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ABSTRACT: Rainfall is a hydrological phenomenon that varies in magnitude in space as well as in time and requires suitable
tools to predict values in space and time. The identification of spatial rainfall pattern is an essential task for hydrologists,
climatologists as well as regional and local planners and managers. This is due to the variability of both the temporal spatial
distribution of rainfall. Multi-day rainfall events are an important cause of recent severe flooding in the India in general and in
Andhra Pradesh in particular and are required for the design of structures such as dams, urban drainage systems and flood
defences and cause failures to occur. Daily rainfall data from a network of 51 one degree gird stations for the period 1951—
2003 has been in used for the study. On the basis of rainfall data for the heaviest storms that occurred in different part of
Andhra Pradesh during the period 1951-2003, estimates of one-day, two-day, three-day, five-day and seven-day rainfalls were
made. The main objectives of this work are: (1) to analyze and model the annual maximum rainfalls of various durations (2) to
analyze and model the spatial variability of rainfall, (3) to interpolate kriging maps for different durations, and (4) to compare
prediction errors and prediction variances with those of kriging methods for different durations. L-moment ratio diagrams have
been used to identify candidate regional distribution of the data. Generalized Extreme Value distribution found to be the
representative distribution. Parameters were estimated using maximum likelihood method. Return period quantiles were
estimated using the fitted distribution for each station. Using these rainfall estimates, a geo-statistical analysis was performed.
Rainfall surfaces have been predicted using ordinary kriging method. It was observed that the rainfall data is skewed and Box-
cox transformation has been used for converting the skewed data to normal. It was found that one-day peak rainfall over the
region varied from 25 mm to 360 mm. It is observed that the trend is present in all the cases, the first order polynomial fits well
for all durations No-directional effects were observed in the region. The Spherical model fits well for higher order return periods
of 50, 100 and 200 year return periods for one day and two day durations and for all return periods for five day and seven
duration storms, where as the Gaussian model fits lower return periods up to 20 year for one-day, two-day duration storms.
Fitted model resulted in a Mean Error (ME) varied in the range of —1.85 to —0.07, (which is very near to zero), Mean Square
Error (MSE) altered in the range of 22.2 to 90.8 , (which is very low as compared to the variance of the data), Kriged Reduced
Mean Square Error (KRMSE) of changed from 0.9547 to 1.09 , (which is very near to 1) and a Kriged Reduced Mean Error
(KRME) varied in the range of -0.165 to —0.0153, (which is near to zero) for one-day duration events. The exploratory data
analysis, variogram model fitting, and generation of prediction map through kriging were accomplished by using ESRI'S
ArcGIS and geostatistical analyst extension.
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INTRODUCTION surrounding weather stations. In recent years, there

Rainfall information is an important input in the
hydrological modeling, predicting extreme precipitation
events such as draughts and floods, estimating quantity
and quality of surface water and groundwater. However,
in most cases, the network of the precipitation measuring
stations is sparse and available data are insufficient to
characterize the highly variable precipitation and its
spatial distribution. This is especially true in the case
of developing countries like India, where the complexity
of the rainfall distribution is combined with the
measurement difficulties. Therefore, it is necessary to
develop methods to estimate rainfall in areas where
rainfall has not been measured, using data from the
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has been a growing interest in extreme events such
as droughts, floods, etc., within the hydrological
community. By definition, extreme events are rare but
they do still occur and records are eventually broken.
In this paper, we first carried out uni-variate analysis
of extreme rainfalls of one to seven day durations and
then rainfall is predicted using geo-statistical analyses
over Andhra Pradesh. Regional distribution is identified
with the L-moment ratio diagram. The method of
L-moments introduced by Hosking (1990) is increa-
singly being used by hydrologists for flood frequency
analysis. The L-moments are analogous to the
conventional moments, but they have the theoretical-
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advantages of being able to characterize a wider range
of distributions and, when estimated from a sample, of
being more robust to the presence of outliers in the
data. Hosking and Wallis (e.g., 1997) also point out
that L-moments are less subject to bias in estimation
than conventional moments.

Deterministic interpolation techniques create surfaces
from measured points, based on either the extent of
similarity (e.g., Inverse Distance Weighted) or the
degree of smoothing (e.g., Radial Basis Functions).
These techniques do not use a model of random spatial
processes. Deterministic interpolation techniques can
be divided into two groups, global and local. Global
techniques calculate predictions using the entire dataset.
Local techniques calculate predictions from the
measured points within neighborhoods, which are
smaller spatial areas within the larger study area.

Geostatistics assumes that at least some of the spatial
variations of natural phenomena can be modeled by
random processes with spatial autocorrelation. Geo-
statistical techniques produce not only prediction
surfaces but also error or uncertainty surfaces, giving
an indication of how good the predictions are. Many
methods are associated with geostatistics, but they are
all in the Kriging family. Ordinary, Simple, Universal,
probability, Indicator, and Disjunctive kriging, along
with their counterparts in cokriging, are available in
the geostatistical analysis. Kriging is divided into two
distinct tasks: quantifying the spatial structure of the
data and producing a prediction. Quantifying the
structure, known as variography, is where a spatial
dependence model is fit to the data. To make a
prediction for an unknown value for a specific location,
kriging will use the fitted model from variography, the
spatial data configuration, and the values of the
measured sample points around the prediction location.
The geostatistical analysis provides many tools to help
determine which parameters to use, and also provides
reliable defaults that can be used to make a surface
quickly.

On the basis of rainfall data for the heaviest storms
that occurred in different parts of Andhra Pradesh
during the period 1951-2003, estimates of one-, two-,
three-, five- and seven- day maximum rainfall for AP
have been made. The main objectives of this study are:
(1) to analyze and model the annual maximum rain-
falls of various durations (2) to analyze and model the
spatial variability of rainfall, (3) to interpolate kriging
maps for different durations, and (4) to compare
prediction errors and prediction variances with those of
kriging methods for different durations.

STATE OF THE ART REVIEW

Fowler H.J and C.G. Kilsby (2003) used multi-day
rainfall events in their study on regional frequency
analysis of UK extreme rainfall from 1991 to 2000.
They have used GEV distribution in the estimation
of growth curves. Temporal changes in I-, 2-, 5- and
10-day annual maxima are examined with L-moments
using both a 10 year moving window and the fixed
decades of 1961-70, 1971-80, 1981-90 and 1991-2000.
Little change is observed at 1 and 2 days duration, but
significant decadal-level changes are seen in 5- and
10-day events in many regions. Keshav P. Bhattarai,
(2005) used the method of L-moments and the
Generalized Extreme Value (GEV) distribution for
flood frequency analysis for Irish river flow data.
Jaiswal ef al. (2003) used L-moment approach for
flood frequency modeling.

Two graphical tools used in the earlier studies to
assist in distribution selection are the sample average
and a line of best-fit through the sample L-moment
ratios. Hosking and Wallis (1995) have used the
sample average, while the line of best-fit method was
introduced by Vogel and Wilson (1996). These two
graphical methods are subjective and are not a
replacement for more objective and complex methods
like those of Hosking and Wallis (1993) which take
into account the sampling variability related to the
sample size of the regional data. However, they do
provide a quick visual assessment of which distribution
may provide a good fit to the data.

Geostatistical methods have been shown to be
superior to several other estimation methods, such as
Thiessen polygon, polynomial interpolation, and
inverse distance method by Creutin and Obled (1982),
Tabios and Salas (1985). Basic concepts of the kriging
technique and its application to natural phenomenon
have been reviewed by the ASCE Task Committee
(1990a, b). One of the advantages of the geostatistical
methods is to use available additional information to
improve precipitation estimations.

Kriging has been used in soil science (Vieria et al.,
1981; Berndtsson and Chen 1994; Bardossy and
Lehmann 1998); Geostatistical methods were success-
fully used to study spatial distributions of precipitation
by Dingman et al. (1988), Hevesi et al. (1992),
extreme precipitation events by Chang (1991) and
contaminant distribution with rainfall by Eynon
(1998); Venkatram (1998). Krishna Murthy er al
(2007) applied geo-statistical interpolation techniques
to estimate annual and seasonal rainfalls of Andhra
Pradesh. Other studies in hydrology include, Creutin
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and Obled 1982; Storm et al., 1988; Ahmed and de
Marsily, 1989; Germann and Joss, 2001; Araghinejad
and Burn, 2005; and atmosphere science (Bilonick,
1988; Casado et al, 1994; Merino et al, 2001).
Kriging of groundwater levels was carried out by
Delhomme (1978); Volpi and Gambolati (1978);
Virdee and Kottegoda (1984); Kumar and Ahmed
(2003), Vijay Kumar and Ramadevi (2006). Detailed
information about geostatistical procedures can be
found in literature Isaaks and Srivastava (1989), ESRI,
(2001).

METHODS AND MATERIALS

Hydrologic variables exhibit substantial dependence
over a wide range of temporal and spatial scales, and it
is anticipated that their extremes do as well. Following
sections describe in brief the methods adopted for the
study.

L-moment Ratio Diagram

Generally the distribution selection process, using
L-moment ratio diagrams, involves plotting the sample
L-moment ratios as a scatter plot and comparing them
with theoretical L-moment ratio curves of candidate
distributions. L-moment ratio diagrams have been
suggested as a useful tool for discriminating between
candidate distributions to describe regional data
(Hosking and Wallis, 1997). Numerous authors (Vogel
and Wilson, 1996) have used L-moment ratio diagrams
as part of their distribution selection process for
regional data. Two graphical methods are often used in
the distribution selection process, the sample average
and a line of best-fit through the sample L-moment ratios.

Generalized Extreme Value Distribution

EVT is the branch of statistics which describes the
behavior of the largest data observations. The historical
cornerstone of EVT is the Generalized Extreme Value
(GEV) distribution. The GEV distribution subsumes
all three different extreme-value distributions (i.e., EV
type I, II and III), to which the largest/smallest value
from a set of independent and identically distributed
random variables asymptotically tends. Consistently,
several recent studies showed that the GEV distri-
bution is a suitable statistical model for representing
the frequency regime of rainfall extremes over the
whole study area. The CDF (cumulative distribution
function) of the GEV distribution is written as,

ﬂ.(x):exp{—[l—M} },k¢0 cn (1)

o
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and
Fy(x) =exp{— exp[— (ng}},k =0 . (2)
a
while the quantile x (F) can be written as,
X(F)=&+afl—(~logF) {/k,k=0 .3
and
x(F)y=¢+alog(-log F).k=0 e (4

where & is the location parameter, a the scale
parameter, k the shape parameter of the distribution.
When £ = 0 the GEV distribution is equal to the
Gumbel distribution.

Geostatistical Analysis

Although details on the kriging techniques are well
documented (Isaaks and Srivastava 1989), a brief
account of the relevant methods used is prescribed
here. Kriging is a spatial interpolation method which is
widely used in meteorology, geology, environmental
sciences, agriculture etc. It incorporates models of
spatial correlation, which can be formulated in terms
of covariance or semivariogram functions. Parameters
of the model viz., partial sill, nugget, range were
estimated by minimizing the squared differences between
empirical semivariogram values and theoretical model.

The first step in statistical data analysis is to verify
three data features: dependency, stationarity and
distribution. If the data are independent, it makes little
sense to analyze them geostatistically. If data are not
stationary, they need to be made so, usually by data
detrending and data transformation. Geostatistics
works best when input data are Gaussian. If not, data
have to be made close to Gaussian distribution.

Preliminary analysis of the data will help in
selecting the optimum geostatistical model. Preliminary
analysis includes identifying the distribution of the
data, looking for global and local outlier, global trends
and examining the spatial correlation and covariance
among the multiple datasets. Exploratory data analysis
will help in accomplishing these tasks. With information
on dependency, stationarity and distribution, one can
proceed to the modeling step of geostatistical analysis,
kriging.

Ordinary Kriging
The ordinary kriging model is,

Z(s)=pu+¢e(s) .. (5)
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Where s = (X, ¥) is a location and Z(s) is the value at
that location. The model is based on a constant mean p
for the data (no trend) and random errors &(s) with
spatial dependence. It is assumed that the random
process £(s) is intrinsically stationary. The predictor is
formed as a weighted sum of the data,

Z(s0) = i/’th(s;) .. (6)

Where Z(si) is the measured value at the ith location,
Ai is an unknown weight for the measured
value at the ith location
S0 is the prediction location.

In ordinary kriging, the weight Ai depends on the
semivariogram, the distance to the prediction location
and the spatial relationships among the measured
values around the prediction location.

Spatial Dependency

The goal of geostatistical analysis is to predict values
where no data have been collected. The analysis will
work on spatially dependent data. If the data are
spatially independent, there is no possibility to predict
values between them. Semi-variogram/covariance cloud
is used to examine spatial correlation. Semi-variogram
and covariance functions change not only with
distance but also with direction. Anisotropy will help
in studying the directional effects and identifying the
optimal direction. Spatial dependency is given by,

1 & )

y(hy=—3[Z(xi+ ) - Z(x1)?] (D)

2n ‘g
where x, and x + & are sampling locations separated by
a distance A, Z(x) and Z(x + &) are measured values of
the variable Z at the corresponding locations.

Data stationarity has been tested, data variance is
constant in the area under investigation; and the
correlation (covariance or semi-variogram) between
any two locations depends only on the vector that
separates them, not their exact locations.

Data has been tested for the presence of trend and
directional effects. Global trend is represented by a
mathematical polynomial which has been removed
from the analysis of the measurements and added back
before the predictions are made.

The shape of the semivariogram/covariance curve
may also vary with direction (anisotropy) after the
global trend is removed or if no trend exists.
Anisotropy differs from the global trend because the
global trend can be described by a physical process

and modeled by a mathematical formula, The cause of
anisotropy (directional influence) in the semivariogram
is not usually known, so it is modeled as random error.
Anisotropy is characteristic of a random process that
shows higher autocorrelation in one direction than in
another. For anisotropy, the shape of the semi-
variogram may vary with direction. Isotropy exists
when the semivariogram does not vary according to
direction.

Transformations

Certain geostatistical interpolation assumes that the -
underlying data is normally distributed. Kriging relies
on the assumption of stationarity. This assumption
requires in part that all data values come from distri-
butions that have the same variability. Transformations
can be used to make the data normally distributed and
satisfy the assumption of equal variability of data. Data
brought to normal with help of suitable transformations.
Some of the transformations adopted are Box-Cox,
logarithmic, square-root transformation.

Box-Cox transformation,

Y(S):M .. (8)

A

forA#0
Square root transformation occurs when A = .

The log transformation is usually considered as a
part of Box-Cox transformation when A =0,

¥(s) = In(Z(s)) e (9

for Z(s) > 0 and In is the natural logarithm. The log
transformation is often used where the data has a
positively skewed distribution and presence of very
large values.

Cross-Validation

It gives an idea of how well the model predicts the
unknown values. The objective of cross-validation is
to help make an informed decision about which model
provides the most accurate predictions.

The adequacy of the fitted models was checked on
the basis of validation tests. In this method, known as
jackknifing procedure, kriging is performed at all the
data points, ignoring, in turn, each one of them one by
one. Differences between estimated and observed
values are summarized using the cross-validation
statistics (de Marsily and Ahmed 1987): Mean Error
(ME), Mean Squared Error (MSE), and Kriged Reduced
Mean Error (KRME), and Kriged Reduced Mean
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Square Error (KRMSE). If the semivariogram model
and kriging procedure adequately reproduce the
observed value, the error should satisfy the following
criteria,

ME=%§:[Z‘(JC:)*-Z(X,)]EO s (10)
1 &y 2
ME ZFZ(Z (x:)HZ(x,))— minimum ... (11)

i=1

KRME :-;—[ﬁ:[Z*(x;)—Z(xf)/o'm]z 0 ...(12)

=}

N
KRMSE = %Z[(Z*(x,)—Z(x.))l lo =1 .. (13)
=l
where, z*(xi), z(xi) and are the estimated value,
observed value and estimation variance, respectively,
at points xi. N is the sample size. As a practical rule,
the MSE should be less than the variance of the sample
values and KRMSE should be in the range 1+£2v2/N.

STUDY AREA

Andhra Pradesh the “Rice Bowl of India”, is a state in
southern India. It lies between 12°41" and 22°N latitude
and 77° and 84°40'E longitude, and is bordered with
Maharashtra, Chhattisgarh and Orissa in the north, the
Bay of Bengal in the East, Tamil Nadu in the south
and Karnataka in the west. Andhra Pradesh is the fifth
largest state in India by area and population. It is the
largest and most populous state in South India. The
state is crossed by two major rivers, the Godavari and
the Krishna. The study has been limited, by necessity,
to daily data, as sub-daily data are not generally avail-
able with sufficient coverage and length of record.
However, daily data are adequate for the purposes of
this study, since attention is focused on multi-day
events.

Andhra Pradesh can be broadly divided into three
unofficial geographic regions, namely Kosta (Coastal
Andhra/Andhra), Telangana and Rayalaseema. Telan-
gana lies west of the Ghats on the Deccan plateau. The
Godavari River and Krishna River rise in the Western
Ghats of Karnataka and Maharashtra and flow east
across Telangana to empty into the Bay of Bengal in a
combined river delta. Kosta occupies the coastal plain
between Eastern Ghats ranges, which run through the
length of the state, and the Bay of Bengal. Rayala-
seema lies in the southeast of the state on the Deccan
plateau, in the basin of the Penner River. It is separated
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from Telangana by the low Erramala hills, and from
Kosta by the Eastern Ghats.

The rainfall of Andhra Pradesh is influenced by the
South-West and North-West and North-East monsoons.
The normal annual rainfall of the state is 925 mm.
Major portion of the rainfall (68.5%) is contributed by
South-West monsoon (June-Sept) followed by 22.3%
byNorth-East monsoon (Oct.—Dec.). The rest of the
rainfall (9.2%) is received during the winter and
summer months. The rainfall distribution in the three
regions of the state differs with the season and monsoon.
The influence of south west monsoon is predominant
in Telangana region (764.5 mm) followed by Coastal
Andhra (602.26 mm) and Rayalaseema (378.5 mm).
The North-East monsoon provides a high amount of
rainfall (316.8 mm) in Coastal Andhra area followed
by Rayalaseema (224.3 mm) and Telangana (97.1 mm).
There are no significant differences in the distribution
of rainfall during the winter and hot weather periods
among the three regions.

RESULTS AND DISCUSSIONS

One degree daily data for 51 stations for 1951-2003
obtained from India Meteorological Department were
used for the study. On the basis of rainfall data for the
heaviest storms that occurred in different parts of
Andhra Pradesh during the period 1951-2003, estimates
of one-, two-, three-, five- and seven- day maximum
rainfall for AP have been made. The spatial distribution
of selected stations is presented in Figure 1.

The first step in statistical analysis is to investigate
descriptive characteristics of the data. Descriptive
analysis can help the investigators to have a preliminary
Jjudgment of the data and to decide suitable approaches
for further analysis. The most important descriptive
statistics are mean, standard deviation and Coefficient
of Variation (CV), calculated as standard deviation
divided by mean. In hydrology, however, there are two
other important moments namely coefficient of skew-
ness (Cs) as the measure of symmetry and coefficient
of kurtosis (Ck) as the measure of shape of frequency
function. Sample L-CV, L-skewness moments were
determined for annual maximum rainfalls for one, two,
three, five and seven day events. Firstly, the three
L-moment ratios L-CV, L-skewness and L-kurtosis
were determined for the AM series at each site using a
routine from Hosking (1997). Figure 2 shows a plot of
L-CV against L-skewness for the all grid stations. It
can be seen that, generally, central coastal regions
display a greater L-CV value than north, south regions,
suggesting higher variability in these regions. The
highest L-skewness values are found in central coastal
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region. These fall as a move is made northwards, to
much lower values in Southern regions. In simple
terms, this suggests that more intense rainfall events
are experienced in central coastal and north coastal
regions of AP. It was found that one-day maximum
rainfall over the Andhra Pradesh region varied from 25
mm to 360 mm, with high values in the central coastal
and north coastal regions and low values in the
Rayalaseema (interior parts) region.
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Fig. 1: Location map of study area
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Fig. 2: L-CV and L-skew diagram for annual maximum
daily rainfal

The proximity of the sample average (for regions
with equal periods of record) or the record length
weighted average (for regions with unequal periods of
record) to a particular candidate distributions theoretical
curve or point in L-skewness-L-kurtosis space has
been interpreted as an indication of the appropriateness
of that distribution to describe the regional data (Vogel
et al., 1993a; Hosking & Wallis, 1995). The diagram of
L-moment ratios (see e.g., Hosking and Wallis, 1993)
reported in Figure. 4 shows that the theoretical relation-
ship between L-skewness (L-Cs) and L-kurtosis (L-Ck)
for the GEV distribution is very close to the sample
average L-Cs and L-Ck values for all storm duration of
interest, therefore indicating that the GEV distribution
is a suitable parent distribution.

L-CV

(b) L-skew variation
Fig. 3: Spatial variation of L-CV and L-Skew for annual
maximum daily rainfall, (a) L-CV variation (b) L-skew
variation
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Fig. 4: L-moment ratio diagram for annual
maximum daily rainfall

Figure 5 shows the variation of GEV shape
parameter across Andhra Pradesh. According to results
obtained, there are four main spatial groups of annual
maximum rainfall over Andhra Pradesh, comprising
central coastal Andhra Pradesh (Prakasam and Guntur
districts), North Coastal Andhra (East, West Godavari,
Vizaynagaram, Visakhapatnam, and Srikakulam),
North AP (Telangana) and South Andhra Pradesh
(Rayalaseema). Figure 6 shows time series plot of
annual maximum one day rainfall for four grid
locations 621 (Nizamabad), 657 (Visakhapatnam), 718
(Prakasam) and 748 (Anantapur) for the period 1951
2003, representing four regions having characteristics
of high rainfall—high variability, high rainfall—
medium variability, medium rainfall—medium vari-
ability and low- rainfall—low variability respectively.
District names are given in the parentheses.

GEV- Shape

Fig. 5: GEV- shape parameter variation for annual
maximum daily rainfall
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Fig. 6: Annual maximum rainfall for four grid locations

621 (Nizamabad), 657 (Visakhapatnam), 718 (Prakasam)
and 748 (Anantapur) for the period 1951-2003

The quantile estimation was performed by using the
Generalized Extreme Value (GEV) distribution. A
quantile—quantile (Q—Q) plot for the GEV distribution
(Figure. 7) indicates that the GEV fit is reasonably
adequate. In all the reasons the GEV distributions
appear to be acceptable. Frequency analysis of rainfall
extremes using the maximum annual rainfall values for
durations of one to seven day.
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Fig. 7: Q-Q plot for fit of GEV distribution to annual daily
maximum rainfalls for four grid locations 621 (Nizamabad),
657 (Visakhapatnam), 718 (Prakasam) and 748 (Ananta-
pur). The solid blue line indicates the fit by a Generalized
Extreme Value distribution and empirical estimates are
given by circles

Basic statistics of the data annual maximum rainfalls
for one-, two-, three-, five and seven day durations are
shown in Table 1. It shows rainfall over AP is skewed
and increases with durations of the storm durations. It
was observed that skew coefficient is least from one
duration storms and maximum seven day durations for
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a given return period and is positive for all durations. Box-Cox transformation has been used for converting
Skew coefficient is 1.046 for one day—10 year return  the skewed distributed rainfall to normal and their
period and 1.8638 for seven day—10 year return period. coefficients are shown in Table 1. The transformation

Table 1: Basic Statistics of the Data Annual Maximum Rainfalls for One-, Two-, Three-, Five and Seven Day Durations

o RPs Average sd Before Transformation PBOX-COX After Transformation

Skew Kurtosis arameter Skew Kurtosis

2 84.5 29.90 1.2911 2.5607 -0.0589 —0.00100 3.380

5 117.9 38.67 1.1864 2.0442 -0.1677 —0.00143 3.089

10 142.7 45.31 1.0466 1.3663 -0.1454 0.00016 3.027

One day 20 169.2 53.48 0.9268 0.7703 -0.0858 0.00078 3.009

50 208.1 69.19 0.9301 0.8275 -0.0373 0.00022 3.022

100 241.8 87.15 1.1021 1.7848 -0.0556 —-0.00084 3.078

200 2801 112.80 1.3862 3.3648 -0.1063 -0.00124 3.138

122.7 49.56 1.5938 3.4695 -0.0753 —-0.00589 3.684

170.5 63.64 1.5421 3.4493 -0.1596 -0.00770 3.461

10 205.2 72.96 1.3804 2.8118 -0.1238 —-0.00581 3.413

Two day 20 241.7 83.37 1.1747 1.8671 -0.0491 -0.53971 4.036

50 2945 102.64 1.0261 1.0996 0.0301 —-0.07080 3.392

100 339.5 125.34 1.1881 2.0001 0.0264 0.00146 3.459

200 390.2 159.47 1.6475 49412 -0.0249 -0.00224 3.697

147.2 64.01 1.7689 3.9918 -0.0933 —0.01048 3.907

2031 81.80 1.7564 4.1567 -0.2080 -0.01572 3.633

10 243.3 9339 | 1.6205 3.6595 -0.1945 -0.01266 3.541

Three Day 20 285.0 105.72 1.4121 2.7478 -0.1278 -0.00686 3.463

50 3448 126.71 1.1469 1.5381 -0.0163 —-0.00017 3.296

100 395.0 149.56 1.0957 1.4123 0.0370 0.00092 3.208

200 450.8 182.13 1.2600 2.4960 0.0408 0.00147 3.233

182.0 87 1.9246 4.3442 -0.1303 -0.01778 4.037

5 2474 109 1.9188 4.4217 -0.2762 —-0.02450 3.738

10 293.4 122 1.8170 4.1107 -0.2841 -0.02008 3.608

Five Day 20 340.4 136 1.6367 3.4306 -0.2281 —0.01348 3.519

50 406.6 158 1.3272 2.1370 -0.1053 -0.00376 3.338

100 461.1 180 1.1443 1.3553 -0.0229 —-0.00068 3.178

200 520.9 212 1.1312 1.4096 0.0149 0.00028 3.102

211.0 106 1.9848 45196 -0.1323 -0.01894 4.043

2834 131 1.9656 44284 -0.2870 -0.02780 3.778

10 333.1 146 1.8638 4.0730 -0.3036 -0.02366 3.641

Seven day 20 382.8 160 1.6888 3.4048 -0.2577 -0.01611 3.527

50 451.2 182 1.3782 2.1473 -0.1436 -0.21260 3.559

100 506.6 204 1.1639 1.2543 -0.0576 -0.00139 3.128

200 566.1 234 1.0781 0.9321 -0.0062 0.00021 3.001
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greatly reduced the skew and the transformed series
can be treated as nearly normal for further analysis and
transformed values of skewness and kurtosis are also
shown in the Table 1. Normality plot of three—100 year
return period rainfall is shown in Figure 8.
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Fig. 8: Normality plot after Box-Cox transformation for
three day—20 year return period rainfalls

The trend analysis enables to identify the presence/
absence of trends in the input dataset. If a trend exists
in the data, it is the nonrandom (deterministic)
component of a surface that can be represented by a
mathematical formula and removed from the data.
Once the trend is removed, the statistical analyses have
been performed on the residuals. The trend will be
added back before the final surface is created so that
the predictions will produce meaningful results. By
removing the trend, the analysis that is to follow will
not be influenced by the trend, and once it is added
back a more accurate surface will be produced. 3D
perspective trend plot for two day 100 year return
period rainfall is shown in Figure 9. It is observed that
the trend is present in all the cases, and the first order
polynomial fits well and all fits are tabulated in Table
2. 1t is further observed that trend varies from South-
South-West to North-North-East direction.

The Semi-variogram has been used to examine the
spatial autocorrelation among the measured sample
points. In spatial autocorrelation, it is assumed that
rainfalls that are close to one another are more alike.
The Directional influences are also examined. No
directional effects were found in this analysis. The
Spherical model fits well for higher order return
periods of 50, 100 and 200 year return periods for one
day and two day durations and for all return periods
for five day and seven duration storms, where as the
Gaussian model fits lower return periods up to 50 year
for one-day, two-day duration storms. For three day
duration storms, Spherical model for lower return
periods and Gaussian model for higher order return
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periods fits well. The best fit equations are tabulated in
Table 2.
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Fig. 9: Three dimensional trend plot for two day 100 year
return period rainfall

After identifying the best fit variogram model,
taking into account de-trending and directional influences
in the data, prediction surfaces are generated for one-
day to seven- rainfall events for return periods ranging
from 2 to 100 year. The qualities of prediction map
have been examined by creating the prediction
standard error surface. The Prediction standard errors
quantify the uncertainty for each location in the
surface. A simple thumb rule is that 95% of the time,
the true value of the surface will be within the interval
formed by the predicted value +/~ 2 times the
predicted standard error if the data are normally
distributed. It has been observed that the locations near
the sample points have low error. For these analyses,
ESRI’s Geo-statistical analyst extension has been used.

The cross-validation gives an idea of how well the
model predicts the unknown values. For all points,
cross-validation sequentially omits a point, predicts its
value using the rest of the data, and then compares the
measured and predicted values. The calculated
statistics serve as diagnostics that indicate whether the
model is reasonable for map production. The criteria
used for accurate prediction in the cross-validation are:
the mean error should be close to zero, the root mean
square error and average standard error should be as
small as possible and the root mean square standardized
error should be close to 1.

The cross-validation results are shown in Table 3.
The Cross-validation statistics showed that the predicted
values are reasonable for map production. Fitted model
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Table 2: Kriging—Model Equations
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Item Return Period Model Equation Nugget Trend
2 0.044775*Gaussian(28.646)+0.044102*Nugget 0.0441 First
5 0.0084719*Gaussian(28.646)+0.014357*Nugget 0.0144 | First
10 0.0097998*Gaussian(28.646)+0.016691*Nugget 0.0167 First
One day 20 0.017144*Gaussian(28.646)+0.030977*Nugget 0.0310 First
50 0.029251*Spherical(28.646)+0.053391*Nugget 0.0534 First
100 0.026164* Spherical (6.5822)+0.040905*Nugget 0.0409 First
200 0.021804*Spherical(5.8902)+0.021771*Nugget 0.0218 | First
0.031562*Gaussian(28.646)+0.04335*Nugget 0.0434 First
0.011795*Gaussian(28.646)+0.016115*Nugget 0.0161 First
10 0.01561*Gaussian(28.646)+0.021442*Nugget 0.0214 First
Two day 20 0.0002354*Gaussian(28.646)+0.00042821*Nugget 0.0004 First
50 0.0069599*Spherical(28.646)+0.001986*Nugget 0.0020 First
100 0.074446*Spherical(28.646)+0.12872*Nugget 0.1287 First
200 0.038997*Spherical(28.646)+0.086643*Nugget 0.0866 First
2 0.028529* Spherical (28.646)+0.038245*Nugget 0.0382 First
5 0.0075421*Spherical(28.646)+0.0084891*Nugget 0.0085 First
10 0.0078485*Spherical(28.646)+0.0088607*Nugget 0.0089 First
Three Day 20 0.015277*Gaussian(28.646)+0.020605*Nugget 0.0206 First
50 0.054698*Gaussian(28.646)+0.078368*Nugget 0.0784 First
100 0.10295*Gaussian(28.646)+0.16483*Nugget 0.1648 First
200 0.10826*Gaussian(28.646)+0.20464*Nugget 0.2046 First
2 0.022225*Spherical(28.646)+0.024093*Nugget 0.0241 First
5 0.003634*Spherical(28.646)+0.0040799*Nugget 0.0041 First
10 0.0044177*Spherical(28.646)+0.0048725*Nugget 0.0049 First
Five Day 20 0.0050869*Spherical(28.646)+0.0057627*Nugget 0.0058 First
50 0.020997*Spherical(28.646)+0.02453*Nugget 0.0245 First
100 0.057118*Spherical(28.646)+0.071605*Nugget 0.0716 First
200 0.092905*Spherical(28.646)+0.1317*Nugget 0.1317 First
0.021979*Spherical(28.646)+0.024798*Nugget 0.0248 First
0.0030601*Spherical(28.646)+0.0036329*Nugget 0.0036 First
10 0.0021852*Spherical(28.646)+0.0026237*Nugget 0.0026 First
Seven day 20 0.0034349*Spherical(28.646)+0.004142*Nugget 0.0041 First
50 0.012724*Spherical(28.646)+0.015871*Nugget 0.0159 First
100 0.036785*Spherical(28.646)+0.049252*Nugget 0.0493 First
200 0.070431*Spherical(28.646)+0.10653*Nugget 0.10865 First
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Table 3: Kriging Model Cross-Validation Resuits

Root-Mean-

ftorn RPs Mean Rogtlln;lian- Averagg Standard st Ageig_ y Square-
qHare sl IR Standardized

2 -0.07 222 23.02 -0.0153 0.9754

5 -1.14 29.8 31.10 -0.0182 0.9757

10 -1.34 35.6 37.50 -0.0187 0.9660

One day 20 -1.51 42.9 45.57 -0.0177 0.9547

50 -1.57 56.0 58.90 -0.1655 0.9559

100 -1.04 69.1 67.90 -0.0132 1.0220

200 -1.85 90.8 83.63 -0.0225 1.0900

2 1.38 36.0 36.61 —0.0098 0.9912

5 1.97 47.3 48.61 —-0.0150 0.9978

10 -2.17 55.0 57.66 -0.0143 0.9788

Two day 20 -1.23 64.8 71.32 0.0004 0.9910

50 0.40 74.1 79.90 -0.0016 1.0000

100 -2.30 102.1 105.20 —0.0106 0.9747

200 -2.70 136.1 131.90 -0.0011 1.0280

2 -1.77 46.0 45.84 —-0.0066 1.0070

5 -2.27 56.7 58.00 -0.0162 1.0050

10 -2.58 66.0 68.38 -0.0170 0.9965

Three Day 20 -3.12 80.7 83.40 -0.0143 0.9993

50 -3.30 100.9 104.90 -0.0139 0.9864

100 -3.44 123.6 126.90 -0.0136 0.9938

200 -3.63 156.2 155.70 -0.0135 1.0190

\ 2 -2.28 59.2 57.46 -0.0092 1.0200

| 5 -3.39 76.1 74.04 -0.0192 1.0510

10 -3.91 86.8 85.59 -0.0214 1.0400

Five Day 20 —4.14 98.8 99.30 -0.0214 1.0290

50 —4.41 119.2 121.70 —-0.0212 1.0130

100 —4.73 142.3 144.20 -0.2210 1.0190

200 -5.26 175.6 173.30 -0.0238 1.0460

2 -2.83 73.3 69.36 -0.0082 1.0430

5 —4.17 93.0 88.17 -0.0187 1.0770

10 —4.72 105.3 101.30 —-0.0208 1.0720

Seven day 20 -5.00 117.9 115.70 -0.0202 1.0520

50 -5.17 138.8 139.50 -0.0186 1.0260

100 -5.36 161.4 162.90 -0.0182 1.0210

200 -5.70 193.3 192.70 © -0.0186 1.0360

resulted in a Mean Error (ME) varied in the range of —
1.85 to —0.07, (which is very near to zero), Mean
Square Error (MSE) altered in the range of 222 to
90.8 , (which is very low as compared to the variance
of the data), Kriged Reduced Mean Square Error
(KRMSE) of changed from 0.9547 to 1.09, (which is
very near to 1) and a Kriged Reduced Mean Error
(KRME) varied in the range of —0.165 to —0.0153,
(which is near to zero) for one-day duration events.

Here the bracketed quantities refer to the requirements
to consider a model as adequate. Similarly it was
observed that for other storm durations, cross-validation
statistics varied in a permissible range. The above cross
validation results show that the chosen models are
adequate.

Predicted rainfall surfaces and predicted error
estimates are prepared using Geo-statistical analyst
extension in ArcGIS environment. Figure 10 shows
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Fig. 10: Predicted rainfall surfaces and error maps for one duration maximum rainfall.
Grid surface is the predicted rainfall surface and contours indicate the predicted error
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predicted rainfall surfaces and error maps for one
duration annual maximum rainfalls. Grid surface is the
predicted rainfall surface and contours indicate the
predicted error for 2, 5, 10. 20, 50 and 100 year return
period. As seen from Figure 10, the estimation
variance is low at in the central parts of study area and
increase towards the boundaries. It indicates that the
estimated rainfalls are highly reliable in the middle of
the study area and at or near the boundary; these are
not reliable to the same extent.

SUMMARY

In this study, annual maximum rainfalls for multi-day
durations during the period 1951-2003 were used. It
was found that the annual extremes are suitably described
by a Generalized Extreme Value distribution. Return-
period estimates presented here for different regions of
the AP, using the most recent rainfall data, will allow
the reassessment of the risk of failure of existing
structures and facilitate the design of new structures
incorporating better risk or uncertainty estimates.
Kriging, a type of geostatistical techniques, is applied
to multi-day rainfall estimates for different return periods.
The rainfall surfaces were predicted using ordinary
kriging method. It was observed that the rainfall data is
skewed and Box-cox transformation has been used for
converting the skewed data to normal. It is observed
that the trend is present and first order polynomial fits
well in all the cases. The cross-validation statistics
showed that the predicted values are reasonable for
map production. Finally, the realistic prediction surfaces
and prediction error maps are generated.
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