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ABSTRACT: Meteorological models generate fields of precipitation and other climatological variables as spatial averages at
the scale of the grid used for numerical solution. The grid-scale can be large, particularly for general circulation models and
disaggregation is required, for example, to generate appropriate spatial-temporal properties of rainfall for coupling with surface-
boundary conditions or more general hydrological applications. The lane’s condensed disaggregation model is adopted to
disaggregate the annual rainfall series to monthly values to avoid the estimation of excessive number of parameters. When
transformed series are modeled rather than real space series in disaggregation, the generated series fails to preserve the
additive property. To overcome this problem, two adjustment procedures, mainly, absolute difference method and proportional
adjustment method were adopted. The proportional adjustment method yielded better results than the absolute difference

method (ABS).

INTRODUCTION

Relative paucity of rainfall data at lower time-scales
coupled with insufficient rain gauge network demands
the generation of the hydrologic sequences the design
of water resource system. Two basic approaches have
been taken in the generation of monthly or seasonal
flow series. Periodic autoregressive moving average
extensions (Obeysekera and Salas, 1962) generate
monthly or seasonal flows directly, which can be
summed to obtain annual flows. Such models may not
capture the distribution and persistence of annual totals.
An alternative to generate annual flows is dis-
aggregation approaches to obtain finer time scale
rainfall series.

Disaggregation models were introduced in hydrology
by the pioneering work of Valencia and Schaake
(1972, 1973). Several disaggregation models have
been developed for generating multi-season stream
flow sequences for single and/or several sites.
Different model structures and parameter estimation
procedures intended to preserve the lagged covariance
properties among lower-level variables belonging to
consecutive periods have been suggested by Mejia and
Rousselle (1976), Hoshi and Burges (1979) and
Stedinger and Vogel (1984). These multisite and multi
season disaggregation models have excessive number

of parameters because of the many cross correlations
that they attempt to reproduce. This led to the
development of staged disaggregation models (Salas et
al., 1980; Stedinger and Vogel, 1984). The staged
disaggregation models do not explicitly model the
cross correlations among annual flows at the various
key stations. The condensed disaggregation models
(Lane, 1979, 1982; Grygier and Stedinger, 1988, Lane
and Frevert, 1990; Stedinger and Vogel, 1984) reduce
the number of required parameters by explicitly
modelling fewer of the correlations among the lower-
level variables. The marginal distributions are easy to
model if transformed data is preferred over the real
space flows (Stedinger and Vogel, 1984). The dis-
aggregation technique should emphasize both on the
issue of model size and the need for and impact of
adjusting seasonal flows to maintain annual consistency.
In the present effort Lane’s condensed disaggregation
model is used to disaggregate the seasonal rainfall
series from annual to monthly series and the adjust-
ment techniques were used to maintain the additivity
of the generated series.

CONDENSED DISAGGREGATION MODEL

The approach uses the extended model form, but on a
one-season-at-a-time basis and with only one lagged
season, the model equation may be written as,
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The T mean denotes the current season being generated.
Thus, if there are w seasons, there are w individual
equations following the form of Eq. 1. Also, there are
w sets of parameters 47 Bt Cz. For the single site case
the parameter matrices are all single element matrices.
This model is designed to preserve covariances
between the annual value and its seasonal values, and
to preserve variances and lag-one covariances among
the seasonal values. The main advantage of this model
is the reduction in number of parameters. The
parameters of this model are estimated by,

;11 N Syx (1,.7) = Syy (T, — I)S;jl(“c -Lt-DSyy(t-1,1)
Sxx (1. 1) = Syy (1, 1= DSy (1= L1 = 1)Syy (- L,1)
e (2)
é :[Sw (1=~ &Sy (m~1)} )
Syy(r=1,1-1)

BBl =Sy (1,7) - A,Syy (1,7) - C.Syy(1-1,7) ... (4)

N ]

Sy (1,1) =—— [yy,zyﬁ,r . (5)
“ieny -

Spy (x r)——]—N[ xke | .. (6)

YX A% N-14 Wa¥v s |

l ol i 7

Sxx (61 =—— 5, af . (D)
N-1,7 -
] & r

S}f‘y (T,T_l):ﬁ;’z:l[yl/’ryy"[—l] (8)

1.4 .
SYX(T—1=T)—N—_1‘V=l|:y;z,r—1x»',& - (9)

Where, Sy(t, 1) = Autocorrelation between the sub
series and series associated with current season;
Sx{(t, 1) = Covariance between the sub series and key
series associated with current season; Syy(t, T) = Auto-
correlation between the key series associated with
current season; Syy(t, —1) = Cross-correlation between
the sub-series series associated with current season and
the previous season; Sy(t—1, 1) = Correlation between
the sub-series and key series associated with current
season.

BOX-COX TRANSFORMATION

Box and Cox (1964) power transformation was used
for data transformation. The transformation can be
expressed as,
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In which X; = the variates of a given data series; ¥, =
the transformed wvariates which has a normal
distribution; and A = a constant of transformation. Eqn.
10 X can be replaced by (x + k) for x > —k to overcome
the difficulty arising from zero values of X in the
historical series. The constant A is non-linear and
cannot be determined in the closed form. The proper
value of A is that value producing a transformed
sample with skewness coefficient and excess
coefficient equal to zero. The value of A generally
ranges from —1.0 to 1.0. It has been observed that an
increase or decrease in A follows an increase or
decrease in the coefficient of skewness. This trend is
helpful in the estimation of A. Alternatively, the
likelihood function can be used to estimate A.

Since, normal distribution has coefficient of
skewness (Cy) and excess coefficient (&) equal to zero,
the efficiency of transformation can be judged by
checking whether these coefficients tend to zero in the
transformed series. For a completely normalized data
both C; and € should be equal to zero. However,
Yevjevich (1972) proposed the value of tolerance
+0.50 from 0 for C;. However, following Bowman
(1973) the normality of a data set of size » may be
asserted at the 95% confidence level if C; and € fall
within the range of +1.96 (24/n)"? respectively (Phien
et al, 1982). Sometimes in certain data series the
Kurtosis (C;) will not reach three. Even though
Kurtosis is not zero in the transformed series, its effect
in hydrological studies is generally neglected.
Moments higher than the third are not commonly used
in the statistical analysis of hydrologic data because
the records are too short to give reliable estimates of
the higher order moments.

RAINFALL ADJUSTMENT PROCEDURES

The disaggregation method described above is
attractive for dividing annual flows among seasons.
Unfortunately, when the historical series is trans-
formed rather than the actual real-space data series, the
generated monthly series generally fail to sum to
historical annual series or to the previously generated
annual series. Two different procedures mainly the
proportional method, ABS-absolute difference method
(Lane, 1979) for adjusting generated monthly series to
get the seasonal sum. A brief description is presented
here.
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PROPORTIONAL ADJUSTMENT METHOD

Proportional adjustment is most popular and simple
procedure to allocate the corrections proportionally to
the originally generated annual and monthly series.
Proportional adjustment procedure is appropriate for
lower-level variables with gamma distributions that
satisfy certain constraints. Here one selects in each
year y a factor d, difference between the values of
historical and generated series, such that,
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The proportional adjusting procedure gives exact, in a
strict mathematical sense, results, only if the variables
Q, are two-parameter gamma distributed, have
common scale parameter and are mutually independent
(Koutsoyiannis 1994). The proportional adjustment
procedure is simple. On the other hand, series in the
stable months are adjusted as much as series in
unstable months so that the distortions of the marginal
distributions are in some sense unbalanced. This
prompted to use other adjustment procedures.

ABS-ABSOLUTE DIFFERENCE METHOD

The absolute difference procedure is more general and
can be applied to any distribution and it can preserve
the first and second moments regardless of the type of
distribution,
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Among the generated monthly and weekly flows I,
producing adjusted monthly and weekly rainfall /.
This procedure makes larger adjustments in more
variable months, but makes no adjustment at all to a
generated flow, which happens to equal its mean, even
in the months with high variable series. The procedure
shifts the burden of adjusting monthly series to the
observation that differs substantially from their mean;
thus it is likely to distort the tails of distribution more
than alternative adjustments.

ERROR FUNCTIONS

Before being able to generate the synthetic sequences
and/or forecast future values, models have to be found
which describe the past data adequately. Ideally, these
models should preserve all the properties of the observed
series. In practice, however, this cannot be achieved
and criteria for evaluating the statistical resemblance
between historic and generated hydrologic data have to
be chosen. In general, the criteria should depend upon
the purpose of the model and the cost of reaching a
wrong decision. The error functions employed for
evaluation include (i) Akaike Information Criterion,
(ii) Bayesian Information Criteria, (iii) Root Mean
Square Error, and (iv) Coefficient of skewness. A brief
description of these criteria is presented below.

Akaike Information Criterion (AIC),

AIC = ln(RMSE)+2—}::— ... (18)

Where, RMSE = Root mean square error; 7 = number
of parameter estimated; N = sample size.

Bayesian Information Criteria (BIO),

BIC = In(RMSE) + ”l’zer ) .. (19)
Root Mean Square Error. (RMSE),
... (20)

Where, all the terms have been defined earlier.

Coefficient of Skewness

The coefficient of skewness is determined by using the
following equation,

v(x){%%amcﬁ (X)-w(x)} /é(x)
.21

Where, X; = Historical rainfall series; p(x) = Mean of
historical series and o(X) = Standard deviation.

RESULTS AND DISCUSSION

Historical rainfall data of 47 (1956-2003) years was
collected from Agro-meteorological —observatory,
Junagadh Agricultural University, Junagadh. The
computed values of serial correlation coefficients
between two successive weekly rainfall sequences
were very small. For most cases, they turned out to be
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non-significantly different from zero thereby suggest-
ing that the weekly rainfall sequences are independently
distributed (Clarke, 1973) (i.e. + 2/n).

The performance of power transformation in modi-
fying the skewness and kurtosis is presented in Table 1.
It is clear that in all weeks skewness has been brought
to near the recommended limit as compared to the other
transformations. The mean and the standard deviation
of C; were 0.088 and 0.267 and for kurtosis coefficient
2.6347 and 1.0899 respectively. These values were
found to be lower than the historical series. However,
when zero values were more than 60% of the sample
size, this transformation was observed to be unable to
normalize the data. This can be reflected from 23 and
40 standard weeks. Even if zeros were less than 60%,
the normalized data series were not statistically
reliable enough to give satisfactory probable values of
transformed variables. This was because when this
transformed series was plotted on to normal
probability paper, it did not follow a true straight line,
a desirable feature of any probability distribution;
hence, the normality assumption was no more realistic
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for such cases. Power transformation was also unable
to normalize data series having a very high standard
deviation even though there were no zeros present.
This leads to the conclusion that power transformation
is effective only for data series that do not have many
zeros and are moderately dispersed, which is again
difficult to meet in case of weekly rainfall.

The annual rainfall series was disaggregated to finer
scale (monthly). The estimated values of 4, B and C
for various months are shown in Table 2. Minimum 4
value of —1.9905 for the month of September and
maximum of 1.0143 for the month of J uly was
observed. The value of 4 for June and August was
1.00236 and 1.03530 respectively. Minimum B value
of 1.484377 for July and maximum value of
44679372 for June was observed. The value of B for
August and September was 2.73033 and 3.77941
respectively. Minimum C value of —0.03712 for June
and maximum value of 0.178225 for August was
observed. The value of C for July and September was
0.13423 and -0.09097 respectively. No trend of results
in 4, B and C with months was observed.

Table 1: Statistical Parameters of Historical and Transformed Rainfall Series

Historical Series Transformed Series
v ’;ﬁf;;’ : . ) G Ci 2 G Ci
23 21.25 51.26 3.874 20.01 0.01 0.442 1.365
24 23.84 41.17 2.145 7.104 0.13 0 1.419
25 75.21 225.99 5.59 35.3 0.2 -0.05 3.205
26 70.68 115.31 3.104 15.16 0.26 0.013 2.131
27 77.5 91.36 1.419 4.981 0.35 0.002 2.04
28 87.7 110.81 1.126 5.615 0.32 0 2.546
29 103.03 116.48 1.265 4.073 0.34 0 2.187
30 69.55 101.87 1.545 9.61 0.28 0.043 3.289
31 57.82 76.2 2.365 10.1 0.31 0.035 2.938
32 60.22 95.82 2477 8.81 0.21 0.078 4.301
33 82.73 235.49 5.41 33.09 0.22 0.034 5.532
34 23.16 34.51 2.805 11.62 0.31 0.005 2.743
35 51.73 106.72 3.906 19.21 0.24 0 3.286
36 30.47 40.24 1.946 5.724 0.32 0.024 2.04
37 24.68 42.93 3.147 14.74 0.25 0.036 2.195
38 25.63 49.87 3.1 12.86 0.01 0 1.168
39 12.01 17.56 14 3.82 0.16 0.009 1.415
40 10.6 27.02 3.2 12.83 0.01 1.08 2.35
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Table 2: Coefficients of the Lane’s Condensed Model for
Monthly Rainfall Series

A comparison of historical and generated monthly
series (Figure 1) showed that the generated values are

o 1

Lane’s Model slightly higher or slightly lower than historical series.
Season " B c The difference between historical and generated
monthly rainfall are either positive or negative. The
e 1.0029668: | 44679372 | —0.057120 RMSE, skewness, AIC and the BIC values were
July 1.0143161 | 1.4843775 0.134232 determined using historical series and monthly-
August 1.0353039 | 2.7303309 0.178225 generated series for Lane’s model (Table 3). The
September | —1.990589 | 3.7794180 | —0.09097 lowest value of these parameters indicates the better
performance of the model.
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Fig. 1: Generated and Historical Rainfall Series Using Disaggregation Models for Monthly and Annual Series
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Table 3: Error Functions for Lane’s Monthly
Disaggregation Model

Month RMSE | SKEWNESS AlC BIC
June 228.51 3.446 13.022 | 1.564
July 311.68 2.885 13.766 | 1.339
August 332.23 6.674 13.919 | 2.399
September 111.18 1.887 11.295 | 0.803
Annual 368.24 3.023 7.040 | 7.417

Lowest value of RMSE, skewness, AIC and BIC were
observed for the month of September. Lower RMSE
was observed in June followed by July and August.
Lower skewness and BIC was observed for July
followed by June and August. No significant difference
was found in AIC values. Although the seasonal vari-
ations are minimized by taking zero-mean normalized
series and also various correlations, cross-correlations
and covariance are preserved in parameter estimation
of the model but still there is lack of consistency in the
generated series due to highly variable nature of the
data taken for the study.

COMPARISON BETWEEN HISTORICAL
ANNUAL AND AGGREGATED ANNUAL
RAINFALL SERIES

The aggregated annual series were obtained by adding
the generated monthly series for the four months viz.
June, July, August and September. The aggregated
annual series were calculated for both the
disaggregation models and are presented in Figure 1.
The disaggregation models fail to preserve the
additivity in generating the aggregated series, due to
the fact that that rainfall data were transformed before
using in the model. The aggregated annual series was
compared with the annual historical series for Lane’s
disaggregation model. The visual inspection of the
graph shows that the aggregated series had either less
or more values than the historical series i.e. the
residuals are either positive or negative (Figure 1). The
error functions for aggregated series (Table 3) showed
a poor performance of Lane’s model in aggregated
rainfall series from monthly values.

RAINFALL ADJUSTMENT PROCEDURES

The generated monthly rainfall fails to generate annual
value upon addition. Two different procedures,
proportional method, and ABS absolute difference
method were employed for Lane’s model in adjusting
the generated annual and monthly series. The criteria
for choosing an appropriate adjustment procedure are
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simplicity and the ability to preserve the fitted marginal
distributions of the disaggregated monthly rainfall series.
The second criterion may be tailored to individual
situations; in particular, the high and low end of the
marginal distribution might be given more weight
depending on whether high or low data series were
more critical at the time scale of interest.

Table 4: Error Functions for Adjusted and Historical
Annual -Rainfall Series Using Proportional Adjustment
Method, ABS Difference Method

S No. Error Proportional ABS
Functions Method Method

1. RMSE 311.70 361.39
2. Skewness 4.817 5.330
3. AIC 6.890 7.067
4, BIC 6.170 6.345

The absolute model yielded high RMSE, Skewness,
AIC and BIC. The proportional adjustment method
was found to give least value for the skewness and
performed better than absolute method. The scatter
plot diagrams between adjusted and historical rainfall
series (Figure 1) indicate the visual distortions in the
marginal distributions with the two adjustment
procedures. The absolute model distorted more than
the proportional adjustment procedure at the low and
high ends of the distribution. The advantage of the
proportional adjustment scheme may be explained by
the hydrological characteristics of the rainfall series
and the structure of the disaggregation model. Stedinger
et al. (1985) observe that reproducing the sample
estimate of the log-space mean and variance tends to
produce slightly upwardly biased estimates of the real
space moments for each month. They found that the
proportional adjustment procedure counterbalanced
this bias.

SUMMARY

Rainfall data is often required for engineering or hydro-
logical purposes, but is also often severely lacking,
both in terms of spatial coverage as well as length of
recorded time. Condensed and staged disaggregation
model are used to avoid proliferation of parameters. In
the present study Lane’s condensed disaggregation
model is adopted. The problem of preserving annuity
in disaggregation models is tackled through adopting
two empirical correction procedures mainly proportional
adjustment method and absolute difference method.
The proportional adjustment method performed better
than the absolute difference model.
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