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ABSTRACT: A review of multiple approaches to the problem of soil hydraulic parameter estimation at different spatial scales is
presented. Methods reviewed include traditional bottom-up approaches, as well as newer top-down approaches such as use of
genetic algorithms, Monte Carlo simulations, and data assimilation: and multiscale methods such as artificial neural networks.

INTRODUCTION

Soil hydraulic properties (hydraulic conductivity,
water retention) are by far the most important land
surface parameters to govern the partitioning of soil
moisture between infiltration and evaporation fluxes at
a range of spatial scales. However, an obstacle to their
practical application at the field, catchment, watershed,
or regional scale is the difficulty of quantifying the
“effective” soil hydraulic functions theta(h) and K(h),
where theta is the soil water content, /% is the pressure
head and K is unsaturated hydraulic conductivity.
Proper evaluation of the water balance near the land-
atmosphere boundary depends strongly on appropriate
characterization of soil hydraulic parameters under
field conditions and at the appropriate process scale. In
recent years a multi-facet approach has been adopted
to tackle this problem including: (1) a botrom-up
approach, where larger-scale effective parameters are
calculated by aggregating point-scale insiru hydraulic
property measurements, (2) a fop-down approach,
where effective soil hydraulic parameters are estimated
by inverse modeling using remotely sensed soil
moisture measurements, and (3) an artificial neural
network approach, where effective soil hydraulic
parameters were estimated by exploiting the
correlations with soil texture, topographic attributes,
and vegetation characteristics at multiple spatial
resolutions. Numerical and experimental results using
these various effective soil hydraulic parameter

estimation approaches including some comparisons
between the approaches are presented.

BOTTOM-UP APPROACH
Traditional Soil Physics

For meso-/regional-scale Soil-Vegetation-Atmosphere
Transfer (SVAT) schemes in hydro-climatic models
pixel dimensions may range from several hundred
Square meters to several square kilometers (Figure 1).

Fig. 1: Hydraulic property measurement across the pixel:
Bottom-up approach
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Pixel-scale soil hydraulic parameters and their accuracy
are critical for the success of hydro-climatic and soil
hydrologic models. Thus for a typical soil textural
combination in a real field condition (Figure 2), what
will be the effective/average hydraulic properties for
the entire field (pixel).if soil hydraulic properties can
be estimated for each individual texture?

Numerical simulations of unsaturated flow typically
use closed-form functions to represent water-retention
characteristics and unsaturated hydraulic conductivities.
Gardner’s exponential model of hydraulic conductivity,
Brooks and Corey and van Genuchten soil water
retention functions represent some of the most widely
used models.

Gardner-Russo Model,
K=K&™ .. (D
Brooks-Corey Model,
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Van Genuchten Model,
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where  is the pressure head, K, is the saturated
hydraulic conductivity, e and / are related to pore-size
distributions, m and » are empirical parameters, / is a
parameter which accounts for the dependence of the
tortuosity and the correlation factors on the water
content estimated to be about 0.5 as an average for
many soils.

When these models are used in large heterogeneous
scale processes, major questions remain about how to
average hydraulic properties over a heterogeneous soil
volume and what averages of hydraulic property shape
parameters to use for these models. The purpose of this
approach is to provide some guidance for upscaling
hydraulic properties of both horizontally and vertically
heterogeneous field. Some specific objectives of our
ongoing studies include: (1) addressing the impact of
averaging methods of shape parameters, parameter
correlation, correlation length on ensemble flow
behavior in heterogeneous soils; (2) developing

effective parameters that will predict ensemble behavior
of the heterogeneous soils; and (3) investigating the
effectiveness of the “effective parameters” in terms of

the degree of correlation between parameters for the
steady state and transient evaporation and infiltration
in unsaturated soil (Mohanty and Zhu, 2007; Zhu and
Mohanty 2002a, b, ¢; 2003-2004, 2006; Zhu et al.,
2004, 2006). We investigate the effective parameters
under various flow scenarios and field conditions, such
as the dryness of the fields, the presence of plant roots.
We also study the importance of parameter statistics,
especially the skewness of the hydraulic parameters
which was usually not considered in previous studies,
on the effective parameters.

q

Schematic view of hydraulic parameter heterogeneity, (Left)
horizontal (areal) heterogeneity; (Right) vertical heterogeneity

Fig. 2: Horizontal vs. vertical heterogeneities

For wvertically heterogeneous soils, effective
coefficient for the upscaled a* field is consistently
greater than 1, indicating that the arithmetic mean is
too small. The effective coefficient for the K field is
consistently smaller than' 1, meaning that the
arithmetic mean is too large. In other words, the
heterogeneous medium does not discharge as much
moisture flux as the equivalent homogeneous medium
of arithmetic mean values for the hydraulic
parameters. For horizontally heterogeneous soils,
effective coefficient for the a* field is generally
smaller than 1, meaning that the arithmetic mean is too
small. For the situation of evaporation, the effective
coefficients are dictated more by the a* heterogeneity,
while for the scenario of infiltration they are mainly
controlled by the K variability. For the case of vertical
heterogeneity, a* heterogeneity dominates the effective
coefficients.

TOP-DOWN APPROACH

Pixel-based effective soil hydraulic parameters are
paramount for large-scale hydro-climate modeling. As
remotely sensed soil moisture data become widely
available in the future, the prospect of quantifying such
effective parameters would be more a reality (Figure 3).
Currently, soil moisture data from Remote Sensing (RS)
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are limited to the near-surface soil layers. Under
minimal vegetation cover, the maximum penetration
depth of a microwave L-band sensor is about 5 cm.
Many studies have been done to retrieve soil moisture
profiles using these near-surface data. Less efforts
have been made towards quantifying the effective soil
hydraulic parameters, which are prerequisites of a soil
moisture retrieval procedure. This practice is common
because they are assumed to be initially known. Under
such spatial scale, due to model uncertainties caused
by spatial and process aggregation, it is but worthy
to derive these parameters using the observed hydro-
logical data.

Remote Sensing (km scale)

Insitu

Fig. 3: Hydraulic property estimation across the pixel:
Top-down approach

The main objective of this approach (Ines and
Mohanty, 2008a, b, ¢) is to develop a method that can
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be possibly used to quaniify these effective soil
hydraulic parameters. This is the first stage of this
study thus we chose to conduct field scale numerical
studies to explore better the proposed approach by
accounting several possible scenarios that can be
encountered in the field. The research questions that
we aim to address are: (1) can we quantify the
effective soil hydraulic parameters in the soil profile
using near-surface soil moisture data?; and (2) how
robust are they,” can they describe the processes
occurring at the sub-surface layers of the soil? Figure 4
below shows the schematic of the research problem.
The near-surface soil moisture data (Figure 5) is used
to derive 6(#) and K(h) assuming the constitutive
functions of Mualem-Van Genuchten. The vertical soil
water movement in the unsaturated zone is defined by
the Richards’ equation.
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Fig. 4: Scherﬁatic of top-down research problem
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Sample results from this approach are shown in Figure
6 below.
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Fig. 6: Sample results

Noisy Monte Carlo Genetic Algorithm

In another study (Ines and Mchanty, 2008d), we used
the concept of the noisy Genetic Algorithm (NMCGA)
to develop a more generic method to estimate the
effective soil hvdraulic parameters (and their
uncertainties) at the satellite RS footprint scale. The
main assumption of our domain-dependent parameter
estimation concept is based on the idea that the
effective forms of the soil hydraulic functions (at the
RS footprint) can be inferred by the derived effective
soil hydraulic parameters from large scale RS soil
moisture data inversion. A flow chart representation of
the assimilation process is shown in Figure 7.

Code parameters
k={a,n,? g: PsarKsar}

v

In the synthetic case studies under pure (one soil
texture) and mixed-pixel (multiple soil textures)
conditions, NMCGA performed well in estimating the
effective soil hydraulic parameters even with pixel
complexities contributed by various soil types and land
management practices (rainfed/irrigated). With the
airborne and satellite remote sensing cases, NMCGA
also performed well for estimating effective soil
hydraulic properties so that when applied in forward
stochastic simulation modeling it can mimic large-
scale soil moisture dynamics. The results also suggest
a possible scaling down of the effective soil water
retention curve O(h) at the larger satellite remote
sensing pixel compared to air-borne remote sensing
pixel. Hypothetical behavior of the effective soil
hydraulic properties at different scales is shown in
Figure 8.

MCMC Algorithm for Upscaled SVAT Modeling

In yet another study (Das et al., 2008a), a Markov
chain Monte Carlo (MCMC) based algorithm was
developed to derive upscaled land surface parameters
for a Soil-Vegetation-Atmosphere-Transfer (SVAT)
model using time series data of satellite-measured
atmospheric forcings (e.g., precipitation), and land
surface states (e.g., soil moisture and vegetation). This
study focuses especially on the evaluation of soil
moisture measurements of the Aqua satellite based
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Fig. 7: Implementation of the near-surface soil moisture assimilation
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Fig. 8: Hypothetical behavior of effective properties at
varying scales

Advanced Microwave Scanning Radiometer (AMSR-
E) instrument using the new MCMC-based scaling
algorithm. Soil moisture evolution was modeled at a
spatial scale comparable to the AMSR-E soil moisture
product, with the hypothesis that the characterization
of soil microwave emissions and their variations with
space and time on soil surface within the AMSR-E
footprint' can be represented by an ensemble of
upscaled soil hydraulic parameters. We demonstrated
the features of the MCMC-based parameter upscaling
algorithm (from field to satellite footprint scale) within
a SVAT model framework to evaluate the satellite-
based brightness temperature/soil moisture measure-
ments for different hydro-climatic regions, and identified
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the temporal effects of vegetation (leaf area index) and
other environmental factors on AMSR-E based
remotely sensed soil moisture data. The SVAT
modeling applied for different hydro-climatic regions
revealed the limitation of AMSR-E measurements in
high-vegetation regions. The study also suggests that
inclusion of soil moisture evolution from the proposed
upscaled SVAT model with AMSR-E measurements
in data assimilation routine will improve the quality of
soil moisture assessment in a footprint scale. The
technique also has the potential to derive upscaled
parameters of other geophysical properties used in
remote sensing of land surface states. The developed
MCMC algorithm with SVAT model can be very
useful for land-atmosphere interaction studies and
further understanding of the physical controls responsible
for soil moisture dynamics at different scales. A sche-
matic of this parameter estimation process is shown in
Figure 9.

Multiscale Data Assimilation Algorithm

A new study (Das et al., 2008b) focuses on downscaling
of soil moisture from coarse remote sensing footprints
to finer scales. The approach implements a multiscale
ensemble Kalman filter (EnKF) that assimilates
remotely sensed soil moisture footprint, attributes of
fine scale geophysical parameters/variables (i.e., soil
texture, vegetation, topography, and precipitation) and
coarse/fine scale simulation into a spatial characteri-
zation of soil moisture at the finer scales. To down-
scale the remotely sensed soil moisture to another
spatial scale, the multiscale EnKF uses a bridging
model. The bridging model infers the pixel-specific
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Fig. 9: Up/Down scaling of soil hydraulic properties using AMSR-E soil moisture measurements
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scaling coefficient from the compatible geophysical
parameters/variables that influeice the soil moisture
evolution process at that particular spatial scale. A
schematic of the multiscale data assimilation algorithm
is presented in Figure 10. Data from diverse hydro-
climatic regions from the semiarid Arizona region, the
agricultural landscape of lowa, and the grassland/
rangeland of Oklahoma are used in the study to
implement the multiscale downscaling algorithm.
Results demonstrate that the bridging model helps to
characterize the evolution of soil moisture within the
remotely sensed footprint. Validation at the finest scale
also shows reasonable agreement between the
measured field data and the simulated downscaled soil
moisture evolution,

NEURAL NETWORK APPROACH

Direct measurements of soil hydraulic properties are
time-consuming and costly to characterize large regions.
Indirect estimation techniques using Pedotransfer
Functions (PTFs) provide an effective alternative to
direct measurements. This approach examines the effect
of including topographic and vegetation attributes,
besides pedologic attributes, on the prediction of soil
hydraulic properties using PTFs. With the increasing
availability of remote sensing products from air- and
space-borne sensors at different spatial scales, topo-
graphic and vegetation attributes are easily available
from Digital Elevation Models (DEMs) and Normalized
Difference Vegetation Index (NDVI).

Pedo-Topo-Vegetation-Transfer Functions

Soil hydraulic properties across the Southern Great
Plains of the USA were estimated using this approach
in one study. Hierarchical Pedo-Topo-Vegetation-
Transfer Function (PTVTF) models were developed
based on multiple combinations of soil physical
properties, the vegetation, and topographic features
(Sharma er al., 2006). Eighteen models combining
bootstrapping technique with artificial neural networks
were developed in a hierarchical manner to predict the
soil water contents at eight different soil water
potentials (at 5, 10, 333, 500, 1000, 3000, 8000, and
15000 cm) and the van Genuchten hydraulic
parameters. The performance of the neural network
models was evaluated using the Spearman correlation
coefficient between the observed and the predicted
values and Root Mean Square Error (RMSE).
Although variability exists within bootstrapped

replications, improvements (of different levels of

statistical significance) were achieved with certain
input combinations of basic soil properties, topography
and vegetation information compared with using only
the basic soil properties as inputs. Topography (DEM)
and vegetation (NDVI) attributes at finer scales were
useful to capture the variations within the soil mapping
units for the SGP97 region dominated by perennial
grass cover. Sample predictions of van Genuchten
parameters are provided in Figure 11.

Multiscale Artificial Neural Networks

Limited availability of (detailed) soil hydraulic data for
large-scale hydro-climatic models (with grids ranging
from several kilometers to several hundred kilometers)
is a major challenge. To address this need,
Pedotransfer Functions (PTFs) have been used to
estimate the required soil hydraulic parameters from
other available or easily measurable soil properties.
While most previous studies derive and adopt these
parameters at matching spatial scales (1:1) of input and
output data, we have developed a methodology to
derive soil water retention functions at the point or
local scale using the PTFs trained with coarser scale
input data (Jana et al., 2007). This study was a novel
application of an Artificial Neural Network (ANN)-
based PTF scheme across two spatial support scales
within the Rio Grande basin in New Mexico. The
ANN (Figure 12) was trained using soil texture and
bulk density data from the SSURGO database (scale
1:24,000) and then used for predicting soil water
contents at different pressure heads with point-scale
data (1:1) inputs. Figure 13 provides a graphic
representation of the multiscale ANN methodology.

The resulting outputs were corrected for bias before
constructing the soil water characteristic curve using
the van Genuchten equation. A hierarchical approach
with training data derived from multiple clustered sub-
watersheds (with varying spatial extent) was used to
study the effect of the increase in spatial extent. The
results show good agreement between the soil water
retention curves constructed from the ANN-based
PTFs and field observations at the local scale near Las
Cruces, NM. The robustness of the multiscale PTF
methodology was further tested with a separate data
set from the Little Washita watershed region in
Oklahoma. Overall, ANN coupled with bias correction
was found to be a suitable approach for deriving soil
hydraulic parameters at a finer scale from soil physical
properties at coarser scales and across different spatial
extents. The approach could potentially be used for
downscaling soil hydraulic properties.
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Fig. 11: Predictions of van Genuchten hydraulic
parameters based on neural network model
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Fig. 12: Artificial neural network model: w represents the
layer weights, b the bias, f is the transfer function,
and 6 is the output

Bayesian Neural Networks with Remote
Sensing Data

In another study (Jana er al., 2008; Jana and Mohanty,
2008), Bayesian Neural Networks (BNNs) were
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applied across spatial scales to estimate soil water
retention with data from the Rio Grande Basin in New
Mexico (Figure 14). BNNs inherently provide
uncertainty estimates for their outputs due to their
utilization of Markov chain Monte Carlo (MCMC)
methods. The objective in this study was to obtain soil
hydraulic parameters at a finer scale using pedo-
transfer functions developed from inputs to a neural
network trained at a much coarser (sub-watershed)
scale. BNN application is across scales as the network
was trained at a remote-sensing-pixel-scale and asked
o predict soil water content values at a point-scale.
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Fig. 13: Multiscale ANN methodology
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Fig. 14: Bayesian neural network study area and data

Improvement in prediction capability is seen by
using Bayesian statistical techniques in the ANN
training process to obtain better weights. Bayesian
neural networks update the weight vector with
information from the data. This makes the predictions
better. Use of additional information such as remotely
sensed topographic and vegetation data slightly
enhances the prediction accuracy of the BNN
methodology.

Bias can exist between data sets due to difference in
measurement techniques, instrument or human errors,
and averaging methods, or due to the scale disjoint
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between the training and simulation datasets used in
the BNN (Schaap and Leij, 1998; Jana et al., 2007,
2008]. Since the training of the neural network is by
coarse-scale (1:250,000, or 1 km resolution) data, the
BNN model developed is a coarse-scale model.
Although point-scale (1:1) inputs are fed to this model,
the predictions obtained for the scil water contents are
technically still at the coarser scale. This gives rise to a
bias between the BNN predicted values and the
measured values at the point scale. Different governing
hydrologic processes dictate the soil water contents at
different spatial scales. However, the BNN is not
based on the physical processes underlying the
hydrology. Hence, a suitable bias correction technique
needs to be applied to the predicted water content
values. It is known that most processes in the vadose
zone are non-linear in nature. Parametric scaling is a
non-linear process t0o. Hence, it makes sense to apply
non-linear bias correction schemes in our methodology.
A simplistic representation of the non-linear bias
correction technique by CDF-matching is shown in
Figure 15.

Overall, the Bayesian neural network, coupled with
a non-linear bias correction scheme, appears to work
well for estimation of soil hydraulic properties at a fine
scale from data at coarser scales.
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