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ABSTRACT: Many hydrological and agricultural studies require simulation of weather variables that reflect the spatial and
temporal dependence observed in point rainfall at multiple locations. This paper assesses three approaches for stochastic
generation of multi-point daily rainfall that use different rationales for representing the spatio-temporal dependence that is
observed. This assessment is based on an application of the three approaches to point rainfall occurrences at a network of 30
raingauge stations around Sydney, Australia, the rainfall amounts subsequently being generated on the wet days using a
nonparametric amount model independent of the occurrence process. The approaches considered consist of a multisite
modified Markov model (proposed by Mehrotra and Sharma, 2007b), a method for reconstructing space-time variability
(proposed by Clark et al., 2004), and the nonparametric k-nearest neighbour (KNN) model (as outlined in Lall and Sharma,
1996). The Modified Markov model simulates precipitation occurrences at individual locations considering low as well as high
order Markovian dependence, the spatial dependence being simulated through the use of random innovations that exhibit a
spatial dependence structure. In the reconstructing approach, the realisations for a given simulated day are ranked and
matched with the rank of the days randomly selected from the similar dates in the historical record. The realisations are then
re-ordered to correspond to the original order of the selected historical record thereby reflecting the observed spatio-temporal
dependence in the generated series. The k-nearest neighbour approach reproduces spatial precipitation distribution structure

by simulating precipitation occurrences jointly at multiple locations. Temporal persistence is preserved through Markovian
assumptions on the rainfall occurrence process.

The three methods are evaluated for their ability to model various spatial and temporal rainfall attributes over the study
area. Our results indicate that all the approaches are successful in reproducing the spatial pattern of the multi-site rainfall field.
However, the different orders of assumed Markovian dependence in the observed data limit their ability in representing
temporal dependence at time scales longer than a few days. While each approach comes with its own advantages and
disadvantages, the alternative proposed by Mehrotra and Sharma (2007b) has an overall advantage in offering a mechanism
for modelling varying orders of serial dependence at each point location, while still maintaining the observed spatial
dependence with sufficient accuracy. The reordering method of Clark et al. (2004) is simple and intuitive, however, is primarily
driven by the variability of the observed record, and may not be suited in applications where exogenous covariates can be of
help in the simulation process. Implications of using these methods in a water resources management study are discussed.

INTRODUCTION

Stochastic models are commonly used to generate
synthetic sequences of rainfall and other weather
variables to enhance our understanding of hydrological
system response, and in the design and operation of
water resource systems. The single site weather
generators are easy to formulate and are based on a
relatively simple stochastic process. However, the
single-site weather generators cannot satisfactorily
reproduce the strong spatial correlations among
weather variables, often necessary to evaluate the
hydrological or agricultural behavior of a region. The
spatial correlation of weather variables, specially the It is

issue of spatial dependence among series of weather
variables at multiple locations, both with and without
conditioning on exogenous atmospheric predictors.
These models simulate series of weather variables
simultaneously at multiple locations, usually at daily
time step (e.g., Bras and Rodriguez-Iturbe, 1976;
Waymire et al., 1984; Hay et al., 1991; Bardossy and
Plate, 1992; Wilson ef al., 1992; Hughes ef al., 1993;
Hughes and Guttorp, 1994; Hughes et al., 1999, Wilks,
1998). However, with the increase in the number of
stations, the number of parameters of the model also
grows almost exponentially.

also common, to incorporate synoptic

precipitation, may have essential effects on the
- discharge of a river and the formation of floods. A
number of multi-site parametric stochastic models
have been proposed in literature to address the crucial

information for generation of series of weather
variables in an attempt to improve the spatial and
temporal attributes of the generated series (Hughes and
Guttorp, 1994, Hughes et al., 1998, Mehrotra et al.,
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2004, Sarthik and Bardossy, 2004). This is also found
to improve the representation of the low frequency
variability in the generated rainfall (Katz and Parlange,
1993). The low frequency variability is important for
applications that are serisitive to proper representation
of low-frequency persistence, or, the representation of
sustained droughts and periods of above average
rainfall (or above average wet days) in the generated
record. The use of synoptic information while provides
the opportunity to incorporate additional information
in modeling of the series of weather variables, requires
additional time series of atmospheric variables.
Additionally, despite, bringing in simplifications for
example assuming discrete weather states, with the
increase in number of stations, the number of
parameters also grows almost exponentially and makes
it extremely difficult to estimate and statistically verify
the parameters of the model. This has limited ‘their
applications for operational purposes.

To overcome the difficulty of parameter estimation
of multi-site stochastic models, Wilks (1998) proposed
a simple extension of commonly used single-site
Markov model for precipitation to multi-sites by
driving each of a collection of individual single-site
models with temporally independent yet spatially
correlated random numbers and successfully simulated
daily precipitation while reproducing the observed
spatial correlation and preserving the individual
behaviours of the local models. Since then, this logic
has been successfully applied for simultaneous
simulations of rainfall and other weather variables at
multiple locations (Wilks, 1999a, b; Qian et al.,, 2002;
Mehrotra ef al., 2006; Mehrotra and Sharma, 2007ab).

Recently, in an attempt to reproduce the spatial and
temporal structure of observed multi-site series of
weather variables without introducing additional
complexity, Clark et al. (2003) and Clark et al. (2004)
introduced a method to reconstruct the observed spatial
(intersite) and temporal correlation statistics among
multiple locations by reordering of the single site
generated series of weather variables. Their approach
involves re-shuffling an ensemble (realisation) of
simulated observations to match the observed spatial
and temporal characteristics. In essence, the procedure
requires generating multiple realisations (ensembles)
individually at each site and reshuffling the simulated
series based on the observed information available at
these sites. They claimed that the reordering procedure
successfully reproduced the number of wet days,
rainfall amounts and spell characteristics of the rain-
fall series at number of stations, without requiring a
complex model structure and tedious parameter
estimation.

Another class of weather generators is based on
nonparametric alternatives. These methods offer a
different rational for generation of climate variables
and have been used extensively for this purpose in
recent years (Rajagopalan and Lall, 1999; Brandsma
and Buishand, 1998; Buishand and Brandsma, 2001;
Sharma and O’Neill, 2002; Harrold et al., 2003ab;
Mehrotra and Sharma, 2006). These methods offer the
alternative of developing the temporal and spatial
relationship among weather variables without a priori
assumptions on the joint probability distribution
associated with the these variables. For multi-site
resampling, since the variables at these locations are
simulated concurrently, dependence across space is
accurately preserved. The A-nearest neighbour bootstrap
(KNN) is a technique that conditionally resamples the
values from the observed record based on the conditional
relationship specified. The lack of any assumptions
defining the joint distribution of the weather variables
helps ensure an accurate representation of features
such as nonlinearity, asymmetry or multimodility in
the observed record of the variables being modelled.

This paper assesses the three modeling strategies for
simultaneous simulation of daily rainfall at multiple
locations. All the approaches follow a two step rainfall
generation procedure, rainfall occurrences are modeled
in the first step, amounts being generated subsequently
on the days identified by the occurrence models as
wet, using a logic, common to all occurrence models.
These approaches therefore essentially differ in terms
of rainfall occurrence generation procedure only. The
approaches considered are (a) a multi-site Modified
Markov model (Mehrotra and Sharma, 2007b); (b) an
approach based on reordering of ensemble output in
order to recover the space-time variability in the
simulated series (Clark et al. (2003) and Clark er al.
(2004)); and (c) a non-parametric k-nearest neighbour
multi-site model (Buishand and Brandsma, 2001:
Mehrotra et al., 2006). Rainfall amounts for all these
models are generated using Kernel Density Estimation
(KDE) approach (Sharma and O’Neill, 2002; Harrold
et al, 2003b; Mehrotra and Sharma, 2006). These
models (also including the rainfall amounts) are
hereafter referred to as (a) modified Markov,
(b) reordering and (c) KNN models. Results of these
models are discussed and evaluated against each other
and also with the results obtained using an order one
Markov model (for rainfall occurrences) and KDE
model (for rainfall amounts) applied to each site in
isolation without any treatment for spatial dependence.
This model is hereafter referred to as the independent
model. A 43 year long record of daily rainfall at a
network of 30 locations near Sydney, Australia, is used
to compare the methods.
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The paper is organised as follows. The methodo-
logical aspects of models used and data are presented
in Section 2. Section 3 provides applications of
different models and presents their comparison. In
Section 4, finally. the results are summarized and
conclusions are drawn.

METHODOLOGY AND DATA USED

As mentioned in the previous section, all approaches
considered in the study, differ in terms of rainfall
occurrence generation process only, the model of
rainfall amounts being common to all approaches.
Table 1 provides the details on the spatial and temporal
dependence structures of the rainfall occurrence and
amounts processes used in these approaches.

Modified Markov Model

We denote rainfall occurrence at a location k and time
tas R,(k) and at the " time step before the current as

R,_, (k). The modified Markov model as proposed in

Mehrotra and Sharma [2007b] is based on the
conditional simulation of Jz‘%,(k)’Z"r (k) within the

general framework of Markov process where
Z,(k) represents a vector of conditioning variables at a

location & and at time ¢ that in addition to previous
time steps values of rainfall imparting daily or short
term persistence, can also include atmospheric
variables, and/or other continuous variables explaining
the higher time scale persistence (denoted as X, (%),
these variables being ascertained by aggregating the
rainfall over multiple time steps to convey the slow
varying temporal persistence that creates sustained low
or high rainfall periods). For brevity, site notations are
dropped in the subsequent discussions. The parameters
(or the transition probabilities) of a model expressing
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the order one Markovian dependence (first order
Markov model) are defined byP(R,IR,_Q with Z,

consisting of R, only. Inclusion of additional
predictors X, in the conditioning vector Z, would

modify these transition probabilities as P(R,|R,_;,X,) .

The following parameterization is adopted to estimate
P(R,|R_,.X,),

P | R= J. B =)

P(R, = j|R =i,X,)=p,; P(X, R =1)
=1 —

(D

The first term of (1) defines the transition probabilities
P(R, lR,_l) of a first order Markov model (representing

order one dependence) while the second term signifies
the effect of inclusion of predictor set X, in the
conditioning vector Z. If X, consists of derived
measures (typically linear combinations) of summation
of number of wet days in pre-specified aggregation
time periods, one could approximate the associated
probability with a multivariate normal distribution,
leading to the following simplification for
P(R1|R1w1’Xl)a

P(R|R._;, X,)
“—yeXP{‘%(X: _Py‘)Vy‘_l(Xa _lvl;'j) }
det(V;)2

=pU ! E :
e {-b (X ) (- |
det(7;)2

. ()

where 1, represents the mean E(X,{R,_; =i) and ¥,
is the corresponding variance-covariance matrix.
Similarly, p; and Vj represent, respectively, the mean

vector and the variance-covariance matrix of X when
(R,_y=i) and (& =j). The p;parameters represent

Table 1: Details of Temporal and Spatial Dependences Considered in the Models Used

Dependence Modelled
Mot Frocess Tempo.:)a; gg)eindence Spatial Dependence by
Independent Occurrence One None
Amount One None
Modified Markov QOccurrence One and monthly and Spatially correlated random numbers
annual level
Amount One Spatially correlated random numbers
Reordering Occurrence Using reshuffling Reshuffling
Amount Using reshuffling Reshuffling
KNN Occurrence Spatially averaged order Simultaneously picking up observations at all
one stations
Amount One Spatially correlated random numbers
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the baseline transition probabilities of the first order
Markov model defined by P(R|R_;) and det()
represents the determinant operation.

It may be noted that for some applications, the
assumption of a multivariate normal may not be
sufficient. In such situations, estimating conditional
probabilities P(X, rIRr,R,_l)Emd P(X,|R,_)) in equation
(1) either using more appropriate probability distri-
butions or based on nonparametric alternatives (such
as kernel density estimation) might be more
appropriate. However, for the current application,
assumption of normal distribution was found to
provide good results.

The Reordering Method

The ensemble (realisation) reordering method is
proposed by Clark ef al. (2004). This method is fairly
intuitive and simple, and involves a reordering of
ensemble outputs for maintaining the space-time
variability in the generated series. In brief, the procedure
can be described as follows.

For a given day, the generated ensemble members
(n) are ranked from lowest to highest. A short moving
window of pre specified days (say fifteen days) is
formed centred on the given day. A subset of n
observed dates (number of observations being same as
number of generated realisations) is randomly selected
from the days of the historical record falling within
this moving window (dates can be drawn from all

ears in the historical record except the year for which
reordering is being performed). This observed subset is
also ranked from lowest to highest separately for each
variable and station. For each variable and station,
each observation of the ranked observed subset is
tagged with the corresponding ranked generated
ensemble members, and is re-ordered to its original
position with the tagged generated record. Further
details on the reordering method are available in Clark
et al. (2004).

This approach is intended to preserve both spatial
and temporal correlations in the reshuffled generated
series. Considering the spatial correlation at two
stations, if these are highly correlated, then the
observations at these stations on a given day are likely
to have a similar rank. The rank of each simulated
realisation at the two stations is matched with the rank
of each randomly selected observation, meaning that,
for all realisations, the rank will be similar at the two
stations. When this process is repeated for all days, the
ranks of a given realisation will on average be similar
for the two stations, and the spatial correlation will be

reconstructed once the randomly selected days are re-
sorted to their original order.

In order to maintain the temporal persistence at each
station, the random selections of dates that are used to
construct the observed subset are only used for the first
day. At a given station, historical observations following
high temporal persistence, for subsequent days, on
average, would have a similar rank. The ensemble
output is assigned identical ranks to the randomly
selected observations, and thus the temporal persistence
is reconstructed once the ensemble output is re-sorted.

k-Nearest-neighbour Resampling

In the context of multi-site generation of rainfall
occurrences, the k-nearest-neighbour approach considers
simultaneously sampling with replacement of the
rainfall occurrences at multiple locations, from the
historical records of rainfall. To preserve lagged
correlations, resampling is conditioned on the days in
the historical record that have similar characteristics as
those of the previously simulated days. The similarity
is judged on the basis of previous day(s) values of
rainfall occurrences at stations. The spatial rainfall
distribution structure is maintained by simulating
simultaneously at all the stations. Seasonal variations
in occurrence generation processes are accommodated
using a moving window approach. Further details on
the method are available in Rajagopalan & Lall (1999),
Buishand & Brandsma (2001), Beersma and Buishand
(2003) and Mehrotra et al. (2004).

The Single-Site (independent) Rainfall
Occurrence Model

The independent model used for comparison generates
rainfall occurrence at individual site ignoring the
spatial dependence across the stations. Similarly, the
ensemble reordering method requires ensembles of
generated rainfall occurrence at each site before
introducing spatial and temporal dependence by
reshuffling. In the present application, the single-site
daily rainfall occurrence model used in both these
approaches is a first-order Markov model.

The Single-Site Rainfall Amount Model

A nonzero rainfall amcunt must be generated for each
wet day and location of the generated sequences of the
occurrence models described in previous sub-sections.
The model for rainfall amounts presented here is
nonparametric, and is based on the kernel density
procedure described in Sharma (2000); Sharma and
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O’Niell (2002); Harrold et al. (2003b) and Mehrotra
and Sharma (2007b). The model is mentioned
hereafter as KDE model. It simulates rainfall amount
at individual stations conditional on the previous day’s
rainfall, ~thereby imparting Markov order-one
dependence in the generated series.

Modeling Observed Spatial Dependence in the
Generated Rainfall Field

The Modified Markov model accommodates the
spatial correlation structure in the generated multisite
rainfall occurrences using spatially correlated random
numbers. Similarly, KDE model used to generate
rainfall amounts also accommodates spatial dependence
(for modified Markov and KNN models only) in the
generated rainfall amounts by making use of spatially
correlated and serially independent random numbers
during generation of rainfall at individual stations
separately. The general logic of estimating the
correlation matrices of random numbers for rainfall
occurrence/amounts is available in Wilks (1998) and
Mehrotra et al. (2006).

Data and Study Area

The study region is located around Sydney, eastern
Australia spanning between 147°E-153°E longitude
and 31°S-36°S latitude (Figure 1).

147.5E

155.0E
30.0S -

130.08

NEW SOUTH WALES

20

L]
4 Murrurundi
£ 6
o 45 o
327\ *
? _PEAKHILL
g7

o9
Orange .25

12

® Wyanga dam

_3 0

21
.
Canberra

Coast Line

37.58

3758 e = ——
155.0E

147.5E

Fig. 1: Map of the study area showing the locations of
rain-gauge stations
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The most significant rainfall events in winter in this
region involve air masses that have been brought over
the region from the east-coast low-pressure systems.
Orographic uplift of these air masses when they strike
coastal ranges or the Great Dividing Range often
produces heavy rain. For this study, a 43 year
continuous record (from 1960 to 2002) of daily winter
rainfall occurrences at 30 stations around Sydney, eastern
Australia (see Figure 1) was used. The interstation
distances between station pairs vary approximately
from 20 to 340 km. Missing values at some stations
(<0.5%), were estimated using the records of nearby
stations. A day was considered as wet if the rainfall
amount was greater than or equal to 0.3 mm.

MODELS APPLICATION AND RESULT
DISCUSSIONS

For the KNN model, based on the results of a
sensitivity analysis to different choices of width of
moving window £, a value of £ = 31 days was chosen
for use in our study. Similarly, an analysis was
performed to find out the optimal value of %, the
number of nearest neighbours, and consequently a
value of k = 10, was adopted. For modified Markov
model, following Mehrotra and Sharma (2007b),
previous 30 and 365 days wetness state variables were
considered appropriate in explaining the low frequency
variability present in the observed record at all
stations. The relationship between correlations of
series of normally distributed random numbers and
corresponding simulated rainfall series at each station
pair was ascertained empirically on a daily basis
considering the observations falling within a moving
window of length 31 days centered on the current day.
Similarly, for reordering method, for estimation of
daily transition probabilities of the Markov model and,
for KDE model, a moving window of length 31 days
centred on the current day was found appropriate and
considered in the study.

For all occurrence and amounts models except KNN
used in the application, previous day value while for
KNN model the previous day average rainfall state of
the region was assumed to represent the short term
dependence of the rainfall process.

The reordering method is applied to the generated
series of rainfall amounts only, observed dependence
structure of rainfall occurrences is automatically
preserved once amounts are reordered.

In all the approaches, results were ascertained by
generating 100 ensembles or realisations of the rain-
fall, based on which statistical performance measures
were estimated. The comparison of results was based
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on the reproduction of various statistics of interest,
representing spatial and temporal characteristics of
rainfall including those of importance to water
resources planning and management.

The graphical comparison of different models was
performed on the basis of: (a) spatial dependence
statistics, namely, log-odds ratio—a measure of the
spatial correlation in the daily rainfall occurrence, and
cross correlations—a measure of the spatial correlation
in the daily rainfall amounts and aggregated wet days
and rainfall amounts in a month and year; (b) average
number of wet days and rainfall amounts in a month
and year and their variability—a measure of the
frequency at which wet days and amounts are
simulated and their distribution within and across a
year; (c) distributional attributes of wet days and
rainfall amount in a year—again a measure of the year
to year variability of rainfall occurrence and amounts;
(e) spell length rainfall characteristics i.e. wet and dry
spells—a measure of day-to-day dependence in the
rainfall series and; (f) extreme rainfall characteristics
i.e. maximum wet and dry spells and daily maximum
rainfall amount—a measure of hydrologic extremes
i.e. floods and droughts.
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Figure 2 presents observed and modelled log-odds
ratios (for daily rainfall occurrences) and cross corre-
lations (for monthly and annual wet days) for all models.
For daily and yearly plots, points are shown for each
station, while for monthly plots these are shown for
each month and station. As the independent model
ignores spatial dependence, the generated simulations
from the model fail to preserve this characteristic. Use
of spatially correlated random number in the modified
Markov model helps reproducing the spatial dependence
in the generated sequences quite successfully. Similarly,
the reordering method by virtue of assigning equal
ranked observations at all stations is able to maintain
the ranked spatial dependence, albeit some bias for
highly correlated stations. As the KNN approach
considers precipitation occurrences concurrently at all
the stations, the dependence between the stations is
automatically preserved by the model. At higher time
scales of month and year, the spatial correlations tend
to exhibit large scatter for all the models with modified
Markov model underestimating the simulated statistic.
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Fig. 2: Scatter plots of observed and model simulated daily logodds ratios and cross correlations of monthly
and annual wet days. For daily and annual plots points are shown for each station pair while for monthly plots

these are shown for each station pair and month
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Similar to Figure 2, Figure 3 presents the cross
correlations details of rainfall amounts at daily,
monthly and annual time scales. As can be seen, this
characteristic is also modelled well by all the three
models with the exception of somé nominal bias in
daily cross correlations by the reordering model.

Having looked at spatial dependence, it would also
be of interest to look at the performance of these
models in reproducing the various at site temporal
rainfall characteristics, of general importance, in water
resources planning and management. These are
discussed in the subsequent sections.

Aggregated Wet Days, Rainfall Amounts and
Associated Variability

It is vital that average wet days and rainfall amount at
raingauge network be reproduced accurately before
using the simulated rainfall series as an input to any
water balance modeling exercise. Figure 4 presents the
scatter plots of observed and modelled monthly and
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annual wet days and rainfall totals at all stations for
different models. As expected, all models, including
the independent model, provide a good fit to the mean
number of wet days and rainfall totals. It is easy to
model the average monthly and annual rainfall totals
by reproducing properly the probability of occurrence
of wet days and average wet day rainfall amount.
However, what is more desirable and often difficult, is
the successful reproduction of within the year and over
the years variability in the rainfall occurrence and
amount processes, an effect termed as “overdispersion”
(Katz and Parlange, 1998). It may be noted that the
monthly and/or annual variance being not only directly
related to the rainfall amount variance, probability of a
wet day and the average wet day rainfall amount, but
also to the monthly/annual variance of wet days, is
difficult to represent accurately (Katz and Parlange,
1993, Katz et al., 2003). It has been observed that these
low-order Markov process based models, in general,
undersimulate the variance at aggregated time scales of
month, season and year (Buishand, 1978; Wilks, 1999b).
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Fig. 4: Scatter plots of observed and models simulated monthly and annual wet days and rainfall totals. For annual plots
points on the graph are shown for each station while for monthly plots these are shown for each station and month

However, this overdispersion characteristic assumes
importance for applications that are sensitive to proper
representation of low-frequency persistence, or, the
representation of sustained droughts and periods of
above average rainfall (or above average wet days) in
the generated record. Figure 5 presents the scatter plots
of observed and modelled standard deviations of
monthly and annual wet days and rainfall totals. As
can be depicted from these plots, independent and
KNN models grossly underestimate the variability
whereas modified Markov model and reordering
models are successful in reproducing the variability of
aggregated wet days at monthly and annual time
scales. Similarly, all the models except the KNN are
successful in reproducing the variance of monthly
rainfall totals whereas modified Markov and re-
ordering models are more successful in preserving the
variance of rainfall amounts at annual time scale.
Obviously, the order one dependence of independent

and KNN models is insufficient in explaining the
higher time scale or low frequency variability, speci-
fically at annual level, as exhibited by the observed
record. The modified Markov model that considers
conditioning on previous 30 and 365 days wetness
state is able to recognise this variability quite well.
Similarly, the reordering model that follows the
calendar dates in the selection of observed samples is
also able to reproduce this variability quite success-
fully.

Another important rainfall statistic related to the
annual variance is the distribution of over the year
rainfall variability. Figures 6 and 7 present the pro-
bability plots of the distribution of wet days and total
rainfall per year for the two selected stations 27
(Figure 6) and 15 (Figure 7) representing, respectively.
dry and wet regions. These plots show that the driest
year on record for station 27 has only 35 wet days, but
the wettest year has approximately 105 wet days.
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Likewise, station 15 has 90 and 170 days for driest and
wettest years, respectively. The generated sequences
from independent and KNN models do not reproduce
these distributions whereas modified Markov and
reordering models successfully capture these highs and
lows (top two rows of Figures). The standard deviation
of the number of wet days per year is directly related
to this distribution, and thus generated sequences from
independent and KNN models also under-represent the
historical annual-level standard deviation. For total
rainfall (bottom two rows of Figures) these differences
are not so pronounced amongst the models.

Extreme Rainfall Characteristics

It has been observed that assuming a low-order
Markov dependence, in general, undersimulates long
dry spells (runs of consecutive dry days) (Buishand,
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1978; Guttorp, 1995; Racsko ef al., 1991; Semenov
and Porter, 1995; Wilks, 1999b). Figure 8 presents the
scatter plots of observed and models generated highest
wet and dry spell lengths and, maximum rainfall
amount at all stations. All the models are successful in
reproducing the maximum wet spell length (top row)
at all stations with the exception of modified Markov
model which somewhat overestimates this characteristic
at a few stations. Similarly, generated sequences from
independent and KNN models underestimate the
maximum dry spell lengths at majority of stations
whereas modified Markov and reordering models
adequately reproduce this characteristic at all stations
(middle row). Daily maximum rainfall is adequately
reproduced by all the models at majority of stations
(bottom row) except for KNN model which shows
minor underestimation of this characteristic at a few
stations.
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Combined-Spatio-temporal Rainfall
Characteristics

Another important statistic, indicative of proper re-
production of spatial as well as temporal dependence is
the marginal and conditional probabilities of area
averaged wetness state (for rainfall occurrence) and
rainfall amounts. Figure 9 presents the probability
plots of observed and modelled daily area averaged
wetness state. Plots of rainfall amounts being similar
for all models are not presented here. On these plots
observed statistic is shown as circles while simulated
values are shown as lines. Modified Markov, reordering
and KNN models successfully reproduce these prob-
abilities at daily time scale. As KNN method considers
conditioning on area averaged wetness state, it is
structured to reproduce this statistic appropriately.
Reordering method tends to match the observed ranks
in the generated simulations at daily time scale and
therefore also matches the area averaged statistic quite
well. In spite of the fact that modified Markov model
successfulty reproduces the spatial dependence and is
structured to reproduce the order one temporal
dependence at individual station, it somewhat under

simulates the area averaged statistic. It appears that for
proper reproduction of temporal dependence of area
averaged statistics, modelling of the spatial and at-site
lagged temporal correlations might not suffice. Consider-
ation of lagged cross correlations or conditioning on a
variable representing area averaged conditions might
help improving the results.

SUMMARY AND CONCLUSIONS

This paper has presented an assessment of three
multisite models of daily rainfall, which are based on
different concepts of reproducing the spatial and
temporal dependence in the generated rainfall sequences.
While short term temporal dependence in all the
models is formulated assuming an order one Markovian
dependence, these differ in terms of the modeling of
higher time scale temporal and spatial dependences.
These schemes do not pretend to model directly the
physical processes underlying the spatial and higher
order temporal distributions of weather variations, but
rather are based on relatively simple stochastic simulation
of weather derived from the behavior of the observed
rainfall.
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Representing spatial dependence has always been a
topic of concern among the researchers when it comes
to stochastic simulation of rainfall. The three methods
presented here provide a simple yet effective logic of
reproducing this characteristic at a network of stations.

The reordering model is based on simple logic of
reproducing the ranked statistics at individual stations
which in turn helps reproducing the desired spatial and
temporal statistics in the shuffled generated sequences.
The approach equally holds good for other weather
variavics as  well. However, the approach has
limitations if there are many similar records in the
observed data such as is the case with rainfall which
contains many zeros. The poor simulation of daily
spatial correlations is the result of having many zeros
at few stations. Additionally, were the approach to use
a small moving window and a limited historical record
size, it will simulate realizations that have an identical
rank structure (in space and time) to what is observed.
While the spatio-temporal dependence statistics will be
represented well (perfectly in the rank space), the
stochasticity of the simulated sequences will be
compromised. For the success of the method, the
observed record should have enough length and
variability with not many repeated observations. It
should be noted that the good simulation of difficult to
represent statistics such as long term persistence is
because of the observed rank structure being replicated

We found that the models with low-order Markovian
dependence (independent and KNN models) are
inadequate in producing the extended dry spells with
proper frequency. This is in agreement with the
findings of other researchers (e.g., Buishand, 1978;
Racsko et al.,, 1991; Lettenmaier, 1995). The use of
higher time scale wetness state (modified Markov
model) or following the dependence of the observed
record (reordering model) facilitates retaining the higher
order dependence also in the generated simulations.

The KNN model is structured to retain the spatial
dependence, however, does not support the reproduction
of the higher time scale characteristics of the rainfall.
Conditioning on higher time scale variables or
following the procedure as mentioned in Mehrotra and
Sharma (2007a) is expected to further improve the
performance of the model.
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without significant alteration in formulating the
ensembles. Also, the approach is most suited for
applications where aim is to have observed statistics
being reproduced in the simulated sequences. However,
the approach is not suited for downscaling or climate
change related studies where observed rainfall spatio-
temporal structure is expected to behave in a different
manner in the changed climate conditions.
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