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ABSTRACT: Efficient design and operation of water resource systems is a challenging task in many real world applications.
Many issues related to water resources require the solutions of optimization. As computers have become more powerful, the
size and complexity of problems which can be simulated and solved by optimization techniques have correspondingly
expanded. Real life water management problems involve nonlinear optimization and often associated with complexities of non-
convex objective functions and multimodal solutions. If the objective function is not known analytically, traditional methods are
not applicable. Consequently these difficulties lead to go for non-conventional optimization techniques. Recently, evolutionary
computation techniques have been receiving increased attention in view of their potential as global optimization techniques for
complex problems. This popularity is mainly due to the robustness, ease of use and wide applicability of evolutionary
algorithms. This paper aims to discuss some of the issues of evolutionary algorithms and summarizes applications of
evolutionary computing techniques such as Genetic Algorithms (GA), Ant Colony Optimization (ACO) and Particle Swarm
Optimization (PSO) for effective water resources management, especially in the context of reservoir operation.

INTRODUCTION

In general, the system modeling in water resources
aims to reduce the total system cost and failure risk,
then tries to maximize the benefits by providing a robust
design and/or operation policy. One of the most
important engineering tools that can be employed in

such activities is optimization. The general objective in

optimization is to choose a set of values of the variables
subject to the various constraints that will produce the
desired optimum response for the chosen objective
function. Today, there are a variety of optimization
techniques existing, but no single optimization method
or algorithm can be applied efficiently to all problems.
The method chosen for any particular case will depend
primarily on: (1) the character of the objective function
and whether it is known explicitly, (2) the nature of the
constraints, and (3) the number of independent and
dependent variables etc.

Many water resources applications generally
involve non-linear optimization in problem solving. So
the Linear Programming (LP) cannot work in such
cases. The enumerative based DP technique poses
severe computational problems for a multi-purpose
multi-reservoir system due to increase in the number

of state variables and the corresponding discrete states,
since in this method, linear increase in number of state
variables (dimensions) causes exponential increase in
computational time requirement. So, when DP is
applied to larger-dimensional problems, it has a major
hurdle of the curse of dimensionality. The gradient-
based Nonlinear Programming (NLP) methods can
solve problems with smooth nonlinear objectives and
constraints. However, in large and highly nonlinear
models, these algorithms may fail to find feasible
solutions, or converge to local optimum depending
upon the degree of non-linearity and initial guess.
Hence, these traditional optimization techniques do not
ensure global optimum and also have limited
applications. Lack of ability to obtain a global optimum
in the case of traditional nonlinear-optimization
techniques and intensity of computational require-
ments in the case of dynamic programming motivated
the search for new approaches, which would combine
efficiency and ability to find the global optimum
(Janga Reddy and Nagesh Kumar, 2005a). In the
recent past, non-traditional search and optimization
methods based on natural phenomenon also called
Evolutionary Computation (EC) techniques, have been
developed and applied to many practical problems. In
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the following section, first a brief description on
evolutionary computing principles and then some of
the major types of evolutionary algorithms are presented.

EVOLUTIONARY COMPUTING

During the last two decades, there has been a growing
interest in algorithms, which are based on the principle
of natural evolution (i.e., survival of the fittest). A
common term, accepted recently, refers to such
techniques - as Evolutionary = Algorithms. (EAs).
Evolutionary programs as probabilistic optimization
algorithms based on the similarities with the biological
evolutionary process are especially promising for
complicated engineering optimization problems, where
other traditional optimization methods cannot be easily
applied. In EAs, a population of individuals, each
representing a search point in the space of feasible
solutions, is éxposed to a collective learning process
which proceeds from generation to generation. The
population is arbitrarily initialized and subjected to the
process of selection, recombination and mutation
through stages known as generations, such that the
newly created generations evolve towards more
favorable regions of the search space. The progress in
the search is achieved by evaluating the fitness of all
individuals in the population, selecting the individuals
with the highest fitness value and combining them to
create new individuals with increased likelihood of
improved fitness. After some generations, the program
converges, and the best individual represents the
optimum or near-optimum solution. The two most
important issues in the evolution process are
population diversity and selective pressure. These
factors are strongly related, i.e., an increase in the
selective pressure decreases the diversity of the
population, and vice versa. In other words, strong
selective  pressure  “supports” the premature
convergence of the search and a weak selective

Water, Environment, Energy and Society (WEES-2009)

pressure can make the search ineffective. Different
evolutionary techniques use different scaling methods
and different selection schemes (e.g., proportional
selection, ranking, tournament) to strike a balance
between these two factors. However, the structure of
any evolutionary computation algorithm is very much
the same. A sample structure is shown ir. Figure 1.

The most well-known paradigm of EAs is the
Genetic  Algorithms (GA) that is used widely,
especially in engineering and industrial applications.
Several other ideas, such as Evolutionary
Programming (Holland, 1975; Goldberg, 1985;
Michaelwicz, 1999), Evolution Strategies (Fogel et al.,
1966; Fogel, 1994; Schewel, 1994), Genetic
Programming (Koza, 1992) inspired by the GAs are
exhibiting significant results in several scientific fields.
Apart from these techniques, there are many hybrid
systems, which incorporate various features of the
above paradigms and consequently are hard to classify,
which can be referred just as Evolutionary Computing
(EC) methods (Dasgupta & Michalewicz, 1997). Table
1 shows the important characteristics and similarities
of different EC methods.

Procedure of evolutionary algorithm:

begin
t+—0
initialize P(t)
evaluate P(t)
while (not termination-condition) do
begin
t—t+1
select P(1) from P(t- 1)
alter P(t)
evaluate P(1)
end
end

Fig. 1: The structure of an evolutionary
algorithm

Table 1: Characteristics of Different Evolutionary Algorithms (Back and Schwefel, 1993)

Evolution Strategies Evolutionary Genetic Algorithms
(ES) Programming (EP) (GA)
Representation | Real-valued Real-valued Binary/real valued
Fitness is Objective function value Scaled objective value Scaled objective value
Mutation Main operator Only operator Background operator
Selection Deterministic, extinctive Probabilistic, extinctive Probabilistic, preservative

Recombination Different variants important for self

adaptation

none

Main operator

Standard deviations and covariances

Self-adaptation

Variances (in meta-EP)

none
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Although a complete review of EC is beyond the
scope of this paper an overview of different types of
EAs is given with an emphasis on showing how the
various types of algorithm differ and the stages
involved in defining each one.

EVOLUTIONARY PROGRAMMING

Evolutionary Programming (EP) models evolution as a
process of adaptive species (Michaelwicz, 1999). A
typical EP works as follows. An initial population is
created using a random number generator and
evaluated using the problem specific pay-off function.
Each chromosome is then mutated to create a new
population of off-springs. Mutation involves either, the
addition, deletion, change of output, change of
transition of a node, or a change of starting node. The
off-springs are then evaluated and the better half of the
combined set of parents and off-springs is used as the
next population. This evolutionary process is repeated
until an acceptable solution is found. A chromosome in
EP encodes the behavior of an individual. Mutation is
the only mating operator that is used and it is applied
to every individual irrespective of their evaluated pay-
off. Selection is made from the combined set of
parents plus offspring.

EVOLUTION STRATEGIES

Evolution Strategies (ESs) models evolution as a
process of the adaptive behaviour of individuals.
Evolution strategies (Fogel, 1994; Schewel, 1994) use
real variables and aim at numerical optimization.
Because of that, the individuals incorporated can also a
set of strategic parameters. Evolutionary strategies rely
mainly on mutation operator (Gaussian noise with zero
mean). The ESs evolve by making a series of discrete
adjustments (i.e. mutations) to an experimental
structure. After each adjustment, the new structure, i.e.
the off-spring, is evaluated and compared to the
previous structure, i.e. the parent. The better of the two
is then chosen and used in the next cycle. As selection
in this evolutionary cycle is made from one parent and
one off-spring, the algorithm is known as a “(1 + 1)”
ES.

These two-membered ESs modify (i.e. mutate) an

n-dimensional real-valued vector x € R" of object
variables by adding a normally distributed random
variable with expectation zero and standard deviation
o to each of the object variables x;. The standard
deviation is the same for all components of x, i.e.
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Vi e{l, 2...,n}:x,=x,+ o N;(0, 1), where x' is the
off-spring of x and N(0; 1) is the realization of a
normally distributed random variable with expectation
0 and standard deviation 1.

Since the introduction of ESs, two additional
strategies have been developed: (pu + 1) and (u, A).
Both of these ESs work on populations rather than
single individuals and are referred to as multi-
membered ESs. A (u+A) ES creates A off-springs

from p parents and selects the best p individuals from
the combined set of p parents plus A off-springs to
make the next population. A (u, A) ES, on the other
hand, creates A off-springs and selects the best p
individuals from the off-springs alone (in general, 1 <
L)

GENETIC ALGORITHMS

Genetic Algorithm (GA) models evolution at the level
of genetic chromosomes (i.e., the basic instructions for
making things). The original version of a GA by John
Holland (1975) is based on binary encoding of the
solution parameters, and utilizes bit-flip mutation and
n-point crossover. A sample structure of GAs is given
in Figure 2. A popular selection operator for GAs has
been proportional (or Roulette-wheel) selection, but
because of its known drawbacks tournament selection
and ranking selection are commonly used now-a-days.
For numerical optimization, floating point encoding
with Gaussian mutation, arithmetic crossover and
tournament selection is a common choice. Moreover,
an operation called elitism is remarkably important for
the performance of a GA (Michalewicz and Fogel,
2000). The idea of elitism is to leave a certain
proportion of the best individuals in every generation
untouched by the variation operators. This idea is
somewhat similar to Evolution Strategies and
Evolutionary Programming (Fogel et al., 1994), where
a population’ of parents generates a new offspring by
mutation in each iteration. The population of the next
generation is created by selection from the elite parents
and newly created off-springs.

Since the classic binary encoding GAs are
extensively discussed in many studies (e.g. Goldberg,
1989; Deb, 1996), in this paper, we explain more on
floating point or real value GA. There are many ways
of implementing real coded GAs. However, this study
presents a selective procedure, which appears to be
efficient (Paterlini and Krink, 2006).
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Fig. 2: The general structure of genetic algorithms

In real coded GA implementation, first a population
of individuals containing the candidate solutions
(encoded in floating point numbers) is created
(initialization) and the fitness of each individual is
evaluated by the fitness function (evaluation). For the
initialization of the population, the GA uses randomly
chosen object feature vectors from the data set. After
initialization, the individuals stored in the variable pop
are evaluated according to the fitness function and to
determine the elite members. For elitism, the popula-
tion is ranked to determine and mark the best
individuals, which are left unchanged by selection,
mutation and crossover during the next iteration. The
population is iteratively refined by selection of
individuals, application of mutation and crossover
operators, re-evaluation of the new population
according to the fitness function and updating of the
elite. For selection, tournament selection (mostly of
size 2) is used. The current population pop is saved as
oldpop and for each individual j another individual k is
randomly chosen from oldpop, and then the fitnesses
compared. Substitute j by k in population pop, if ks
fitness is better. Before applying crossover the current
population pop is saved again as oldpop and then
arithmetic crossover is applied as follows,

Pop(j)_x, = cw X oldpop(j J Bt (I —cW) X
oldpop(k)_x,,

where pop(j) x, is the nth solution parameter of
individual j , pop(j) is the offspring of the parents
oldpop(j ) and oldpop(k), cw is a uniform random
weight of U(0, 1), which is generated for each problem
parameter #. For mutation, Gaussian mutation was
chosen, such that,

pop(j)_x» = pop(j)_x, + N(0,1) X o, X (xMax, —
xMin,)

where pop(j)_x, is again the nth solution parameter of
individual j, N, 1) is the Gaussian normal
distribution with mean 0.0 and variance 1.0, and o, is
the variance parameter of the mutation operator. xMax,
and xMin, are the maximum and minimum search
space bounds. The crossover and mutation operators
are applied to each individual in the population, which
is not in the elite and with a probability p,, for
mutation and p. for crossover, respectively. The
algorithm terminates after a fixed number of iterations.
The optimization result is the candidate solution and
the fitness of the best individual in the last generation.
The pseudo-code of this real coding GA is presented in
Figure 3.

The other class of meta-heuristic techniques that are
gaining more focus for optimization are Swarm
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Intelligence (SI) techniques. Swarm Intelligence
techniques that have been used for optimization of
water resources were Ant Colony Optimization (ACO),
Particle Swarm Optimization (PSO), etc. A brief note
on them is given below.

SWARM INTELLIGENCE

Recently, a new research field arose called Swarm
Intelligence (SI). SI argues that intelligent human
cognition derives from the interaction of individuals in
a social environment. The main ideas of socio-cognition
can be effectively applied to develop stable and
efficient algorithms for optimization tasks (Kennedy
and Eberhart, 2001). Ant Colony Optimization (ACO)
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is the most well-known SI algorithm and is basically
inspired from the foraging search behavior of real ants
and their ability in finding shortest paths. They are
mainly used for discrete combinatorial optimization
tasks, exhibiting very interesting results in experiments
as well as in real life applications (Dorigo and Di Caro,
1999). The Particle Swarm Optimization (PSO)
technique is another SI technique, and has been
originally proposed by Eberhart and Kennedy (1995)
for continuous optimization tasks. PSO has been
proved to be very efficient algorithm in solving hard
optimization problems and engineering applications
(Kennedy and Eberhart, 2001). In the following sections
a brief description of basic principles and working of
these two swarm intelligence techniques is given.

Initialize population pop
Evaluate population pop
Determine elite in pop

“Evaluate all candidate solutions™

For a fixed number of iterations

“Apply selection: tournament selection of size 2”
oldpop = pop
for all individuals j in pop

if individual J, i.e., pop(y), is not in the elite then

“Create population from randomly chosen object vectors”

“Rank population by fitness and mark the elite”

select another individual k randomly, i.e., k= Uix(0, popsize)
if individual k in oldpap is better than individual j in pop then

pop\j) = oldpop(k)
“Apply crossover: arithmetic crossover”

oldpop = pop
for all individual j in pop

if individual j is not in the elite and U(0,1)< p. then
select another individual k randomly, i.e., k= Uin(0, popsize)

for all candidate solution parameters n in x
ew=U(0,1)

pop(j)_x, = cw. oldpop(j)_x, + (1- cw). oldpop(k)_x,

“Apply mutation and check bounds: Gaussian mutation with fixed mutation rate”

for all individualsj in pop

if individual j is not in the elite and U(0,1) < p,, then

for all candidate solution parameters » in x

pap(j)_x, = pop(j)_x, + N(0,1). o,- (xMax, — xMin,)
if pop(j)_x, > xMax, then pop(j)_x, = xMax,
if pop(j)_x, < xMin, then pop(j)_x,, = xMin,

evaluate population pop “ Evaluate all candidate solutions”

determine elite in pop “Rank population by fitness and mark the elite”

Report the best recorded solution

pop(j)_x = candidate solution of individual j; pop(f)_x, = nth problem parameter in the candidate solution of the J"‘ individual. xMax,,,
xMin, = upper and lower search space bounds for problem parameter n. U(a, b) = uniform pseudo-random number in the interval [a, b].
Upnda, b) = uniform pseudo-random integer number in the interval [a, b]. N(& o) = normal (Gaussian) distributed pseudo random
number with mean g and variance o.GA parameters: p,= probability of crossover, p,, = probability of mutation, g, = mutation variance

parameter.

Fig. 3: Pseudo-code of the Genetic Algorithm (GA)
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ANT COLONY OPTIMIZATION

Ant Colony Optimization (ACO) is a population-
based, general search technique for solution of difficult
combinatorial and complex problems, which is
inspired by the pheromone trail laying and training
behavior of real ant colonies. Colorni and Dorigo
(1991) developed the first ant system algorithm based
on the foraging behavior exhibited by ant colonies in
their search for food. Ant Colony Optimization (ACO)
algorithms have been successfully applied to a number
of benchmark combinatorial optimization problems,
such as the traveling salesman and quadratic
assignment problems (Dorigo et al., 2000). The main
eatures of ant colony optimization algorithm are
pheromone trail and heuristic information. A pseudo-
code of ACO algorithm is given in Figure 4 (Nagesh
Kumar and Janga Reddy, 2006).

Begin
Initialize
While stopping criterion not satisfied do
Position each ant in a starting node

Repeat
For each ant do
Choose next node by applying
the state transition rule
Apply step by step pheromone
update
End for

Until every ant has built a solution

Update best solution

Apply offline pheromone update

End While

End

Fig. 4: Pseudo-code of Ant Colony Optimization (ACO)
algorithm

Ant Colony Optimization has many features, which
are similar to Genetic Algorithms (GAs) (Dorigo and
Gambardella, 1997). Both ACO and GA are
population based stochastic search techniques. GA
works on the principle of natural evolution or survival
of the fittest, where as ACO works on pheromone trail
laying behaviour of ant colonies. GA uses crossover
and mutation as prime operators in its evolution for
next generation, where as ACO uses pheromone trail
and heuristic information. The most important
difference between GA and ACO algorithms is the
way the trial solutions are generated. In ACO
algorithms,  trial  solutions are  constructed

incrementally based on the information contained in
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the environment and the solutions are improved by
modifying the environment through a form of indirect
communication called stigmergy (Dorigo et al., 2000).
On the other hand, in GAs the trial solutions are in the
form of strings of genetic materials and new solutions
are obtained through modification of the previous
solutions (Maier et al., 2003). Thus, in GAs the
memory of the system is embedded in the trial
solutions, whereas in ACO algorithms the system
memory is contained in the environment itself.

As any direct search method like GA, the ACO
model is also quite sensitive to setup parameters and so
it is important to fine-tune the parameters for a
particular problem of interest, before actually applying
the same to the problem (Dorigo et al., 2000).

PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) technique is a
Swarm Intelligence (SI) method inspired by social
behavior of bird flocking or fish schooling. PSO,
originally proposed by Eberhart and Kennedy (1995),
is a population based heuristic search technique for
solving continuous optimization problems. PSO shares
many similarities with evolutionary computation
techniques such as GA. PSOs are initialized with a
population of random solutions and searches for
optima by updating generations. However, in contrast
to methods like GA’s, in PSO, no operators inspired by
natural evolution are applied to extract a new
generation of candidate solutions. Instead, PSO relies
on the exchange of information between individuals
(particles) of the population (swarm). In affect, each
particle adjusts its trajectory towards its own previous
best position and towards the best previous position
attained by any other member of its neighborhood
(usually the entire swarm) (Kennedy and Eaberhart,
2001).

Suppose the search space is D-dimensional, then the
individual (particle), of the population (swarm), can
be represented by a D-dimensional vector, X; = (x;;, x,
x,D)T. The velocity (position change) of this particle,
can be represented by another D-dimensional vector V)
= (Wi, Via.., v,,o;T. The best previously visited position of
the i" particle is denoted as P, = (pi, pi .. Py -
Defining g as the index of the best particle in the
swarm (i.e. the g” particle is the best), and superscripts
denoting the iteration number, the swarm is
manipulated according to the following two equations,

(D

a1
lr

n+l

B n neon n ng_n n
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i mal vy L 4]
where,d =1,2, .., D;i=1,2,.., N, and N is the size
of the swarm; w = inertial weight; ¢, and ¢, are
positive constants; 7, 7, are random numbers,
uniformly distributed in [0, 1]; and n = 1, 2, ..., the
iteration number.

In PSO algorithm each particle is initialized with a
random swarm of particles, and random velocity
vectors. Then the fitness of each particle is evaluated
by the fitness function. Two ‘best’ values are defined, the
global and the personal best. The global best is the
highest fitness value in an entire run (best solution so
far), and the personal best is the highest fitness value
of a specific particle. Each particle is attracted towards
the location of the ‘best fitness achieved so far’ across
the whole population. In order to achieve this, a
particle stores the previously reached ‘best’ positions in
a cognitive memory. The relative ‘pull’ of the global
and the personal best is determined by the acceleration
constants ¢, and c,. After this update each particle is

then revaluated. If any fitness is greater than the global
best, then the new position becomes the new global
best. If the particle’s fitness value is greater than the
personal best, then the current value becomes the new
personal best. This procedure is repeated till the
termination criteria is satisfied. The pseudo-code of the
PSO algorithm is given Figure 5 (Janga Reddy and
Nagesh Kumar, 2007).

Begin
Initialize swarm position X(0) and velocities V(0)
Set iteration counter, n = (0
Repeat
Compute fitness function for each individual of
swarm
Compute PBest(n) and GBest
Begin (Perform PSO operations)
Compute V(n +1) from Eq. (1)
Compute X(n +1) from Eq. (2)
End
Setn=n+1
Until termination criteria is satisfied
End

Fig. 5: Pseudo-Code of the Particle Swarm Optimization
(PSO) algorithm

APPLICATIONS OF EVOLUTIONARY
ALGORITHMS IN RESERVOIR OPERATION

The EC methods have emerged as a powerful tool for
optimization and management of water resources
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problems. There are numerous applications of Evolu-
tionary Algorithms for water related problems, viz.,
reservoir operation (e.g., Oliveira and Loucks, 1997),
water distribution systems design (e.g., Savic and
Walters, 1997; Babayan et al., 2005), ground water
remediation (e.g., Maskey er al, 2002; Hilton and
Culver, 2005), parameter estimation in hydrological
modeling (e.g., Vrugt et al., 2003 & 2005), Watershed
Management (e.g., Muleta and Nicklow, 2005) etec.
However, this paper mainly focuses on reviewing EAs
applications to reservoir operation problems only.
Recently various exciting techniques were proposed
for optimization of reservoir management problems
viz., GAs, PSO, and ACO techniques.

Genetic Algorithms

Esat and Hall (1994) applied a GA to the four-
reservoir problem, suggesting that GAs have potential
in water resources optimization with significant savings
in computer memory and execution times.

Oliveira and Loucks (1997) used genetic algorithms
to derive the multi-reservoir operating policies. The
genetic algorithms use real-valued vectors containing
information needed to define both system release and
individual reservoir storage volume targets as
functions of total storage in each of multiple within-
year periods. Genetic operators are used to generate
successive sets of possible operating policies. Each
policy is then evaluated using simulation to compute a
performance index for a given flow series. The better
performing policies are then used as a basis for
generating new sets of possible policies. The process
of improved policy generation and evaluation is
repeated until no further improvement in performance
is obtained. They demonstrated the methodology
application through an example reservoir system for
water supply and hydropower.

Chang and Chen (1998) examined two types of
genetic algorithms, real-coded and binary-coded, for
function optimization and applied to the optimization
of a flood control reservoir model. They found that
both genetic algorithms are more efficient and robust
than the random search method; and the real-coded
GA was performing better in terms of efficiency and
precision than the binary-coded GA.

Wardlaw and Sharif (1999) evaluated several
alternative formulations of a genetic algorithm for
four-reservoir, deterministic, finite-horizon problem.
They found that the most promising genetic algorithm
approach for the four-reservoir problem comprises
real-value coding, tournament selection, uniform
crossover, and modified uniform mutation; and the
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real-value coding operates significantly faster than
binary coding and produces better results. They also
suggested that a genetic algorithm can be satisfactorily
used in real time operations with stochastically
generated inflows and has potential as an alternative to
stochastic dynamic programming approaches.

Sharif and Wardlaw (2000) used genetic algorithm
model for the optimization of reservoir systems in
Indonesia. They compared the genetic algorithm
results with those produced, by discrete differential
dynamic programming and found that the genetic
algorithm results are very close to the optimum, and
the technique appears to be robust. Contrary to
methods based on dynamic programming, dis-
cretization of state variables is not required; and there
is no requirement for trial state trajectories to initiate
the search using a genetic algorithm. But they
observed that as the number of decision variables
(chromosome length) increases with the number of
reservoirs and planning periods, it makes increasingly
difficult to satisfy the problem constraints using GAs.

Kuo er al. (2000) applied Genetic Algorithm (GA)
to irrigation planning through a case study for
optimizing economic profits, simulating the water
demand, crop yields, and estimating the related crop
area percentages with specified water supply and crop
area constraints. They suggested that GAs can be used
as an effective tool in decision support systems for
irrigation project planning.

Chang and Chang (2001) presented an approach
based on the Genetic Algorithm (GA) and the
Adaptive Network-based Fuzzy Inference System
(ANFIS) to improve real-time reservoir operation. The
GA is used to search the optimal reservoir operating
histogram based on a given inflow series, which can be
recognized as the base of input-output training patterns
in the next step. The ANFIS is then built to create the
fuzzy inference system, to construct the suitable
structure and parameters, and to estimate the optimal
water release according to the reservoir depth and
inflow situation. They demonstrated its applicability
for operation of the Shihmen reservoir, Taiwan and
found that the approach gave superior performance
with regard to the prediction of total water deficit and
generalized shortage index compared to the existing
policies.

Cai et al. (2001) presented a combined GA and
Linear Programming (LP) strategy for solving large
nonlinear problems. They used GA to optimize
reservoir  surface levels, called “complicating

variables”, for linearizing the operation problem in
each time period to be later solved sequentially for
different time periods. They suggested that, if careful
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choices of the complicating variables are made, a fairly
standard GA is capable of finding high quality solutions
to reservoir problems in reasonable computing times.
Merabtene (2002) developed a risk assessment model
for optimal drought management of an integrated
water resources system using a genetic algorithm and
found that GAs can be used as an effective tool for
drought management.

Ponnambalam et al. (2003) employed soft
computing based tools viz., Fuzzy Inference Systems
(FIS), Artificial Neural Networks (ANN), and Genetic
Algorithms (GA) for the optimization of reservoir
operation, considering the objective of minimization of
variance of benefits. First, general operating rules were
developed by both ANFIS-based fuzzy rules and
compared with multiple regression methods. It was
found that the ANFIS rules perform much better than
the regression rules for different levels of uncertainty
of inflows. However, ANFIS requires a large number
of parameters and a sophisticated fitting method than
the regression method, and also it requires a larger set
of training data for parameter estimation. This was
overcome by simulating the optimal solution of a non-
linear optimization scheme over a long-term horizon.
For considering the risk aversion characteristic of the
operating rules, a parameterized T-norm operator was
employed and GA was used to optimize the value of
those parameters while simulating the ANFIS rules.

Chaves (2003) proposed a methodology for the
assessment of planning operations of a storage
reservoir considering both water quantity and quality.
For optimization purpose, dynamic programming
combined with stochastic techniques to handle the
probabilistic characteristics of inflow quantity and
quality, and then genetic algorithm model was used to
carryout the sensitivity analysis.

Chang et al. (2003) developed two models
combining the reservoir simulation model and the
sediment flushing, to satisfy the water demand and
water consumed in the flushing operation of a
reservoir system. In the reservoir simulation model, the
Genetic Algorithm (GA) is used to optimize and
determine the flushing operation rule curves. The
sediment-flushing model estimates the amount of the
flushed sediment volume, and the simulated results
update the elevation-storage curve, which can be taken
into account in the reservoir simulation model. By
applying the approach to Tapu reservoir, they found
that the developed models can provide significant
benefits over the current practicing methods.

Labadie (2004) in his comprehensive in-depth
review for multi-reservoir system operation scrutinized




Evolutionary Computing in Optimal Reservoir Operation

the ability of GAs and suggested that GAs can be
linked with trusted simulation models to gain
advantage in complex reservoir system operations.
Srinivasa Raju and Nagesh Kumar (2004) applied
Genetic Algorithms (GA) to develop efficient cropping
pattern for maximizing benefits for an irrigation
project in India. Results obtained by GA are compared
with Linear Programming solution and found that they
are reasonably close.

Ahmed and Sharma (2005) used Genetic Algorithms
(GA) model for finding the optimal operating policy of
a multi-purpose reservoir, located on the river
" Pagladia, a major tributary of the river Brahmaputra.
The policies derived by the GA model are compared
with-those of the Stochastic Dynamic Programming
(SDP) model on the basis of their performance in
reservoir simulation for 20 years of historic monthly
streamflow, and they observed that GA-derived
policies are promising and competitive and can be
effectively used for reservoir operation.

Reis et al., (2005) proposed an approach using
Genetic Algorithm (GA) and Linear Programming
(LP) to determine operational decisions for reservoirs
of a hydro system throughout a planning period, with
the possibility of considering a variety of equally
likely hydrologic sequences representing inflows. The
GA-LP approach permits the evaluation of a reduced
number of parameters by GA and operational variables
by LP, and also provides easiness in implementation
and helps to extract useful parameters for future
operational decisions.

Jian-Xia et al. (2005) successfully applied two
forms of genetic algorithms viz., binary-coded and
real-coded to optimal reservoir dispatching problem
and found that the real-value coding is proved to be
significantly faster than binary coding, and is
producing better results.

Chang et al. (2005a) investigated the efficiency and
effectiveness of two Genetic Algorithms (GAs), i.e.,
binary-coded and real-coded, to derive multipurpose
reservoir operating rule curves. The applicability and
effectiveness of the GA methods are tested on the
operation of the Shih-Men reservoir in Taiwan. They
observed that the GAs provide an adequate, effective
and robust way for searching the rule curves and the
real-coded GA is more efficient than the binary-coded
GA.

Chang et al. (2005b) developed an intelligent control
system for reservoir operation. The methodology
includes two major processes, the knowledge acquired
and implemented, and the inference system. A Genetic
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Algorithm (GA) was employed to extract knowledge
based on the historical inflow data with a design
objective function and on the operating rule curves
respectively. The Adaptive Network-based Fuzzy
Inference System (ANFIS) is then used to implement
the knowledge, to create the fuzzy inference system,
and then to estimate the optimal reservoir operation
policies. They demonstrated the applicability of the
methodology to a case study of Shihmen reservoir,
Taiwan. They concluded that (1) the GA is an efficient
way to search the optimal input-output patterns, (2) the
Fuzzy Rule Base (FRB) can extract the knowledge
from the operating rule curves, and (3) the ANFIS
models built on different types of knowledge can
produce much better performance than the traditional
rule curves in real-time reservoir operation.

Apart from single objective optimization, evo-
lutionary algorithms (MOEAs) have also been applied
for multi-objective reservoir operation problems. Kim
et al. (2005) applied NSGA-II to multi-reservoir
system optimization in the Han River basin. Two
objective functions and three cases having different
constraint conditions were used to achieve non-
dominated solutions and found that multi-objective
genetic algorithms can be very much useful in decision
making for multi-reservoir systems.

Janga Reddy and Nagesh Kumar (2006) employed a
Multi-Objective Evolutionary Algorithm (MOEA) to
derive optimal operation policies for a multipurpose
reservoir system. They demonstrated its applicability
through a case study of Bhadra reservoir system, India,
having multiple objectives of maximizing benefits from
irrigation, hydropower generation and water quality
requirements. The model is applied for three different
inflow scenarios and the corresponding Pareto optimal
fronts were obtained. Then, three kinds of priorities of
the multiple objectives were analyzed and the respective
operating policies obtained. It was found that MOEAs
are able to find a set of well distributed optimal
solutions along the Pareto front in a single simulation
run and can overcome some of the limitations of
traditional multi-objective optimization techniques.

By integrating Pareto optimality principles into
Differential Evolution (DE) algorithm, Janga Reddy
and Nagesh Kumar (2007a) proposed an efficient and
effective approach for multi-objective optimization of
water resource problems, namely Multi-Objective
Differential Evolution (MODE) algorithm. This-

approach uses, non-dominated sorting, ranking, and
crowding distance assignment procedures, and also
maintains an external archive to maintain the best non-
inferior solutions explored over the generations. By
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applying to a case study in multi-objective reservoir
operation, it is found that differential evolution
algorithm can be a suitable algorithm for problems
having interdependence among the decision variables
and MODE can be a viable alternative for generating
optimal trade-offs in multi-objective optimization of
water resources systems.

SWARM INTELLIGENCE APPLICATIONS IN
RESERVOIR OPERATION

Nagesh Kumar and Janga Reddy (2006) proposed Ant
Colony Optimization (ACO) procedure to derive
operating policies for a multi-purpose reservoir system
and demonstrated its applicability through a case study
of Hirakud reservoir, India. The ACO model
formulation for reservoir operation was approached by
considering a finite time series of inflows, classifying
the reservoir volume into several class intervals, and
determining the reservoir release for each period with
respect to a predefined optimality criterion. The model
is formulated to maximize the hydropower production
from the reservoir by considering the given priorities
and constraints. The ACO procedure was employed for
monthly reservoir operation, and consists of two models
viz., short-time horizon operation (yearly operation
model) and long-time horizon operation model (36
years at a time). To evaluate the performance of ACO,
the developed models are also solved using real-coded
Genetic Algorithm (GA). They found that ACO model
outperforms GA model, especially in the case of long-
time horizon reservoir operation, consequently which
might help to evolve better operation policies by
relaxing the over year storage requirements.

Janga Reddy and Nagesh Kumar (2005a) applied
Particle Swarm Optimization (PSO) technique to
derive operation policy for a four reservoir system
operation problem. They compared PSO performance
with dynamic programming and GA results, and found
that PSO provides quick convergence to near optimal
solutions and can be used as an efficient alternative for
non-linear optimization. Janga Reddy and Nagesh
Kumar (2005b) also presented a multi-objective PSO
algorithm for multi-objective reservoir operation
problems and by applying it to a case study, they
demonstrated its utility for water resources manage-
ment. The developed MOPSO uses the non-dominated
sorting concept, and parameter free-niching scheme to
promote solution diversity.

Nagesh Kumar and Janga Reddy (2007) improved
the standard PSO algorithm by incorporating a special
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operator called elitist-mutation and developed Elitist-
Mutated Particle Swarm Optimization (EMPSQ)
technique. They first tested a hypothetical multi-
reservoir system and compared the results with other
techniques, it was found that EMPSO is quite
promising, saving significant computational time and
function evaluations by quickly converging to global
optimal solutions. To show practical utility, EMPSO
was then applied to a realistic case study, Bhadra
reservoir system in India, and it was found that
EMPSO is consistently performing better than the
standard PSO and Genetic Algorithm (GA) techniques.

Later by utilizing the strengths of PSO, quick
convergence and yielding efficient solutions for single
objective optimization, by integrating Pareto dominance
principles into Particle Swarm Optimization (PSO)
algorithm, Janga Reddy and Nagesh Kumar (2007b)
developed an efficient approach for multi-objective
optimization namely, elitist-mutated multi-objective
PSO (EM-MOPSO) algorithm and evaluated its
performance for several standard test problems and
also for a multi-objective reservoir operation problem.
This method uses special operators of variable size,
external repository and an efficient Elitist-Mutation
(EM) operator to properly maintain diversity and
explore efficient Pareto frontiers. By applying EM-
MOPSO for a case study of multi-objective reservoir
operation, they found that the approach is fast and
reliable, and is yielding wide spread of Pareto optimal
solutions in a single run. Overall the stochastic search
techniques are gaining more and more popularity for
optimization of real world problems and have wider
scope to solve complex systems.

CONCLUDING REMARKS

Evolutionary Computation (EC) is a rapidly expanding
area of artificial intelligence research. The use of
evolutionary algorithms for solving optimization
problems has become very extensive in the last few
years. The main advantage of EC algorithms is the
usage of a population of potential solutions that
explore the search space simultaneously, exchanging
information among them and uses only objective
function values and not derivatives of the objective
function. Also EAs are stochastic search algorithms,
can move to any complicated search space and locate
global optimal solutions. Evelutionary Computation
(EC) methods provide solutions to many complex
optimization problems that are difficult to cope with
using the traditional gradient based methods, due to
their nature that may imply discontinuities of the
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search space, non-differentiable objective functions,
imprecise arguments and function values.

Some of the remarks on the current state of the art
in Evolutionary Computation:

e There is no general algorithm that can be applicable
to all problems, as the efficiency varies as a function
of problem size and complexity. However,
incorporation of problem specific knowledge and
heuristics will help to achieve faster and efficient
solutions to real world problems.

e Most EAs converge to an optimal point starting
either from inside or outside the feasible region.

e EAs may require calibration of the search para-
meters to ensure efficient convergence.

e EAs do not take into account shape or gradient of

the objective function.

e For complex problems, EAs may require large
number of simulations to find an optimal/near
optimum solution.

However, recently several new ideas/algorithms are

being proposed, which showed improved performance.

Therefore, EC is increasingly gaining interest among

the research community to employ EC methods for

many practical and industrial applications.
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