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ABSTRACT: This paper evaluates the feasibility of using an Artificial Neural Networks (ANNs) methodology for estimating the
groundwater level in some piezometers placed in an aquifer in northwestern Iran. This aquifer is complex and has a high water
level in urban areas. Spatiotemporal groundwater level simulation in a multilayer aquifer is regarded as a difficult subject in
hydrogeology due to complexity and different aquifer materials. In the present research the performance of different neural
networks for groundwater level forecasting is examined, in order to identify an optimal ANN architecture that can simulate
selected piezometer water levels and provide acceptable predictions up to 24 months ahead. Six different types of network
architectures and training algorithms are investigated and compared in terms of model prediction efficiency and accuracy. The
results of different experiments show that accurate predictions can be achieved with a standard feedforward neural network
trained with the Levenberg—Marquardt algorithm. Obtained structure and spatial regression relations of the ANN parameters
(weights and biases) are used for spatiotemporal model presentation. It was found in this study that ANNs provided accurate
predictions when an optimum number of spatial and temporal inputs were included into the network, and that the network with

lower lag consistently produced better performance.
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INTRODUCTION

Although conceptual and physically-based models are
the main tool for depicting hydrological variables and
understanding the physical processes taking place in a
system, they do have practical limitations. When data
is not sufficient and getting accurate predictions is
more important than conceiving the actual physics,
empirical models remain a good alternative, and can
provide useful results without costly calibration. ANN
models are such ‘black box’ models with particular
properties which are greatly suited to dynamic
nonlinear system modeling. The advantages of ANN
models over conventional simulation methods have
been discussed in detail by French er al. (1992). ANN
applications in hydrology vary from real-time to event
‘based modeling. ANN models have been used for
rainfall-runoff modeling, precipitation forecasting and

water quality modeling (Govindaraju and Ramachandra
Rao, 2000). One of the most important features of
ANN models is their ability to adapt to recurrent
changes and detect patterns in a complex natural
system. More concepts and applications of ANN
models in hydrology have been discussed by the
ASCE (2000). Neural networks have also been
previously applied with success to groundwater level
prediction (Coulibaly et al., 2001a, b, c). The ANN
methodology has also been applied to forecast rainfall
(Luck Kin et al.,, 2001). Parkin et al. (2001) used
ANNSs, coupled with a 3-D numerical model, to model
river-aquifer interactions. In the geotechnical domain,
Kurup and Dudani (2002) used ANN to profile the
stress history of clays from piezocone penetration
tests. In chalky media, some researches can be
mentioned, for example, as regards forecasting of




426

turbid floods in a karstic media (Beaudeau ef al., 2001)
and determination of aquifer outflow influential
parameters, and simulation and forecasting of aquifer
outflow in a fissured chalky media (Lallahem and
Mania, 2002, 2003a, b). Recently, ANNs have been
successfully used for identifying the temporal data
necessary to calculate groundwater level in only one
piezometer (Lallahem et al., 2005). In this paper,
several different neural networks are evaluated in order
to reach conclusions regarding the efficiency of
forecasting techniques for groundwater level
prediction and finding a good technique for presenting
spatiotemporal ANN model for Tabriz aquifer.

THE ARTIFICIAL NEURAL NETWORKS
APPROACH

The Basics

An ANN is a computational approach inspired by the
human nervous system. Its data processing paradigm is
made up of highly interconnected nodes (neurons) that
map a complex input pattern with a corresponding
output pattern (Kohonen, 1988; Hagan et al., 1996).
ANN is used to define the network topology as well as
to simulate the learning, validation and testing phases
without imposing any functional relationships between
independent and dependent variables. With this
architecture, ANN methodology has proven to be a
powerful Black box model, which excels at function
approximation and pattern recognition. Added to that,
it is more robust and flexible than other types of black
box models. Several artificial neural networks are
applied in order to obtain the best structure for the
study area. Two popular neural network models are the
Feedforward Neural Network (FNN) and Recurrent
Neural Network (RNN). For training these networks
different algorithms can be used. In the present research,
gradient descent with momentum and adaptive learning
rate backpropagation (GDX), Levenberg—Marquardt
(LM), and Bayesian Regularization (BR) are used.
Some studies provide details of the used networks and
algorithms in ANN modeling (e.g. Coulibaly er al.,
2001a; Nadiri et al., 2006).

Network Architecture

Several aspects of the architecture of neural networks
that focus on the prediction of variables associated
with hydrology are covered by Maier and Dandy
(2000). Their suggestions were followed in the
development of the current model. The structure of the
network is determined by trial and error. The size of
the input and hidden layer of the network has been
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variable, depending on the prediction horizon, whereas
the output layer has a single node. The number of
nodes in the hidden layer and the stopping criteria
were optimized in terms of obtaining precise and
accurate output. Finally, the activation function of the
hidden layer was set to a hyperbolic tangent. sigmoid
function as this proved by trial and error to be the best
in depicting the non-linearity of the modeled natural
system, among a set of other options (linear and log
sigmoid). It is noteworthy that there is no well
established direct method for selecting the number of
hidden nodes for an ANN model for a given problem.
Thus the common trial-and-error approach remains the
most widely used method.

Criteria of Evaluation

Two different criteria are used in order to evaluate the
effectiveness of each network and its ability to make
precise predictions. The Root Mean Square Error
(RMSE) calculated by,

RMSE=,/Z* i~ 5y el {E)
N

where y;, ¥, and N are the observed data, the

calculated data and the number of observations,
respectively. RMSE indicates the discrepancy between
observed and calculated values. The lower the RMSE,

2
the more accurate the prediction is. Also, the R
efficiency criterion (determination coefficient), is
given by,

3 205 y,
> i-v)

which represents the percentage of the initial
uncertainty explained by the model. The best fit
between observed and calculated values, which is

unlikely to occur, would have RMSE = 0 and R2= Is

. (2)

STUDY AREA AND DATA

The study area is located in the Tabriz plain (Figure 1),
northwestern Iran. The Tabriz area lies in east
Azarbaijan province, which is structurally part of the
central Iran unit. It is wedged between the Zagros and
Alborz mountain systems. The area includes
formations of Devonian to Quaternary age affected by
various geologic movements, most strongly those of
Alpine origin. The mean elevation is 1340 m above sea
level. The prevailing climate of the Tabriz area has
semi-arid characteristics. During the wet season, the
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area is under the influence of middle-latitude
westerlies, and most of the rain that occurs over the
region during this period is caused by depressions
moving over the area, after forming in the
Mediterranean Sea on a branch of the polar jet stream
in the upper troposphere. The average annual rainfall is
261.1 mm, during 1950 until 2005 years. The mean
daily temperatures vary from —22°C in January up to
40°C in July with a yearly average of 9°C. The
dominant winds over the area blow from the northeast
and the southwest. In general, mean monthly relative
humidity at the Tabriz Airport meteorological station
is relatively high during the November—February
period, ranging from 75 to 80%, and lower during July
and August, when it is about 35 to 45%. Pan
evaporation measured during the water year 2005-
2006 was 1294 mm, (the water year has been fixed
from the 20" September to 19" September of the
following year and is used in all hydrologic
discussions). The Ajichay River is the only perennial
river in the study area and other temporal drainages
join this main river. The Tabriz area formations are
composed of Miocene faces that have covered alluvial
sediments unevenness and have formed steep strata
east to west. Miocene bedrock in this area is high, so
alluvial sediment is very thin. Tabriz city in the
southeast and south overlies Miocene beds and Plio-
Quaternary faces that consist of semi compressed
conglomerate beds with sandstone, carbonate, tuff,
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agglomerate and marl. These formations have formed
the Tabriz aquifer.

A quantitative study of the piezometric fluctuations
accounts for the general tendencies of seasonal or
interannual variations that are translated in a very
different way according to the hydrogeologic context.
Annual piezometric fluctuations depend on the aquifer
hydraulic characteristics, the position of the basin
upstream and downstream limits, the groundwater
depth, the replenishment time, and essentially the
internal aquifer geometry. These characteristics are the
major parameters intervening in the mode and the
chronology of the piezometric events. By analyzing
the piezometric map (lower water bodies) (Figure 2),
we can distinguish, despite the existence of some
anomalies in direction of groundwater flow, the
general direction of groundwater in study area which is
east to west. The cause of these anomalies is over-
abstraction of pumping wells in farming field (central
and southwest of map). The data utilized in this study
were collected over 10 years (from April 1995 to
March 2004) with a 1 month time interval. The data
collected consist of the following categories:
(i) observed piezometry of 16 piezometers (Central
(CP),2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16),
(i) rainfall in Tabriz airport station, (iii) mean
temperature in Tabriz airport station, (iv) discharge of
Ajichay river in Vaniyar station. Figure 2 shows
positions of piezometers in the study area.
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Fig. 1: Geologic-map and localization of study zone




428
B i r—————
< ) S 0000 0.0.0.0.0.0.0.90
@" :..:.0.0"‘0 L X KK K X 0.0 )
4235000
|
42300004‘ a a
\
1 - a
4225000
; s -
4220000
- -

4215000 “ =

4210000

L

|
4205000~ et
!

4200000
i

v 4

4195000~ 7%

~ Ad
Lf
| 1

I

Water, Environment, Energy and Society (WEES-2009)

N
@?g,
S

& Legend
o City, Village
River
Road
B&4  Mountainous area
—_ Plain
Area limit
Isopotantial line
—»  Groundwater flow direction

% .
e Selected piezometers W,

Fig. 2: Groundwater flow direction, piezometric map and positions of piezometers

RESULTS AND DISCUSSION

After the number of neurons in the first, hidden and
last layers were fixed. In order to make the results
statistically more plausible, three different partitions of
the normalized database were used for simulation. The
database was divided into training, validagion and test
groups. For the ANN models described in this paper,
60% of the available data were used for training, 20%
were used for the validation and 20% were reserved
for testing. There are two important steps in ANN
modeling. The first is to ensure that the network
extracts the necessary features from the data. This is
based on processing training data of the ANN, which
must be available for learning purposes. The training
data base must be sufficiently representative to provide
adequate knowledge retrieval, as needed in future
reasoning activities of the Neural Network (NN). The
percentage of data needed for training, validation and
testing are problem specific. However, in this study,
several models were tried with percentages of training
data varying from 45 to 60%. The second important
step in ANN modeling is to find the optimal number of
neurons in the hidden layer which was discussed
before.

According to recent researches (Coulibaly er al.,
2001a; Lallahem et al., 2005), effective factors in the
fluctuation of groundwater are temperature, rainfall,
and mean discharge of basin. Because of typical

hydrology and hydrogeology of every basin, effective
delay times of each factor for special basins are
different. In this study, for finding the best ANN
model structure for the study area, a piezometer that
has overall characteristics of the study sector was used.
This piezometer called Central Piezometer (CP)
(Figure 2). Therefore, to reach the best data set and
delay time (7, is present time and 1 month lag toward
forecasting time), the following data set as input
neurons are examined: (i) temperature, rainfall and
discharge of Ajichay River (with #, and #,~1delay),
water level in CP piezometer (with ¢, #,~1 and #,~2
delay) and water level in two nearest lateral
piezometer (with 7, and #,~1 delay), (ii) temperature,
rainfall and discharge of Ajichay River (with ¢, and ¢,—
1 delay), water level in CP piezometer (with ¢,, #,—1
and 1,2 delay), (iii) temperature, rainfall and
discharge of Ajichay River (with #, and #,~1 delay),
water level in CP piezometer (with ¢, and #, -1 delay),
(iv) temperature, rainfall and discharge of Ajichay
River (with ¢, delay), water level in CP piezometer
(with ¢, delay). Each of data set is used to train by
(13, 7, 1) (i.e., 13 nodes in input, 7 nodes in hidden, 1
node in output layers), (9, 6, 1), (8, 5, 1), (4, 2, 1)
structures respectively. Table 1 shows the results of
considering structures with different input data sets.
The target vector of structures for whole data set was
water level forecasting during 24 months (2003-2004).
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Table 1: RMSE% of 6 Networks-Algorithms with Different Input Data
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Data Set FNN-BR FNN-GDX FNN-LM RNN-LM RNN-BR RNN-GDX
4 8.83 5.48 4.13 58 9.25 6.05
3 9.18 6.23 4.76 5.93 10.08 6.53
2 9.54 6.9 5.24 6.41 10.45 7.4
1 10.13 7.25 5.9 7.35 10.43 7.95

The results, presented in Table 1, revealed that the
best data set is 4. Therefore, groundwater fluctuation
effective parameters in the study sector for ANN
models are just temperature, rainfall and discharge of
Ajichay River (with ¢, delay), and water level in CP
piezometer (with #, delay). Fluctuations of water level
in the nearest lateral piezometers have intangible
effects on the central piezometer water level. Its reason
can be the complexity of Tabriz aquifer. To reach a
high efficiency structure for study area, the fourth data
set is used.

For every input variables (fourth data set), the time
series was divided into 3 different subsets: One subset
for training the neural network (1995-2000), one for
model validation (2001-2002) and one for model
testing (2003-2004). Since our goal is to predict future
groundwater depths, any information concerning
aquifer fluctuation was considered as it would inhibit
the efficiency of our data driven model. All tests and
results were derived through programming in Matlab
7.1. By means of trial and error, an optimum network
and parameter configuration for all two networks
(FNN, RNN) were derived. The input layer in all
networks consisted of 4 input nodes for precipitation,
temperature, and stream flow and groundwater level.
The output of the network is a prediction of the well
level at time step #,+ 1. The number of hidden neurons
for both RNN and FNN was determined to 2 through
trial and error. Consideration of the data set was based

on the results of Table 1, in the calibration step. This
number of neurons seems to be both time efficient and
adequate to handle the rather small amount of data of
the problem considered. Other parameters that were
adjusted in order to achieve more accurate results were
the goal value of the error function of the network
during calibration, calculated by the Root Mean
Square Error (RMSE) and determination coefficient
(R?), the learning rate of the training algorithms, the
number of epochs or feeds of each network. The need
for adjustment of these parameters lies in the danger of
overtraining a network, an effect that is analogous to
over-fitting a polynomial function. The best overall
performance for the given problem was achieved by
the feedforward network trained with the Levenberg-
Marquardt algorithm and the second best by the
recurrent neural network trained with the same
algorithm. As we can see from Table 3, even though
the feedforward network trained with the GDX
algorithm Seems to explain the groundwater level
change (R™ = 0.785), its results are shifted, rendering
the method unsuitable for the problem.

The most unsuitable network was the recurrent
neural network trained by the Bayesian regularization
algorithm. This may indicate that RNN requires more
complex training algorithms (Coulibaly et al., 2001a,
b, ¢). The rest of the networks performed relatively
well but tended to overestimate the observed dataset.

Table 2: R* and RMSE for Training Step

. Network
Criterion
FNN-BR FNN-GDX FNN-LM RNN-LM RNN-BR RNN-GDX
R? 0.692 0.901 0.985 0.911 0.672 0.83
RMSE% 8.52 5.18 2.11 3.42 8.81 5.69
Table 3: R? and RMSE for Testing Step
o Network
Criterion
FNN-BR FNN-GDX FNN-LM RNN-LM RNN-BR RNN-GDX
R? 0.592 0.785 0.865 0.818 0.554 0.668
RMSE% 9.72 6.84 3.61 452 9.92 7.73
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Also all the networks performed well for 1 month
ahead predictions. The most promising techniques
seem to be those using the feedforward neural network
trained with the Levenberg—Marquardt algorithm that
underestimates part of the groundwater level during 24
months (2003-2004). The physical meaning of this
result is that the structure of this model allows its
weights to adjust values that depict the trends of the
natural system we are simulating. For validatoig
purposes, a 24 month-ahead prediction is made and
compared with observed values. Figure 3A and B
show how 6 combinations predicted groundwater
levels for this 24 month period (2003-2004). After
achieving the best structure and data set for forecasting
the study area groundwater level, in order to present
the spatiotemporal pattern, modeling of other
piezometers than the central piezometer model is
necessary. Because presentation of spatiotemporal
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model by ANNs for groundwater level is an innovation
that has not been carried out, it had a great deal of
difficulty because of the limitations of ANN
applications for spatial forecasting. The first step is to
prepare models for selected piezometers (2, 3, 6, 10,
16, 8, and 13) among the study area piezometers (2, 3,
4,5,6,7,8,9,10, 11, 12, 13, 14, 15, and 16) and the
rest of the piezometers are employed to test the model.
In order to prepare each model of selected piezometers
all steps that are carried out for the presentation of the
central piezometer model previously are performed.
Because the weights and biases of each selected
piezometers model are required, the inputs and output
neurons are fixed, the most important point in
modeling the considered piezometers is fixing hidden
layer neurons. Table 4 shows summarized results of
the training, validation and testing steps for selected
piezometers networks with (4, 2, 1) structure.

; 0.94 - . 098 } :
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Fig. 3: Comparison of testing results with observed values. (A) FNN networks (B) RNN networks
Table 4: Results of Selected Piezometers in the Training, Validation and Testing Steps
Piezometer 2 3 6 10 16 8 13
o
&
T | RSME% 5.4 6.5 6.6 5.3 4.9 5.3 4.1
g
SR 0.93 0.91 0.94 0.98 0.93 0.97 0.98
&
n RSME% 4.9 7.7 7.2 6.5 57 5.8 49
s | S
5| 8
T 2
] ‘>U R? 0.87 0.88 0.86 0.96 0.88 0.93 0.95
& | RSME% 7.5 8.4 77 8.6 6.1 6.3 5.4
n
®
2
R? 0.85 0.79 0.81 0.93 0.81 0.88 0.9
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According Table 4 and considering the assumed
limitation in fixing nodes in the input layer (4), output
layer (1) and hidden layer (2), the obtained results of
the considered piezometers models are acceptable.

The algorithm of the method for spatiotemporal
forecasting is explained by the following steps:

1. Extraction of weights and biases from the ANN
which was used for each piezometer modeling with
fixed nodes in the layers.

2. Classification of node weights with the same
position for whole models.

3. Consideration of correlation between position of
piezometers and every class of weights and biases.

4. Framing spatiotemporal ANN model (4, 2, 1) with
obtained weights and biases by regression relations.

5. Testing spatiotemporal model for different locations
of the study area.

Table 5 presents the obtained weights and biases of the
considered piezometer models. In Tables 5-9 w and b
present the abbreviation of weights and biases,
respectively; in this manner subscript numbers show
the number of node and its order, respectively. After
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classification of the same order and the number of
weights and biases, vectorial distance (R) of each
piezometer from a fixed assumed point as the area
origin (left corner of study area map, Figure 3, X =
590000 m, ¥'=4200000 m) is obtained by,

R=vX?+Y? « (3)

where X and Y are coordinates from the left corner of
the study area map (X = 590000 m, ¥ = 4200000 m).
Then correlation between similar vectorial distance of
each piezometer and their classified weights and biases
of the ANN models are computed by Table curve and
Curve expert software. The most accurate fitted
functions with the determination coefficient values
accompanying relevant coefficients are shown in
Tables 6, 7 and 8.

The next step is cross validation the presented
spatiotemporal model that is carried out by the
remaining piezometers. The weights and biases of the
remaining piezometers are computed by the obtained
regression functions (Table 6-8) and are shown in
Table 9.

Table 5: (A) The Hidden Layer Weights (B) The Output Layer Weights and Biases of the Model

(A)
Pezo- |y, Wio Wis Wis Wis Wis Wiz Wis R (km)
2 -0.6287 | —0.9939 0.50113 | —2006.8 -0.291 —2.0624 44.4423 -322.88 28.3832697
3 0.00175 | 0.00318 | —0.0046 —20.252 0.54547 1.4005 —0.2393 1.1401 | 24.5818022
6 0.01129 | 0.00636 | —0.0221 -18.613 -0.5038 —0.5187 -12673 —2.7048 | 25.438406
10 -1.3856 | —2.1649 4.6241 2.4252 0.00324 0.01273 | -0.0145 22.2704 | 31.0671853
CP 2.7978 0.62244 | —-0.1739 2.2545 2.0217 0.44971 —0.0018 —-1.542 33.9040558
16 0.01169 | 0.00267 0.00534 | —15.197 -13.092 -8.8225 —7.287 2.0205 | 31.4327158
8 0.02051 | 0.02283 | —0.0593 —45.269 0.22109 0.71749 0.05986 2.2187 | 23.0054341
13 -1.986 -0.0353 | -0.4794 -2.128 0-0.41336 | -0.0741 -0.0888 150.842 | 22.0223182
(8)

Piezometer Wo1 Waz byt b1z b2 R (km)

2 -2.2445 10.3713 2006.69 325.24 -4.9294 28.3832697

3 -26.305 7.7776 20.6878 1.7057 7.3127 24.5818022

6 -11.314 -2.8082 18.8005 -3.0544 3.2273 25.438406

10 9.5687 25.4565 1.6502 -22.95 9.6817 31.0671853

CP 9.5687 25.4565 -4.7019 -1.1011 0.35805 33.9040558

16 -18.318 —0.0651 14,7337 3.465 -3.8429 31.4327158

8 —7.9254 1.3149 44,9302 2.6601 0.31107 23.0054341

13 -19.094 35.8551 —2.7821 -1562.71 19.3729 22.0223182
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Table 6: The Best Fitted Functions (y is the weight and x = R) for the Hidden Layer Weights
Weights Function Parameters Values R?
1.16E+06
297162.6331
-30552.1915 0.936475
0.450715084
—7.90E+05
—1.89E+00
2.413556512
5.930573738
0.422417641
—-1.48E-01
736.0165883
29.83688414
0.387566341
1.93E+00
—-2004.8193 0.999286
5155.253455
-1.40E+04
81790.01484 0.837689
—88495.8744
—6.37E+00
8.062575404
3.268853494
0.515304734
3.07E-02
-3.60E-15 0.999995
-3.39E+09
2.89E-01
—235.470934 0.991812
7.45E+08

Y]

Wiq y = a+bx+cxinx+dx3+ex/Inx

Wiz Y = a+bsin(2px/d+c) [Sine]

0.829956

Wia y = a + bexp(-0.5((x—c)/d)2) [Gaussian]

0.992059

Wi4 y—1 = a+blnx/x2+c/x2

Wis y—1 = a+b/Inx+clnx/x

Wis Y = a + bsin2(2px/d+c) [Sine2]

0.745276

Wiz y—1 = a+bex+ce—x

Wis y—1 = a+b/x2+ce—x

ololes|lo|lo|jlo |la|lo|loclo|lo|loc|jlo|jo|lo|e |ajo|lojlojajo|To|n |0 |a|l0 |0

Table 7: The Best Fitted Functions for the Output Layer Weights
Weights Function Parameters Values R?
3.31E+03
—322.457533
3.87242503 0.642244
—-0.47125558
1.55E-13
—4.96E+02
26.0580591
—-0.01013631 0.697245
6.10E-14
2.38E+11

o

Wa1 y = a+bx+cx2.5+dx3+eex

W2, y = a+bx+cx3+dextee—x

olaca|lo|loc|j o |ajo |T
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Table 8: The Best Fitted Functions for Biases
Biases Function Parameters Values R?

b1 y = a+berfc(((x—c)/d)2) [Erfc Peak] a 1.25E+01
b 2076.92445 0.99949
c 28.04577402
d 1.795072563

b1z y = a+b/(1+((x-c)/d)2) [Lorentzian] a —2.71E+01
b 1975.043005 0.625664
c 28.07174037
d 0.384661451

b2z y = a+bx+cxinx+dx3+ex/Inx a -1.99E+07
b —-5.10E+06
c 524234.0068 0.666212
d —7.58207569

1.36E+07
Table 9: (A) Weights of the First Layer Nodes, (B) Weights and Biases of the Second Layer
Nodes and the First Layer Biases
(A)

Fiezometer Wi Wiz Wis W4 Wis Wis Wiz Wie R (km)
4 -0.6923 | -0.0679 | 0.50113 -2007 -0.7871 | -3.5457 | 46.6329 | -322.88 | 28.3833
5 -0.2979 | -0.998 | -0.1479 | -10.041 | -0.9107 | -5.2714 | 61.9132 | —-19.931 | 26.2391
7 0.23925 | -0.2051 -0.1479 -5.556 0.51951 -3.2212 | -12.636 | -11.031 24.1535
9 -0.812 0.37248 124.555 | 9.43603 -2.375 -0.5724 | -26.809 27.126 30.5672
12 -0.4027 | —0.6234 | —0.1479 | —12.436 | -0.7729 1.36554 48.864 -24.884 | 26.6732
15 -0.7379 | —0.9627 | 557269 | 7.73302 | —4.4578 16125 -12.699 | 22.4489 34.65

(B)

Piezometer Way Waz b1y b1z b2z R (km)
4 -0.1943 12.5773 2006.59 325.24 -2.0235 28.3833
5 -10.135 6.09413 328.13 20.5795 4.59816 26.2391
7 —18.868 -1.2339 12.474 11.4011 1.88915 24.1535
9 -1.5701 12.6828 23.414 -28.116 —-1.1424 30.5672
12 —7.7776 7.83762 860.548 25.6827 3.61238 26.6732
15 —4.0145 12.0435 12.638 -23.259 0.85197 34.65

These parameters are used for forecasting the water
level in the left piezometers and then the ccmputed
results are compared with observed water levels. The
results of the considered models are summarized in
Table 10. In this way this model was qualified for
forecasting water level in the whole of study sector
even without any piezometers. According to the
results, the efficiency of the model has an inverse
relation with the piezometer distance of central
piezometer. Therefore, in addition to incredible

advantage of the presented model, it has also
limitations. As can be seen in Table 10, the best result
is related to piezometer 9 that is the nearest piezometer
to the central piezometer. The results of other
piezometers are also acceptable but it is clear the
aquifer has high complexity. It causes to the efficiency
of the same structures to have different values (0.65—
0.82). So the most important factor in the model result
can be the complexity of the aquifer and the position
of every piezometer.
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Table 10: Results of Left Piezometer Forecasting
Piezometer 4 5 /i 9 12 15
S | RMSE% |49 |58 |57 |41 |59 |69
£
6]
R 0.81 | 0.79 | 0.69 | 0.82 | 0.65 | 0.68
CONCLUSION

Neural networks have proven to be an extremely
useful method for empirical forecasting of
hydrological variables. In this paper, an attempt was
made to identify the most stable and efficient neural
network configuration for predicting groundwater level
in the Tabriz aquifer and to present a spatiotemporal
model as an innovation. Tabriz aquifer is complex and
multilayered so it is quite difficult for modeling and
groundwater level forecasting. The total of six
different ANN configurations were tested in terms of
optimum results for a prediction horizon of 24 months.
The most suitable configuration for this task was
proved to be a 4-2-1 feedforward network trained
with the Levenberg-Marquardt method as it showed
the most accurate predictions of the decreasing
groundwater levels. Then optimal structure is applied
for forecasting of selected water level piezometers in
Tabriz aquifer. From the results of the study it can be
inferred that the Levenberg-Marquardt algorithm is
more appropriate for this problem, since RNN also
performs well when trained with this method. This
structure is also used for presenting the spatiotemporal
model. According to presented algorithms this model
is obtained by computing the correlation of vertical
distance of the assumed point with weights and biases
of models. In this way all of the piezometer water
levels in the study area can be forecasted by using the
obtained weights and biases based on regression
functions. In general, the results of the case study are
satisfactory and demonstrate that neural networks can
be a useful spatiotemporal prediction tool in the area of
groundwater hydrology. Most importantly, this paper
presents indications that neural networks can also be
applied in cases where the aquifer is complex and we
need, in addition to temporal .prediction, spatial
forecasting. In this research, it was tried to use the
vectorial distance as a spatial factor (R) but in opinion
of the authors, it will be better to use local coordinate
of every considered piezometer (i.e., X, Y), in stead of

Water, Environment, Energy and Society (WEES-20

vertical distance (R). This suggestion can be studied
another research topic.
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