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ABSTRACT: During extreme rainfall events reliance cannot be placed upon local measurements of rainfall or river flow as
hydrometric networks may be destroyed. Therefore, forecasting procedures are increasingly dependent upon remote sensing
systems such as radar, satellite-based instrumentation and high resolution Numerical Weather Prediction (NWP) models. In
addition, it is necessary to have knowledge of antecedent catchment conditions, conditions at the beginning of an eventand a
suitable hydrologic modelling structure. However, all these elements introduce uncertainty throughout the forecast chain, and it
is necessary to understand the propagation of uncertainty and present it as an integral part of the forecast. In this paper we
discuss the preparation of rainfall analyses for use in forecast procedures aimed at warnings an hour or so (nowcasts) to days
ahead. The discussion includes procedures for improving the quality of radar and satellite estimates of rainfall, and the
development of data assimilation techniques for NWP models. In spite of efforts to specify accurate model initial conditions in a
non-linear dynamical system the growth of initial uncertainties in space and time is flow-dependent. To determine the
predictability of this flow-dependency, an ensemble of forecasts for small perturbations_in model input conditions may be
generated and analysed. Similarly, sources of uncertainty in hydrological forecasts may be addressed using ensemble
approaches. The uncertainties in hydrological forecasts need to be incorporated in cost-loss analyses in order to decide what

decisions regarding flood mitigation and/or adaptation are best taken to minimize flood losses.

INTRODUCTION

In arid climates rainfall may generate crusting of the
soils, but in other regimes initially all rainfall infiltrates
the soil surface. The areas adjacent to the stream channels
become saturated as here the ground water table is
shallow. Continuing rainfall causes the water table to
rise to the ground surface, and the lower catchments
slopes become saturated with rain falling here flowing
overland to the river channel.

Elsewhere in areas not saturated rainfall is either
stored in the soil or moves beneath the ground surface.
Some of these areas may become saturated due to sub-
surface water convergence in zones caused by soil
heterogeneity. The groundwater is recharged near the
river channel and at convergence points from
underground slope cavities. This leads to an increased
groundwater contribution to the river hydrograph. The
existence of convergence pathways, and the increased
level of the water table, determine the timing and
magnitude of the runoff generated by a given rainfall
amount. The river channel slope and roughness govern
the hydrograph shape at locations downstream. In
steep upland catchments where soils are sparse runoff
may be rapid resulting in a flash flood.

Floods are also often accompanied by other hazards
such as landslides, mud flows, bridge collapses,
damage io buildings and businesses and psychological
damage to people with, in extreme situations, deaths of
individuals. The floods themselves maybe exacerbated
by accumulations of debris producing local damage,
particularly at bridge constrictions which on failure
may suddenly release large amounts of water.

Any warning system must depend upon the accurate
real-time provision of rainfall information and hydro-
logical model structures that function during extreme
conditions. In addition flooding may be intensified by
changes of land use which increase the rate and volume
of run-off, lack of maintenance of flood defences,
canalisation that is modification and diversion of rivers
and water courses and the building of structures such
as embankments which may increase flood risk both
up stream and down stream.

During these events one cannot rely upon local
measurements of rainfall or river flow as hydrometric
networks may be destroyed. Hence, forecasting pro-
cedures are increasingly dependent upon remote sensing
systems such as radar, high resolution Numerical
Weather Production (NWP) models, knowledge of
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antecedent catchment conditions, model state at the
beginning of an event and hydrologic modelling which

recognises the importance of dealing with uncertainty

in observing systems, the modelling structures them-
selves and the assumptions made about the error
formulations used.
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Fig. 1: The interactions of high (e.g. 85 GHz) and low
(e.g. 19 GHz) frequency passive MW with precipitation
clouds and the surface. The width of the vertical columns
represents the intensity or temperature of the upwelling
radiation. In this figure the illustrated features and their
demarcations are: (a) the small emissivity of sea surface
for both low (1) and high (2) frequencies; (b) the large
emissivity of land surface for both low (3) and high
(4) frequencies; (c) the emission from cloud and rain
drops, which increases with vertically integrated liquid
water for the low frequency (5), but saturates quickly for
the high frequency (6); (d) the signal of the water
emissivity at the low frequency is masked by the land
surface emissivity (7); (e) the saturated high frequency
emission from the rain (8) is not distinctly different from
the land surface background (4); (f) ice precipitation
particles aloft backscatter down the high frequency
emission (9), causing cold brightness temperatures
(10), regardless of surface emission properties; (g) the ice
lets the low frequency emission upwell unimpeded
(11), allowing its detection above cloud top as warm
brightness temperature (12)

As pointed out by many authors, the quality of any
flood prediction that is based upon hydrological
simulations depends to a high degree upon the quality
of the measurements and forecasts of precipitation. In
what follows we begin by describing this aspect of
flood forecasting. However, we recognise that

hydrological simulations of peak flow are themselves
very uncertain, and consequently it is essential to
understand the propagation of uncertainty through the
flood forecast chain. Presenting this uncertainty to
users, particularly in a changing climate, may itself
place limits on predictability.
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REAL-TIME MEASUREMENTS OF RAINFALL

The measurement of rainfall in real-time underpins the
forecasting of flash floods, from networks of rain-
gauges, using weather radar or derived from satellite
systems. Satellite estimates of rainfall are. essential
elements of flood warning systems in many countries
where rain gauges or radar are sparse or non existent.
The accuracy achievable using satellite systems is
summarized by Rosenfeld and Collier (1998) as shown
in Figure 1. This review remains largely applicable
although the use of operational space-instrumentation
in the future may change things. Given the time scales
associated with many floods only satellite techniques
using instruments mounted on geostationary platforms
are appropriate for monitoring these events. However,
for long rivers with large times of concentration
satellite measurements from polar orbiting satellites
may be very useful.

Whilst rain gauges provide the most accurate means
of measuring point rainfall, they require regular
maintenance, and their deployment density governs
the accuracy with which catchment rainfall can be
measured. Indeed, in some catchments the network
density may be very low, and therefore the areal
rainfall accuracy is very poor. This is likely to be the
situation in convective rainfall often associated with
flash floods as opposed to widespread frontal rainfall
(see Figure 2).

Weather radar offers technology capable of
providing extensive measurements of both rainfall and
snowfall in real-time from a sSingle location over wide
areas. However, radar provides measurements of the
reflectivity of the target hydrometeors which require
interpretation. In addition, there are significant quality
control problems which have to be dealt with such as
the removal of ground clutter and the effects of melting
snow (the ‘bright-band”) (for a summary see Collier,
1996, 2002). Work continuous to improve the quality
of precipitation estimates using single frequency; single
polarisation systems (see, for example Bellon er al,
2005; Michelson et al., 2003; Mittermaier and Illing-
worth, 2003). Also radar data can be used to differentiate
between stratiform and convective rainfall (Anagnostou,
2004).

Nevertheless, when carefully adjusted using rain
gauge data areal rainfall estimates are as accurate as
those from a very dense rain gauge network as shown
in Figure 2. In practice, however, the use of rain gauge
adjustment procedures can be detrimental in some
situations and therefore they are increasingly only used
for daily or longer rainfall estimates. The best achievable
operational level of performance is illustrated in
Figure 3 (Vignal ef al., 2000).
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Fig. 2: Mean error of hourly rainfall totals in the Dee
Weather Radar Project over catchments of area around
60 km* For radar the plot is of error versus number
density of adjusting raingauges, and for raingauges the
plot is error against the number density of the raingauges
in the network where the dotted curves represent:
1: extremely isolated showers, 2: typical showers,
3: typical widespread rain, 4: extremely uniform rain from
(after Collier, 1977 from Browning, 1978)
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Fig. 3: Fractional Standard Error (FSE) when using
measurements from groups of raingauges to adjust radar
data. Curves show: A unadjusted; B mean Vertical Profile
of Reflectivity (VPR) correction; C climatological VPR
correction; and D VPR correction estimated from the data
(from Vignal et al., 2000)

Over the last twenty years or so the use of polarimetric
radar techniques has promised to alleviate or even
remove some of the difficulties with single frequency,
single polarisation radar measurements. However, the
level of improvement that can be achieved in the actual
measurement accuracy over that achievable using single
polarisation radar remains unclear. This is because
high resolution values of polarisation parameters such
as the differential reflectivity (Zpg) may not be derived

accurately enough in operational systems (Illingworth,
2003). Nevertheless, there is no doubt that polarimetric
radar will enable significant improvements in radar
data quality control such as the identification of areas
subject to attenuation at C-band frequencies, the removal
of ground clutter, correction for bright-bond effects and
the differentiation of hail from very heavy rainfall. The
US Joint Polarisation Experiment (JPOLE) (Ryzhkov
et al. 2005) was designed to test the practicality and
utility of polarmetric WSR-88 D radar. It has
demonstrated potential for significant improvement in
areal rainfall estimation and measurements of heavy
precipitation.

FORECASTING INTENSE RAINFALL
Nowcasting

Nowcasts are very short range forecasts considered by
Golding (2000) to be forecasted upto 6 hours ahead.
Such forecasts of precipitation have until recent years
been based upon extrapolation techniques (for a review
see for example Collier, 2000 and the papers contained
in Collier and Krzysztofowicz, 2000) Indeed, work
continues to improve extrapolation techniques (see for
example Mecklenberg et al. 2000; Bowler et al., 2004;
Li and Lai, 2004). The importance of scale separation
techniques in nowcasting procedures using correlation-
based algorithms, Fourier low-pass filters, multifractal
methods and wavelet analysis has been recognised (see
for example Seed, 2003). Zawadzki et al. (1994) showed
that spatial filtering may increase the useful forecast
lead time. An alternative approach is to use statistical
models of rainfall calibrated using raingauge or radar
data (for a review see Wheater, 2002). This approach
has shown some success, but cannot capture extreme
events. However such forecasts may now be produced
by high resolution numerical weather prediction models
(see later) in combination with techniques for extra-
polating precipitation fields derived using radar data.
An operational system using this approach, known as
the Met Office Nimrod system, has been described by
Golding (1998).

The Nimrod precipitation nowcasting system
consists of analysis and forecasting components. For
lead times upto an hour or so precipitation objects (a
group of pixels each exceeding a prescribed threshold
rain rate usually taken as 0.5 mm/h) are identified, and
their motion estimated starting with displacements
obtained from vectors selected at the previous forecast
run. Neighbouring pixels are searched to define a
distribution of correlation coefficients from which the
minimum is identified and used to define an optimum




motion vector. For longer lead times upto 3 hours
ahead, rain objects of 1/32 mm/h or more are identified
and correlated with corresponding objects from 1 hour
earlier. The optimum linear translation vector so
obtained is compared with NWP model wind fields at
each level in the vertical from 100 to 5000 m, and
forecast times within 12 hours of the time, to select the
best wind field. For lead times beyond a few hours it
was found that mesoscale NWP precipitation output
from the latest 6 hourly forecast run provides the most
reliable forecasts which include the development of
new rain areas. The level of performance achieved
using Nimrod in shown in Figure 4.
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Fig. 4: Level of performance achieved by Nimrod as a
function of forecast lead time (hours). Here MM is the UK
mesoscale model and RMSF is the root mean square
factor (from Golding, 1998)

One major limitation of the Nimrod system was found
to be the way it handled convective initiation and
development. In order to improve the representation of
convective storms a complementary system known as
GANDOLF was developed (Collier and Lilley, 1994;
Pierce ef al., 2000). This system was based upon the
use of the object oriented description of the develop-
ment of convective cells as described by Hand and
Conway, 1995; Hand, 1996. Attributes, including
location, are associated with cloud cells. Multiple beam
elevation radar data are used to initialise the state of
development of each cell relative to a mature state
defined from the observed population.

Unfortunately several weaknesses in the performance
of GANDOLF have been recognised (Golding, 2000;
Sleigh and Collier, 2002), Most notably the failure of
the system to develop convection in new areas. New
approaches based upon figh resolution model output
have sought to identify the probability of convective
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development (Hand, 2002) and convective development
from the vorticity field (Sleigh and Collier, 2002). A
new advection procedure based on optical flow ideas
(Bowler et al., 2004) has been shown to outperform the
GANDOLF procedure based upon the identification of
contiguous rain areas. This is consistent with the finding
of Grecu and Krajewski (2000) who found that both
spatial and temporal integrations significantly extend
the predictability limits.

More recently Van Horne et al. (2006) have demon-
strated that filter-based nowcasting systems used at the
scale of a hydrologic basin can predict rainfall amounts
and their spatial distribution. Likewise, the space-time
probability density functions of surface rain rate and
rain accumulation have been modelled (Seed, 2003).
The blending of extrapolation, noise and NWP model
forecast cascades allows a forecast ensemble to
increasingly reflect the influence of large scale,
atmospheric dynamics on the evolving precipitation
field. This is the basis of the Short-Term Ensemble
Prediction System (STEPS) (Pierce et al., 2004)

A different nowcasting approach using a simple
mass balancing of water within air columns and the
advection of the variables using information from
consecutive time steps has been described by Thielen
et al. (2000). Similar work has been described by
Georgakakos (2000). The input variables are surface
rainfall and vertically integrated liquid water content
(VIL). The authors claim some success based upon
simulation experiments in forecasting the formulation
of new cells, cell splitting and decay. However, one
must have doubts about the operational viability of
such a procedure given the complex interaction and
occurrence of both stratiform and convective rainfall
together.

The recent introduction of high resolution NWP
models having grid lengths of a few kilometres is
likely to offer better prospects of improving rainfall
forecasts, particularly if radar data are assimilated. We
discuss these approaches next. However Smith and
Austin (2000) argue that the forecasts from future
nowcasting systems need to be probabilistic in nature.
They note that, in principle, the detailed knowledge
that we have about the high-order statistics of rain
patterns including fractal structure should allow
improved extrapolation schemes. German and Zawadzki
(2004) have proposed a method of deriving probability
forecasts using radar data. Cornford (2004) has shown
how to achieve probability forecasts through the use of
a Bayesian state space modelling framework treating
radar observations as noisy realisations of the un-
derlying true precipitation process.
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HIGH-RESOLUTION NUMERICAL MODELS

Until recently operational Numerical Weather Prediction
(NWP) models were used to make forecasts of rainfall
employing grid lengths of an around 12 km or larger.
Consequently convective cloud scale processes had to
be represented by parameterisation schemes comprising
representations of microphysical processes associated
with the formation of cloud and rain. Such schemes
have been effective on scales of two to two and a half
times the model grid lengths or greater (25 km or
larger). However, there is little hope of forecasting
reliably the initiation and subsequent development of
individual clouds and very localised heavy rain often
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associated with flash floods. Fritsch and Carbone
(2004) stress the need to invest substantial and sustained
resources to address this challenge.

Increased computer power previously available only
to researchers for individual case studies (see for
example Zangl, 2004) is now enabling the operational
introduction of high resolution (a few kilometres grid
length) NWP models (Lean and Clarke, 2003). During
2005 the UK Met Office introduced a model using a 4
km grid length. At these spatial scales operational
numerical calculations are approaching those made
using Large Eddy Simulation (LES) models of individual
clouds (see for example Cheng and Xu, 2006).
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Fig. 5: lllustrating (a) Cobbacombe radar 5 hour total rainfall (mm); (b) 1 km Met Office Unified Model (um) forecast for
12-17 UTC 16 August 2004: (c) Radar hourly total rainfall at 15 UTC 10 July 2004; (d) 4 km UM 3 hour ahead forecast
mode at 12 UTC 10 July 2004. [(a) and (b) courtesy P. Clark/ B.Golding, Met Office; (c) and (d) from the NERC CSIP

Project]




Operational high resolution models may or may not
provide rainfall forecasts which are spatially and
temporally accurate, although they do offer the prospect
of producing useful forecasts of convective storms on
scales applicable for flood prediction (Roberts, 2005).
Figure 5a shows the rainfall accumulation forecast
made using the Met Office model running with a 1 km
grid for the Boscastle storm compared to radar estimates
of the rainfall which actually occurred, Figure 5b
(Golding et al.; 2005). This case represents the current
best achievable level of performance for the model due
in part to the dynamic impact of the sea breeze with
orography which induced a level of stationarity in the
convective initiation. However, Figure 5d shows an
unsuccessful 3 hour ahead model forecasts compared
to the actual rainfall observed by radar (Figure 5c).
The Met Office plan to introduce the use of a one-to-
one and a half kilometre grid in about five years time
giving much better performance. Nevertheless, vari-
abilities on scales that it will still not be possible to
resolve will remain, and therefore important issues in
the formulation of models will need to be addressed
especially in the area of data assimilation and sub-grid
scale processes. This is particularly so if large rainfalls
are to be predicted accurately as pointed out by Zang]
(2004). These uncertainties require detailed analysis of
data collected in field campaigns (see for example
Morcrette er al, 2006), and comprehensive data
assimilation systems as discussed next.

DATA ASSIMILATION

Predictions made by Numerical Weather Prediction
(NWP) models may be wrong due to the inaccuracies
in the way the models are structured. In addition model
outputs are sensitive to small changes in the initial
conditions from which model integrations begin
(Thompson, 1957; Lorenz, 1963). Errors in initial
conditions tend to grow rapidly in processes that occur
at smaller spatial-scales. Hence NWP is an initial
boundary value problem. Specification of proper initial
and boundary conditions are essential to have a well-
posed problem, that is a problem which has a unique
solution that depends continuously on these conditions.

Data assimilation may be described as the process
through which all the available information is used to
determine, as accurately as possible, the state of the
atmospheric flow on a regular grid. Rihan ez al. (2005)
give an outline of data assimilation noting the broad
classes namely sequential and variational. Sequential
data assimilation involves an analysis produced by
combining a forecast background and the observations
available at a given time. The numerical procedure
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used is then integrated forward to the next observation
time, starting from the analysis initial conditions. The
variational approach includes three-dimensional (3D-
Var) and four-dimensional (4D-Var) procedures in which
a search is made for an optimal set of model parameters
which minimise the discrepancies between the model
forecast and time distributed observational data over
the assimilation window. The minimization process
involves a fast and accurate evaluation of the gradient
of a cost function which may be provided by adjoint
modelling (see for example, Dimet and Talagrand,
1986).

ASSIMILATION OF RADAR DATA INTO HIGH-
RESOLUTION MODELS

Interest in assimilating radar-derived information has
grown steadily as the resolution of operational models
has improved. This is because the resolution of the raw
radar data is much higher than the resolution of the
models. Also if the challenge of forecasting convection
is to be met then high resolution data are required for
model initialisation.

Weather radars offer information that may contribute
to both the initialisation of dynamic model variables
such a wind and temperature from Dopper radial winds
(see for example Lin ef al., 1993; Sun and Crook, 1997),
and diabatic heating from latent heating inferred from
the precipitation measurements (see for example Wang
and Warner, 1998). Fabry et al. (1997) (see also
Weckwerth et al., 2005) demonstrated the retrieval of
humidity via refractivity information derived from
radar ground clutter echoes.

The method of assimilating precipitation information
at its simplest assumes that the surface precipitation rate
is proportional to the vertically integrated latent heating.
Later versions of the approach use the three-dimensional
information provided by radars. The technique is referred
to as Latent Heat Nudging where the profiles of model
latent heating are “nudged” (relaxed) towards the
observations. Jones and Macpherson (1997) used this
approach with radar data and found an improvement in
Quantitative Precipitation Forecasts in the first six to
nine hours ahead.

A somewhat different approach was used by Rogers
et al. (2000) who used the radar reflectivity to trigger a
model convective cumulus parameterisation scheme to
release convective activity. A development of the
nudging approach to assimilating rainfall information
has been described by Orlandi et al. (2004). Here the
Kuo convective parameterisation scheme is inverted
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and satellite data are used. Tests with rainfall estimates
derived from infrared and microwave satellite data do
demonstrate some success. Major challenges remain in
this area, particularly when employing 3D- and 4D-
Var approaches (see for example Wu ef al., 2000). A
comprehensive summary of progress on the assimilation
of radar data into NWP Models has been given by
Macpherson et al. (2004). They noted that currently there
are no clearly preferred techniques for assimilation of
radar rainfall data, although they suggested that the
4D-Var approach is likely to be the most natural, and
therefore most successful, approach in the long term in
spite of all its difficulties.

Doppler radial wind data have been assimilated
successfully into 3D-Var systems (see for example Sun
and Crook, 1997; Rihan et al., 2007). Whilst these data
do impact forecasts of rainfall there are difficulties in
assimilating the data successfully with other wind
information. This is an area of continuing research.

ENSEMBLES AND UNCERTAINTY

In spite of the effort to specify accurate model initial
conditions discussed in the previous section, in a non-
liner dynamical system the growth in space and time of
initial uncertainties is flow-dependant. Our knowledge
of the physical processes that cause this random
uncertainty guides the formulation of model stochastic
parameterisation schemes. (see for example Strensrud
and Fritsch, 1994; Strensrud ef al., 2000). Examples of
these schemes are the ECMWF Cellular Automation
Stochastic Backscatter (CASB) scheme (Buizza et al.,
1999); and the Met Office Stochastic Kinetic Energy
Backscatter (SKEB) scheme, which uses a cloud scale
model to calibrate model error due to convection
(Mason and Thomson, 1992).

However, errors in numerical models of the
atmosphere are hard to remove as assumptions of the
existence of deterministic parameterisations for sub-
grid scale phenomenon are made (Palmer, 2001). Also
excessive kinetic energy sinks, and a lack of measurable
kinetic energy sources, occur in numerical descriptions
of systems such as frontogenesis. Consequently it is
necessary to gain an understanding of the role of error
modes in weather forecasts. In a nonlinear system such
as the atmosphere the growth of initial uncertainties
during a given forecast period is flow-dependent. To
forecast this flow-dependency predictability we may
generate an ensemble of forecasts from small perturb-
bations in-model input conditions. Different methods

of producing such perturbations have been compared
by Buizza et al. (2005). The most commonly used
techniques are:

o Error Breeding: A filtering method that uses the
difference between forecasts from perturbed and
control model runs to generate a new perturbed
analysis.

o Perturbed Observations: A filter method which
uses perturbations to the model input. This can be
computationally expensive and is not used
operationally.

o Singular Vectors: The fastest growing perturbations
in the initial conditions are identified. These will
grow faster than the error in the forecast.

o Ensemble Kalmen Filter (ENKF): An ensemble
of states is sought which are consistent with the
best information available. The observations are
perturbed when each ensemble member is updated

so quantifying the errors in the analysis (Evensen,
1994).

The Kalman filter is generally regarded as the natural
frameworks for determining how the different sources
of uncertainly propagate through a system. However
there is no definitive method of generating ensembles.
Figure 6 shows an example of the ensembles generated
by the ECMWF, Ensemble Prediction System (EPS).
The ensemble mean is useless on its own, and what is
sought is a better way of using the full information
content of the ensembles. The overall aim for meteoro-
logical forecasting is to use time varying covariance
information from the ensembles to impact data assi-
milation procedures which we discussed previously.
The second moment of the ensemble is its spread.
When the spread is large a deterministic forecast will
be an unreliable estimate of the truth. Palmer et al.
(2006) discuss the relationship between the spread of
the ensemble and the skill of the forecast.

The use of ensembles has led to improvements in
the accuracy of general weather forecasts at medium
(greater than 24 hours ahead) range lead times (Tacton
and Kalnay, 1993) and at short (less than 24 hours
ahead) range lead times (Du et al., 1997). The STEPS
system mentioned above allows the probability of
precipitation to be derived from an ensemble of
forecasts for several hours ahead. However, difficulties
remain in pinpointing rapid development over small
areas and convective initialisation leading to extreme
events. Also work needs to be done on extracting
useful information from the ensemble.
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Fig. 6: Part of an ensemble generated by the ECMWF
‘EPS (courtesy T. Palmer, ECMWF)

In practice the ensemble size from the EPS is
generally too large to use each member individually as
input to a high resolution NWP model. Hence, Molteni
et al. (2001) proposed a selection procedure using a
parameter space defined as the 5-day accumulated grid
point precipitation over specified target area en-
compassing river catchments of interest. Individual
ensemble members were selected such that the first
and the second chosen were those which were closest
and furthest away from the ensemble mean respectively.
Other members were maximised.

An alternative approach is to generate the ensembles
from the high resolution model outputting a re-
presentation of the statistical information contained
therein. Bayesian methods of combination have been
demonstrated to work well (see for example Rajagopalan
et al., 2002), but Stephenson et al. (2005) have stressed
the importance of seeing the combination of ensemble
members as an integral part of the forecasting process
not just an optional post-processing stage. Shutts (2005)
argues for the introduction of kinetic energy source
terms into NWP models that counteract energy drain in
near grid-scale processes. Kinetic energy is back-
scattered into the flow by introducing vorticity perturb-
bations with a magnitude proportional to the square
root of the total energy dissipation rate. This allows
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model error to be associated with the spread of the
ensemble and therefore the forecast skill can be
improved. Measurements of eddy dissipation in the
atmosphere are not easy to make, although Davies er
al. (2004) have reported measurements in the urban
boundary layer using Doppler lidar consistent with the
values takes by Shutts (2005).

SOURCES OF HYDROLOGICAL UNCERTAINTY,
DATA ASSIMILATION AND ENSEMBLES

Uncertainties in hydrological model structures and
input data make it very necessary to calibrate hydro-
logical models in order to achieve the best fit to
measured hydrographs. This is particularly problematic
for ungauged catchments estimated using regression or
clutter techniques (Burn and Boorman, 1993) However,
more recently the parameters of hydrological models
are frequently estimated by minimising some form of
cost function that involves the error (difference)
between the model-generated flow and the measured
flow. This approach is similar to that employed in
meteorological model data assimilation variational
analysis schemes (see above), although in flow fore-
casting data assimilation usually refers to real-time
parameter updating (adaptive) procedures.

Model optimisation procedures generally assume
that the observations against which the model predictions
are compared are free of errors. Clearly this is not true
and this, coupled with limitations in model structures,
leads to a situation where several, indeed many, sets of
parameters may provide acceptable forecasts. This is
known as the concept of equifinality which is the basis
of the generalised likelihood uncertainty estimation
(GLUE) methodology proposed by Beven and Binley
(1992). In this methodology a prior distribution of
parameter values is used to generate random parameter
sets using Monte Carlo simulation. A quantitative
measure of performance is used to assess the accept-
ability of each model parameter set. The simulations
for the various parameter sets may also be constrained
by the model saturated area which limits the range of
realistic values of the model transmissivity parameter
(Blazkova et al., 2002). This leads to an assessment of
uncertainty in the model predictions. Such measures
include the use of the sum of square errors and auto-
correlation functions which maybe combined using
fuzzy statistics (see for example Franks et al., 1998) or
Bayes equation (see for example Krzysztofowicz,
1999).

The uncertainty in model predictions may be
constrained by data assimilation, the use of an adaptive
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procedure which uses real-time observations of flow,
soil moisture or rainfall etc to correct the model
predictions (see for example, Cluckie et al, 1987
Houser et al. 1998). Young (2002) reviews the statistical
framework for data assimilation with stochastic transfer
function models based on the use of the Kalmen filter.
(see also Young, 1984). One limitation of this approach
is its assumption that the stochastic processes are
Gaussian. In fact, this limitation may be removed by
using Bayesian numerical methods or Monte Carlo
Markov Chain algorithms (see for example Vrugt ef al.,
2003).

Given that input data maybe derived from different
sources, the obvious example being rainfall from rain
gauges or radar, it maybe necessary to combine these
different data. One approach to this problem is the use
of a stochastic-space model which uses a Kalman filter
procedure allocating weights for each data form based
upon the respective uncertainty of the observations and
the predictions (see Grum ef al., 2002). Recognising
that flow predictions will nevertheless remain un-
certainty, a Bayesian post processor maybe used to
analyse the components of the output error associated
with the particular data inputs (see for example
Robbins and Collier, 2005). An example of the impact
on flow predictions, made using deterministic and
stochastic models, of errors in the rainfall inputs
analysed using a Bayesian post processor are shown in
Figure 7. Also shown is the error range in the observed
hydrograph arising from the flow measurement error.
Note the significant improvement produced by the use
of the stochastic model.

An alternative approach to examining the error in
predicted flows is to generate an ensemble of output
hydrographs in a similar way to that used in the GLUE
methodology. This is an area of activity development
in hydrology, a recent example being discussed by De
Roo et al. (2003). Ensemble streamflow forecasts are
now an integral part of the U.S. Advanced Hydrologic
Prediction Service (AHPS) operated by the Department
of Commerce, National Oceanic and Atmosphere
Administration (NOAA) National Weather Service
(NWS) (McEnery et al., 2005). However, the same
consideration as for the extraction of meteorological
information from the ensemble will be necessary.
Pierce et al. (2004) show ensemble flow forecasts and
the observed flow for a lead time of nine hours using
six hours of forecast rain produced using STEPS and a
further three hours of zero rain. The ensemble members
encompass the observed flow hydrograph and may be
used to calculate the probability of exceedance of an

alarm flow threshold at a given lead time. Mylne
(2002) has shown how the added value of an ensemble
forecast (when compared to a deterministic forecast)
maybe exploited in conjunction with a cost-loss model
to optimise decision making in terms of economic
impacts.

B -_hyd}égmphs fo: River Croal 10-11 September
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Fig. 7: The range of deterministic and stochastic 1 model
hydrographs for the period 10-11 September 2004 using
the errors in the flows derived from the Bayesian post
processor. Also shown are the observed hydrograph and
its error range based upon the mean flow measurement
error. Series 1, 8, 7 observed; series 2, 3 deterministic;
Series 4, 5 stochastic 1 (Collier and Robbins, 2007)
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Fig. 8: The potential economic value of a probabilistic
prediction based on the ECMWF EPS compared with the
economic value of a deterministic prediction based on the
single control forecast or on the ensemble mean forecast.
The results indicate that the economic value of the
probabilistic EPS prediction is highest for most cost/loss
ratios (C/L) (from ECMWF, 2000)
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COST-LOSS ANALYSES

A forecast of flooding can be used to predict the
probability of occurrence of an event of a specific
magnitude (E) and assess what amount of money (C)
to spend to implement mitigation measures to protect
against the resulting loss (L). The forecast can be used
to predict the probability of occurrence of E and its
value to the user can be assessed using a graph of the
type shown in Figure 8. An important element in these
analyses is the social conditions of the population at
risk. Social vulnerability indices may be used to assess
the socio-economic impact of flooding, see for example
Tapsell et al. (2002).

CONCLUDING REMARKS

There are many uncertainties in forecasting heavy
rainfall and the resulting flooding. It is very unlikely
that all areas of uncertainty, be they in the observations
used as inputs to models, or the model structures them-
selves, will be reduced to insignificant levels. However,
there is hope that uncertainty can be constrained,
measured and presented as an integral part of the
forecast. This will undoubtedly involve statistical
procedures, both in representing error distributions and
in combining these error distributions using Gaussian,
fuzzy logic or other approaches, or in introducing
energy feedback to the flow equations.

The way in which we present uncertainty to users is
key to providing better flood warnings. However, the
initial challenge must be to predict extremes in a
changing climate. The use of forecast ensembles both
for rainfall predictions from high resolution numerical
model, and the subsequent flow forecasts generated
using adaptive approaches, offer hope of limiting the
impact of errors.
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