditions. The implication of this finding is that in
ungauged watersheds, or when available measure-
ments and input data are too sparse to calibrate models
adequately, models could still be used to predict the
relative magnitude of change for different scenarios.
This argument may have implications on hydrologic
applications dealing with long-term impacts of climate
changes on watersheds’ responses.

It appears that the literature is replete with research
developments in uncertainty analysis, but they have
been limited to simulation and forecasting, and they
are yet to be fully explored in environmental risk
management. The challenge now for science is to
motivate decisions about appropriate management
actions under conditions of uncertainty, as well as to
aim at reducing the uncertainty by implementing
effective monitoring programs. The TMDL program,
mandated by section 303(d) of the CWA, requires
uncertainty in the analysis be accounted for in a MOS.
However, arbitrary selection of MOS appears to he the
rule rather than the exception in current TMDLs. The
proposed probabilistic framework, articulated through
a hypothetical lake-sediment phosphorus TMDL
example, provides an opportunity to enhance the risk
assessment-risk management paradigm, in general, and
provides an impetus to advance the TMDL program
with more explicit account of model uncertainty and
more formal estimation of the MOS. It was shown that
MOS was independent of the probabilistic analysis,
however, for completeness, we provided a formal,
probabilistically-based approach for the estimation of
MQOS, as a function of modeling uncertainty, desired
degree of protection (i.e., compliance probability), and
fuzzy compliance target value.
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It is anticipated that the demand for computer
simulations in forecasting and environmental manage-
ment will continue to grow; with this comes the
importance of quantifying model predictive uncertainty.
Robust uncertainty estimation methods are available,
and the computing technologies to execute those
methodologies and speedup their convergence are
becoming more powerful and faster. In spite of the
scientific and technological advances, much of the
research in uncertainty estimation has been limited to
hypotheses testing and scientific analysis, and very
little has found its way to regulatory decision making.
More research and development need to be
accomplished to rigorously integrate model uncertainty
into environmental decision making and formally
quantify its importance in environmental risk
assessment (e.g., superfund sites, landfills, nuclear
waste management, etc.) and watershed management
(e.g., TMDL programs). With this paradigm shift
toward risk management, comes the challenge of
improving scientific predictions and their relevance to
societal values. Future challenges include, but not
limited to, the following:

1. Uncertainty in hydrologic models stems from
errors in model structure, parametric uncertainty,
and input and measurement errors. Currently, we
are unable to identify the relative importance of
each source of uncertainty and propagate them in
an explicit manner. A proper framework is
lacking.

2. The predominant extant approach is to formulate a
deterministic model, then employ an expensive
Monte Carlo procedure to evaluate uncertainty
effects. Are there other ways to assess and
quantify uncertainty, i.e. can we have uncertainty
information decide on the model? This may be
possible in statistical models, but is still an area of
active research.

3. With advances in sensor technology and use of
satellite and other remote sensing instruments, we
deal with massive amounts of data which comes
with uncertainty. All this information cannot be
utilized directly in models, and data compression
and data mining become important issues. How are
these methods to be employed if data have
uncertainty? Standard methods require the data
samples to be uncorrelated if not independent.
Extensive spatial and temporal fields tend to be
correlated both in time and space? What to do in
such situations?

4. Often, we are interested in data that vary in time in
a non-stationary fashion. Climate change effects

are -known to cause changes in rainfall and
streamflow patterns. Meanwhile, we have now
been measuring hydrologic data more frequently in
space and time and with better instrumentation so
that there exists heterogeneity not only in the data,
but also in the uncertainty associated with the data.
We need to develop smarter methods to tackle
these problems.

. Models are typically calibrated or the GLUE and

BEA methodologies are performed using the
observed data at the watershed outlet. The same
models with their calibrated parameters or their
parameter uncertainty ranges reduced are used for
predictions in inner locations. The additional
uncertainty introduced during this transition has
not been formally addressed. There needs to be
additional research in this area.

. Uncertainties in land use/cover (LULC) change

impact studies: In general a model is calibrated
using the current LULC and observed data and
then used in a predictive mode to study the effect
of future projected LULC. Future LULC may have
some LULC types not present in the past or the
current LULC (consider transition from total forest
to urban/forest). The uncertainty due to such set up
remains to be resolved.

. Interdisciplinary studies are becoming increasingly

popular. National Science Foundation (NSF) has a
program called Dynamics of Coupled Natural and
Human Systems (CNH) which “promotes
quantitative, interdisciplinary analyses of relevant
human and natural system processes and complex
interactions among human and natural systems at
diverse scales” (quoted directly from NSF). Such
studies require translation of data from one to
another. Output of one discipline becomes input to
another. As each discipline has different perspective
of looking at the problems, there is an inevitable
addition of uncertainty during the flow of
information, which is commonly referred to as
“transboundary uncertainty”. Research in this field
is still premature. Methods are needed for
quantifying decision and linguistic uncertainty
associated with communicating model results and
uncertainty thereof to stakeholders and decision
makers.

. Uncertainty can never be eliminated due to the

inherent spatiotemporal variability of environmental
systems and data limitations, but it can be reduced.
Research into methods reducing predictive un-
certainty is needed: When, where, at what scale
observations/measurements should be made?
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10.

11.

15.

Could uncertainty be reduced using multiple
objectives or, perhaps, multiple models?

. Integration of data and models uncertainty with

societal values and economic benefits. One way to
address this need is to integrate prediction un-
certainty with a utility function to allow decision
makers to maximize expected utility or maximum
net benefits.

Current practices in regulatory risk assessment
conduct uncertainty analysis a posteriori to model
calibration and validation. Future approaches
should focus on the integration of uncertainty
estimation with model calibration; decoupling the
two, and without the benefit of Bayesian update,
could result in subjective and overly estimated
uncertainty limits. Aside from sensitivity analysis,
protocols need to be developed for the integration
of uncertainty analysis into model studies of
regulatory nature.

Estimation of TMDL uncertainty and MOS
through formal, rigorous uncertainty analysis.
Methods relating TMDL calculation and MOS to
the desired degree of protection and uncertain
compliance water quality targets are needed.
Bayesian update of TMDL and MOS conditioned
on new observations/measurements is worthy of
further research.

. Since biocriteria are a better indicator of designated

use than are chemical criteria, future research
challenge is to develop models, both mechanistic
and empirical, that can more effectively link
environmental stressors and control actions to
biological response. The primary objective of this
line of research is to reduce uncertainty in the
TMDL calculation and required control actions.

. Methods are lacking for estimating uncertainty in

the performance of BMPs and impact of land use/
land cover changes when data are not available.

.Much of the literature in model uncertainty

estimation have focused on parametric and model
structural errors. Research is needed into methods
resolving observation error from other sources of
errors, incompatibility between observation and
predicted variable scales, errors in boundary
condition specification, and land-based and
meteorological inputs. Effect of spatial hetero-
geneity and its relationship to scaling and effective
parameters deserves further research.

Resolving the subjective choice of the likelihood
measure and threshold criterion separating
behavioural from nonbehavioural parameter sets in
the GLUE methodology is still an active research

Water, Environment, Energy and Society (WEES-2009)

area. Efficient sampling in the model parameter
space and criteria for optimal sampling size for
GLUE, BEA, and EnKF is another research area.
While MCMC methods have removed the
computational hurdle in BEA, its convergence to
stationary distribution poses a challenge.

16. With the foreseen impact of global climate changes
on water availability and quality, long-term model
simulations will demand the coupling of global
ocean-atmosphere circulation models with watershed
models. With the highly complex global circulation
models, application of the computationally demand-
ing MC-based uncertainty estimation methods to
the coupled watershed-atmosphere models is a
formidable task deserving future research.

17. Research into improving processes representation
in watershed models will continue, but, in hindsight,
should only be within the scope of reducing
uncertainty. Overemphasizing model complexity
leads to increased number of parameters to be
calibrated and increased requirement for observed
data. Increasing physical realism does not
necessarily translate into better model performance,
especially if added parameters cannot be estimated
independently. Reconciling improved model
performance with the parameter identifiability
problem as models increase in complexity is an
issue deserving more research.

18. Research into outreach and education on the
importance of knowledge about uncertainty is a
first step for decision makers and policy formu-
lators to demand it. Part of the education should be
devoted to lessons learned from past failures to
account for uncertainty during catastrophic events.
Research into protocols promoting dialogues
between modelers and managers may help reduce
cost of analysis and transboundary uncertainty.

19. Much of the research in uncertainty analysis has
been limited to forecasting and rainfall- runoff
modeling. Insufficient research has been carried in
TMDLs development and in the area of environ-
mental management where optimal decisions
regarding societal problems are sought.
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