SATISH CHANDRA DIRECTOR

STUDY GROUP
p V SEETHAPATHI
S R BOOPATHY DHASON

CONTENTS

Page
List of Eigures i
A bstract ii
1.0 INTRODUCTION 1
1.1 Purpose and Capabilities 2
1.2 Terminology 3
1.3 Scope 3
2.0 METHODOLOGY 5
2.1 Formulation 5
2.2 Data Requirements 10
2.3 Analysis 10
2.4 Advantages and Limitations 11
3.0 RECOMMENDATIONS 13
REFERENCES
APPENDICES

LIST OF FIGURES

| Figure Number | Title | Page | |
| :--- | :--- | :--- | :--- | :--- |
| Figure 1 | A typical Induced Surcharge Envelope
 Curve for a Reservoir 189.19 MT FRL
 and MWL 191.41 MT | 8 | |
| Figure | 2 | A typical Spillway Regulation Curve
 for a Reservoir of 181.19 MT FRL
 and 191.41 MT MWL | 12 |

Reservoirs which are constructed for the purpose of conservation and flood control have to be operated for flood control during monsoon season in order to safeguard the downstream control points and the dam against damaging floods. Though flood forecasting models have been developed for some basins yet their utilisation during heavy down pour is in its infancy as they are dependent on communications that are subject to failure or on expert analysis that might not be available at the time. Thus it is necessary to have a guideline to the spillway operator at the reservoir site that will earmark the flood cushion requirement considering the importance of conservation and the restrainment to be shown towards the downstream damaging centres. A methodology based on U.S.Army Corps of Engineers for the preparation of a spillway regulation curve is presented here.

The degree of flood protection assured by a multi purpose reservoir that is operated for conservation and flood control may vary seasonally with varying hydrologic conditions. When flood control requirements conflict seriously with conservation needs it may be necessary to compromise and reduce the degree of flood protect subjected to non-damaging releases in respect of downstream control points. A complete evaluation of a plan of operation could theretically be made if regulation of the reservoir were studied with a specific forecasting model. In order to evaluate any plan of operation, it is necessary to integrate the effects of all combination of conditions and flood magnitude that can prevail. The normal method of evaluation is to route all observed, and estimated floods through the reservoir for different stipulated initial levels which may be varying on a tendaily or monthly basis. Flood forecasting using rainfall-runoff modelling and the required data is yet to be introduced for most of the Indian basins. Even in those systems where forecasting models are developed and used the performance of the models are not satisfactory because of the failure due to :
i) Communication system to convey the upstream reading during monsoon,
ii) Gauging during monsoon floods,
iii) Unaccounting of contribution of innumerable streams which directly enter into the artificial Lake and
iv) Unaccounting of direct precipitation over lake in the case of heavy downpour.

Hence a procedure is identified and programmed here to route the flood of different magnitudes at different elevation. The theory is based on the recession storage procedure (suggested by the U.S.Army Corps of Engineers). While no forecasting is adopted the inflow is extrapolated as per the slope of the hydrograph of the previous period and corrected towards the end of the period. Maximum safe release is included as a constraint to the spillway discharge.
1.1 Purpose and Capabilities

At present no generalised procedure for flood routing through reservoir are available. Whenever occassions arised flood regulation studies were made on a system specific basis and and often revised. And in certain cases where detail studies were not made routing have been carried out on the basis of outflow equal to inflow without making use of the potential created.

Here a procedure is programmed for the construction of spillway gate regulation curve which would assure that the reservoir operation to comply with the required conditions. This procedure can be used both in the planning and operation stage of a reservoir to analyse the spillway capacity required and the difrerent level that should be maintained during high flood period. During operation period a spillway regulation curve which shows the releases for different flood magnitudes at different levels can be evaluated for the ready reference to
the spillway operator. It is capable of coping with both FPS and MKS units.
1.2 Terminology

Recession Storage
Recession storage is defined as the volume of water that will be brought by the flood during its recession limb of flood hydrograph.

Recession Constant
It is a constant having units of time and indicates the rate of exponential decay of the flood.

FRL
The FRL is termed as the maximum conservation pool
level that will be maintained in a reservoir.

MWL
The MWL is termed as the top of surcharge - water level.

Induced surcharge storage
Induced surcharge is the storage above the FRL(static pool level) and below MWL.

Scope
The reservoir storage meant for flood control should not cause damage either to the structure or the downstream centres. In the case of projects, which are completed, this space can be utilised even when there is no forecasting of flood to assure the protection for downstream centres. Depending upon the magnitude and frequency of flood during
monsoon, the degree of protection to the down stream will vary. The scope of the study is to provice a methodology to the spillway operator at the reservoir site for the operation of the gates to release the flood as to ensure the least possible damage considering the conservation as well as flood control.

2.1 Formulation

The flood cushion space required by any reservoir is determined by routing a specific observed or hypothetical design flood. The initial level and the reservoir can be chosen either from the maximum storage that could reasonably be anticipated as per the working table of the reservoir or a compromise of the above and the anticipated flood. Normally this initial level for flood computations would be the top of conservation pool (FRL) or slightly below FRL with minor seasonal variations (which includes storage required for all purposes other than flood control). The releases made during flood are bounded generally by outlet capacity of the spillway and the maximum feasible target flows that do not produce serious flood damage at the downstream control points. Here a methodology for flood regulation based on U.S.Army corps of Engineers is programmed to help the designers and operators during pre and post reservoir conditions.

Assumption
The assumptions made while evaluating the procedure for flood regulation through the spillway are :
i) The slope of the flood hydrograph for the period under consideration is the same as the previous period.
ii) At no stage the water level in the reservolr shall exceed MWL
iii) Releases are made to allow gradual opening of gates to their full capacity (corresponding to non damaging release)
iv) Reservoir space provided for flood control would be held empty during flood potential periods.
v) Releases are restricted to the current inflow (when the flood rises), the maximum downstream channel capacity and the spillway free flow capacity.

Induced surcharge operation is adopted to exercise partial control over outflow rates after the reservoir has filled to the top of conservation pool level. Regulation is accomplished by raising all gates by small increments, forcing the inflow in excess of the discharge capacity of the specific gate openings as induced surcharge. and volume of induced surcharge will vary with the volume and rate of inflow and schedule of gate operation during individual floods. The maximum elevation of induced surcharge that is practicable to provide in the design of projects involving gated spillways is limited to the MWL.

The step by step procedure to be followed to decide the releases $\left(Q_{2}\right)$ are as follows:

Case 1 :
When the flood raises i.e. when the water level is in between FRL and MWL.
i) construct an induced surcharge envelope curve within the range of the non-damaging release as well as at whithin the maximum permissible induced surcharge elevation (Fig.l shows a typical induced surcharge envelope curve). The curve would permit lower release rate in the lower surcharge ranges. Once it reaches the maximum safe release the curve becomes a straight line parallel to the ordinate.
ii) Assume the initial release $\left(Q_{2}\right)$ to be zero or equal to the down stream minimum requirement.
iii) Compute the expected inflow $\left(Q_{1}\right)$ as per assumption
i form the flood hydrograph.
iv) Compute the amount of water that goes, into storage
(ΔQ) i.e. $\Delta Q=Q_{1}-Q_{2}$
v) Determine the elevation corresponding to the amount of water retained in storage (ΔQ)
vi) From the induced surcharge enveloping curve, find the amount of water to be released corresponding to the level computed in step (V)
vii) Compute the recession constant as follows

The recession constant T_{S} may be obtained by plotting the recession curve as a straightline on a semilog paper with the flow on a logarithmic scale and time on arithmetic scale. For this purpose the historical flood hydrographs must be used. According to unit hydrograph theory, this recession constant has to be the same for all the floods for a particular basin. However, it is observed that there will be variation for

different floods and it is preferable to use the maximum value of T_{S}, thus computed for different floods.
viii) By knowing the inflow (Q_{1}) outflow (Q_{2}) as per step No. 6 and recession constant (T_{S}), compute the recession storage 'SA' from the equation given below :
$S A=C T_{S}\left[Q_{1}-Q_{2} \quad\left(1+\log _{e} \frac{Q_{1}}{Q_{2}}\right)\right]$
where,
SA $=$ recession storage in volume unit
$Q_{1}=$ inflow rate in flow units
$Q_{2}=$ outflow in flow units
$T_{S}=$ recession constant, giving rate of logarithmic decay of the flood with time(hours) as the unit

C $=$ conversion constant

Releases have to be decided on the basis of the recession storage that would have brought by the flood during its recession limb, reservoir level and the rate of inflow at the moment. The volume of recession that must be stored for a hydrograph receeded from an initial inflow to a constant outflow is derived by the U.S.Army Corps of Engineers as given in Equation 1.
ix) Compute the difference between Q_{1} and the Q_{2}
obtained from Step No. (vi) (ΔQ_{1})
x) Compare ΔQ_{1} with $S A$
xi) If Q_{1} is comparable with $S A$ (0.5%) then the
computed Q_{2} from Step No.(vi) be retained.

```
    xii) If \(Q_{1}\) is either higher or lower than SA, repeat
stel .(vi) to (x)
```

Case 2 a. When the flood receeds: but when the water level is inbetween $M \mathrm{~W} L$ and $F R \mathrm{~L}$. Retain the maximum gate opened until the pool elevation falls below the top of conservation ($\mathrm{F} R \mathrm{~L}$)

Case 2 b . When the flood receeds and when the water level is below FRL. Decide the release on the basis of the average of the previous release and the expected in flow as per assumption (i). In the above two cases releases are subjected to, the maximum safe release (FMAX).

Case 3. When the reservoir level raises above MWL. Decide release on the basis of storage indication routing (i.e. spillway free flow).
2.2 Data Requirement

The data required for the computer programme are induced surcharge envelope curve as a table of releases and levels spillway discharge for different levels at full gate opening, the flood hydrograph and different operation levels like F R L, M W L and starting level.

2.3 Analysis

Reservoirs which are operated for both conservation and flood are normally filled step by step during monsoon and
full level is maintained towards the end of monsoon. For an expected flood of given magnitude, this method could be used to ascertain the initial level of reservoir that must be maintained from the known maximum safe release or vice-versa. Thus a reservoir requires different induced surcharge envelope curve for different periods of the monsoon/initial level, which will be of great help for an operator. For different inflows and levels reservoir releases could be computed through the step by step method explained above. Hence it is possible to construct a spillway regulation curve to find out release based on various inflow rates and reservoir levels. Figure 2 shows a typical spillway regulation curve corresponding to the induced surcharge curve given in Figure 1. Thus, it can be used to decide upon the spillway capacity for reservoirs during planning stage and after construction it serves as a ready reckner to the spillway operation.
2.4 Advantages and Limitations

The computational procedure and structuring of the programme is very simple. It is advantaqeous to use this method where spillway operation must not be dependent on communiaations which are likely to fail. The resultant spillway regulation curve will be handy even if the spillway operator is inexperienced. However, the programme does not consider the local runoff that may occur between the reservoir and the downstream control point, while computing the maximum safe release.

3.0 RECOMMENDATIONS

This procedure is recommended for reservoirs where either forecasting is not available or subjected to failure. Alternative spillway capacities can be analysed for variable flood magnitudes and levels in a short interval of time.

1. Boopathy Dhason,S.R.(1984),' Flood Routing Through Multipurpose Reservoir', Hydrology Journal of the Indian Association of Hydrologists,Vol.VII No:l.
2. Boopathy Dhason,S.R.(1984),' Reservoir Operation Study for Bhakra-Beas system' Case Study-4, National Institute of Hydrology, Roorkee.
3. Hydrological Engineering Center (1966),' Spillway Rating and Flood Routing', Sacremento,USA.
4. Hydrological Engineering Center,(1975),' Flood Control by Reservoirs', Davis,USA.
a) Computer Programme
```
C FlOCS ROUTING THRUGGN GATTEE RESERNOIK
        DIMENSION ELEV(40);Q(50)
        MINENSIOM CT(40),IPERSR(10),IPERMQ(10),Z2漂L(120)
        OPEN(UNIT=1,FILE='SPILL, DAT',STATUS='OLD')
    10 FORMAT (40A2)
        DO 20 I=1.3
        READ (1,10)(QS), N=1,40)
20 PRIMT 10, (Q(N),N=1,40)
    PRINT 200
30 FORMAT(1X,17,918)
    40 FORMAT (1X,F7,0,9F8.0)
```



```
    REAB (1,50) (IPERDC(M); * 1, 10)
50 FORMaT(1018)
    READ (1,30) #MNa,H%IRIC
    IF(METRIC)60,60,70
6 0 ~ C O N 1 = 6 4 , 4 ~
    CON2=5.67
    CON3=12.1
    CON4=1.9835
    CON5=,005
    CON6=1.0
    GO TR 80
70 CONI=19.64
    CON2={9,82)䌊.5
    CON3=,278
    C0"4286.5
    CON5=1,235%.005
    C0M6=.5523
80 REAO (1,100) MMEL, HMAIM
    IF(MUMEL)90,90,116
    90 STOP
    100 FORHAT (1X,17,18)
```



```
    ELMAX=ELEv(Mu%cl.)
```



```
    REAM(1,40)(ZINFL(I), I=1, ,MMIM )
    READ(1,40)ELTOP, ELTFC,STFC, ELST, PER, TIRG, CHCAP
    TTIME=TIME
    READ(1,40)ELTSUR, ELSURO, QSURO,TS
    READ(1,120)NGATES,SPUID,FHAX,ELSPI
    120 FORMAT(1X,17,9F8,0)
    TTS=TS
        IF(METRIC) 140:140:160
    140 PRINT 150,ELSURO,ELTSUR,ELSPI,ELST,PER,TS
    150 FORKAT (2X,'FULL. RESERUOIR LEVEL IM FEET =',F7,2,5X,'NAXIMMM MMER
        1 LEVEL IN FEET ',F7.2//
        12X,'CREST LEVEL IM FEET =',F7,2,5X,'STARTYMG LEUEL IM FE
        2ET =',F7,2//
    32X,'ROUTIMG INTERUML IU HOLRS =',9F7,2,5X,'RECESSIOW COWSIANTI
```

```
    4N HOURS='rF7.2//)
        60 10 180
160 PRINT 170,ELSURO,ELTSUR,ELSPI,ELST,PER,TS
170 FORMAT(2X,'FULL RESERVOIR LEUEL IN NETER=';F7,2r5X,'HAXIMMN WATER
    1 LEVEL IM METER',F7,2//
    12X,'CREST LEVEL IN METER =',F7,2,5X,'STARTING LEYEL IN WE
    2 =',9F7,2//
    32X,'OUTING INTERUAL. IN HOURS =',57,2,5X,'RECESSION CONSTANT IN
    4 HOURS=', PF7.2//)
    nO 190 I=1sMMO
    Q(I)=Q(I)*NGATES
    FORMAT (1HO)
210 FORMAT (8F10.2)
    PRINT 200
    ISTPUL=10
    TIME=TTIME
    TS=TTS
    PQC=1,
    N=1
    I=1
    ZMAXUS=0.0
    QIN=0.0
    A=0.0
    PEL=0,0
    PQIN=0,0
        PPQIN=0.00
    QCAME =0.0
    PQAV=0.0
    FINSUR=10,
    TRYTOP=0.0
    PQPGO=0.0
    ICASE=0
    ELAS=ELST
    IXY=0
    OFREE=999999,
    PQFREE=999999,
    INMPGO=0
    MXOPGO=0
        FINSUR=0.0
    TS=TS/24,
    x=ELSURO
220 DO 230 N=1, muntL
    IF(ELEY(N)-X)230,230,240
230 CONTIMUE
240 RATIO=(X-ELEV(苗-1))/(ELEV(M)-ELEV(N-1))
    QTOPSR=RATIO*(Q(N)-Q(N-1))+Q(N-1)
    STGTSR=RATIO(CT(N)-CT(M-1))+CT(*-1)
    IF(X-ELSURO)250,250,260
250 TRASR=&TOFSR
    X=ELTTUUR
```

```
    CTNSRO=STETSR
    60 T0 220
260 PRINT 200
270 TRACE=1.
    IF(ELAS-ELEV(1))290,300,300
2 8 0 ~ P R I N T ~ 2 9 0 ~
290 FORKAT ( 10H STOP 730)
    PRINT 210; ELAS;ELEV(1)
    60 T0 1660
300 IF(ELTOP-ELAS)310,320;320
310 PRINT 200
    60 TO 1660
320 DO 330 N=1, MMEL
    IF(ELAS-ELEV(N))340;330:330
330 COMTIME
340 X=ELEU(N)
    Y=ELEV(N-1)
    RATIO=(ELAS-Y)/(X-Y)
    STG=(CT(N)-CT(M-1))榇ATIOHCT(M-1)
    IF(Y-ELSPI)360;350;350
    350 OM=0(#)
    0MN1=Q(M-1)
    00 T0 400
    360 IF(X-ELSPI)350,350,370
    370 IF{ELAS-ELSPI)}380,390,39
    380 QN=COELSP
    & (#)1=0(#-1)
    X=ELSPI
    GO TO 400
    390 QN=Q(N)
    ONM1=CBELSP
    Y=ELSPI
    400 IF(FINSUR)430,410,430
    410 IF(I-1)420;420;990
    420 POC=0S4%0
    OC=QSURO
    60 T0 440
    4 3 0 ~ R A T I O = ( E L A S - Y ) / ( X - Y )
```



```
    STIND=QC*.5TSTG相ON3/PER
    NGTIND = N
    IF(I-1)440,440;800
    440 INMSTR=0
    IF(IINFL(I)-0C)470;470,450
    450 QIN=0.0
    TINE=TIME-PER
    G0 TO 490
    460 TIME=TINE+PER
    470 QIN=ZINFL(I)
        I=I +1
```

I-3/17

```
        IF(I-M界IM)480,480,1660
    480 IF(ZINFL(I)-GC)460;460;490
    490 CUHST6=5T6
        QCAVE=0.0
        SA=0.0
        CSA=0.0
        ELAS=0.0
        STG=0.0
        ELEVC=ELST
        IF(FIWGUR)1150,980,500
    500 PRINT 510
    PRINT 520
    PRINT 530
    ISTPUL=0
510 FORMAT(' IINE AC,IM%LOM AS.IMFLON OUTFLOW OUTFLOM')
520 FORMAT(' HOLRS AV AV AV END PER SHQ/2 CAPAC
    1TY POLL.EL AS,STORAGE ACTUAL')
530 FORHAT(IOX, CFS CFS CFS CFS END PER END PER E
    1NB PER POLL.EL')
    IF (INDSTR)720,720,540
540 POC=PQFREE
    ELAS=PEL
    60 50 270
550 INDPGO=0
560 CUMSTG=PCUMST+(OTN-QCANE)*PER/COM3
    DO 570 N=1ヶMWMEL
    IF(CT(M)-CUMSTG)570,570,590
5 7 0 ~ C O N T I N U E ~
    PRINT 580
580 FBRNAT (13H EXTENB TABLE)
    XN=N
    PRINT 210, ELAS;XH,CT(M),C\W%TG
    60 T0 1660
```



```
    GFREE=(Q(M)-Q(N-1))䊈ATIO+{(N-1)
    QAFREE=(QFREE+PQFREE)*.5
        IF (GAFREE,GT,FHAX) QAFREE=FHAX
    IF(INDPG0)1150,600,1090
600 IF(ELEVC-ELTSUR-,001)630,630,610
610 TRYTOP=TRYTOP+1,
    IF\TRYTOP-3,)620,620,650
```



```
    RC=RCAVE
    ICASE= 6
    GO TO 550
630 IF(QAFREE-QCAKE)6A0,660,660
640 QC=QAFREE
    QCAVE=QAFREE
    ICASE=7
```

```
    60 T0 560
650 FINSUR=10,
    IMSSTR=10
    TRINT 200
    PRINT 200
    60 T0 490
660 TIME=TIMETPER
670 FORMAT(I4,3F9,0,3F10,0,2X,F10,0,2X,F9,2,16,2X,2F10,2)
6 8 0 ~ I T = T L M E ~
            ACunsTG=ClusT6
            CUMSTG=CUMSTG+((\ARIN-GIM)樟ER)/CON3)
            BO 690 N=1,MMMEL
            IF(CT(N)-CUMSTG) 690,690,700
690 CONTINUE
700 RATIO=(CUNSTG-CT(N-1))/(CT(N)-CT(N-1)
    ELEVA=(ELEV(N)-ELEV(N-1)) 暟ATIO+ELEV(H-1)
    PRINT 670,IT,AQIN,QIN,OCAYE,STG,SA,CSA,CLMSTG,ELEVC,ICASE9ACLMSTG
    1;ELEVA
    60 T0 760
    710 TIME=TIME+PER
    720 IT=TIME
        ACURSTG=CUMSTG
        CUMSTG=CUNSTGT (( (ABIN-QIN)倝ER)/CONZ)
        OO 730 N=1, M(MEL
        IF (CT(N)-CLDSSTG) 730,730,740
    730 CONTINUE
    740 RATIO= (CUMSTG-CT(N-1))/(CT(M)-CT(M-1))
        ELEVA=(ELEV(N)-ELEV(N-1))榇ATIO+ELEV(N-1)
        FRINT 750,IT,AOIM,QIN,QCAVE,OC,STIMA,CLMSTG,ELEVC,ACLHSTG,ELEVA
        ISTPUL=10
    750 FORKAT (IA,2X,4F9,0,2F10,0,59,2,F9,0,F9,2)
    760 PCUMST=CUNSTG
        FQC=RC
            PPQIN=PQIN
            IF(I,LE,2) PPQIN=ZIMFL(I)
            PQIN=ARIN
        ELAS=ELEVA
        TRIAL=1,
        PQFREE=[4FREE
        GUESS=0.0
        PQAU=RCAUE
        PEL=ELEVC
        TRYTOP=0.0
        INDPGO=0
        NSTINM=0
        IF (ZMAXUS-E1EYC)770,780,780
    770 ZMAXUS=ELEVC
    780 IF(I-MMMIN)790,790,1660
    790 QIN=PQIN+(((PQIN-PPQIM)/PPQIM) &PQIN)
        IF(I,E日,2) OIN=IIMFL(1)
```

 I-5/17
    ```
        AQIN=ZZNFL(I)
    I=I+1
    IF(FINSU(%)270,270,800
800 TERP=STIND
    STINB=STIND-RC+GIN
    IF(STIND TEMP) 820, 810,810
810 N=NSTINM
    60 T0 830
820 N=NSIIND-3
830 IF(N-1) 840, 840, 850
840 N=2
850 XSINM =.5軚(N-1)+CT(N-1)*12,1/PER
8 6 0 ~ P X S I N D = X S I N D ~
    XSIMN=,5緗(N)+CT(N)采COM3/PER
    IF(XSIND-STIND)870,870, 880
8 7 0 ~ N = N S 1
    IF(N-Mung) 860,860,900
880 IF(PXSIND-STIND) 920, 920,890
890 N=1
    60 T0 860
900 PRINT }91
910 FGRKAT//20H RATIMG EXTRAPOLATED/)
    N=則MM
920 RATIO=(STIMB-PXSIND)/\XSIMO-PXSIMD)
    NSTIMD=N
    QC= Q(N-1)+RATIO*(B(N)-Q(N-1))
    ELEVC=ELEU(N-1)+RATIO(ELEV(N)-ELEV(M-1))
    GCAVE=,5%(OC+PGC)
    CUMSTG=CT(N-1)HRATIO*(CT(M)-CT(M-1))
    IF(PEL-ELTSUR) 930,710,710
930 IF(ISTPUL)710,710:940
940 FINSUR=0.0
    IMMSTR =10
    PRINT 200
    G0 T0 980
```



```
    10RAGE RESER. RESERMMIR',10X,7HASSUMED)
960 FORNAT\' HOURS AV AV AV SUR AVALL, A
    1VAIL. CAPAC, POOL ELEV ICASE',2X,9HRESERVOIR)
970 FORNAT (9X, CFS CFS CFS CUNUE ASSUM. COMP,
    1 END PD, END PD ',10X,7HSTORAGE)
980 PRINT }95
    PRINT }96
    PRIMT }97
    PRINT 200
    IF(INDSTR)260;680;260
990 ITRY=1
    IF (\OmegaIN-PQAV)1000:1170,1170
1000 IF(ELEVC-ELTFC)1110,1110,1140
1010 IF (BCAUE-PQAV)1020,550,550
```

$$
I-6 / 17
$$

1020 IF（RIN－PQIM） $1050,1030,1040$
1030 IF（PQPGO）1050，1040：1050
1040 IF（PQAV－CHCAP）550，1120，1050
1050 IF（INRPGO）550：1060，550
1060 HEAD＝ELEVC－ELSPI－2．0
$N=1$
STG＝0，

HEAD＝ELEVC－ELSPI－，5\％XD
$N=N+1$
IF（N－5）1070，1080，1080
$1080 \mathrm{~N}=1$
I $M 2 P 60=10$
ICASE＝3
acave＝pqav
GO TO 550
$1090 \mathrm{H}=$ ELEVC－ELSPI－．5 5 XI
OCAVE＝（（H／MEAD）䇆．5）＊PAAV
PGPGB＝QCAVE
$\mathrm{N}=\mathrm{N}+1$
IF $\{N-5) 560,1100,1100$
1100 IF（ELEVC－ELTFC）1110：1110：1130

ICASE＝4
IF（aCAVE－CHCAP） $1120,1120,1130$
1120 QCAVE＝CHCAP
ICASE＝5
1130 QC＝QCAVE
$S A=0.0$
$\operatorname{CSA}=0,0$
$S T G=0.0$
60 T0 550
$1140 \mathrm{SA}=0$ ，
$C S A=0$ ，
60 TO 1060
1150 PRINT 1160
1160 FBRNAT（ 11 M 5TOP 11777）
EOTO 1660
1170 GUESS $=0.0$
日S
IF（PEL－ELTSUR）1100，1610：1610
1180 IF（ ${ }^{(1) I N-Q S U R O)} 1610,1610,1190$
1190 aCAVE＝ASURO
ICASE＝0
NTRY＝0
$\mathrm{STG}=0.0$
ITRY＝1
60701340
$1200 \mathrm{X}=$ CSA + PCIMST
FTSUR＝ELTSUR－ELSU䁄

QCANE=PQAV
$1210 \mathrm{~N}=1$
$1220 \mathrm{~A}=\operatorname{IPERDR}(\mathrm{N})$

IF (OSLR-ACAVE) $1230,1230,1280$
$1230 \mathrm{~N}=\mathrm{N}+1$
$\operatorname{IF}(\mathrm{N}-10) 1240,1240,1250$
1240 XQSUR=QSUR
60501220
1250 QCAVE=QTOPSR
ICASE=1
NTRY=NTRY +1
IF (NTRY-5) $1210,1210,1260$
$1260 \mathrm{SA}=0$,
CSA $=0$,
STG=0,
1270 JF(aCAME-QIN)1010,1010,1610
1280 IF ($\mathrm{N}-1$)1290,1290,1300
1290 OCAUE=QSURO
G0 TO 1210
1300 RATIO=(QCANE-XQSUR) / (QSUR-XOSU等)
$A=\operatorname{IPERSR}(N)$
$\mathrm{B}=\mathrm{IPERSR}(\mathrm{N}-1)$
SURPER $=$ RATIO $(A-B) \& B$

$\mathrm{N}=1$
1310 IF (ELEV(N)-ELSUR) $1320,1330,1330$
$1320 \mathrm{~N}=\mathrm{N}+1$
IF(N-NMOLI) $1310,1310,1270$
1330 RATIO $=(E L S U R-E L E V(N-1)) /(E L E V(N)-E L E V(M-1))$
STG $=(C T(N)-C T(M-1))$ 勆ATIOHCT ($M-1)$
ITRY $=$ ITRY +1
SA=STG-PCUMST

IF (01$) 1350,1350,1360$
$1350 \operatorname{CSA}=0.0$
60 TO 1390
1360 JF (QCAVE)1370,1370,1380
1370 CSA $=$ CON4*TS*O1
60 TO 1390

1390 IF(ITRY-1)1400,1200,1400
$1400 \mathrm{X}=$ CSA $-5 A$
IF $(X) 1410,1420,1420$
$1410 X=-X$
$1420 \gamma=5 A$
IF(Y)1430,1440,1440
$1430 Y=-Y$
1440 L=X-CON5 5
IF (L) $1450,1450,1460$

1450 ICASE=2

60 TO 1270
1460 IF (ITRY-2) $1630,1470,1480$
$1470 \times 5 A=5 A$
$X \operatorname{Cs} A=\operatorname{cs} A$
XQCAVE=QCAVE
GO 501560
1480 TEPP=QCAVE
$16=5 A$
IF(16)1510,1490,1510
1490 IF (Q1-QCAVE) $1500 ; 1500 ; 1530$
1500 ICASE=8 QCAVE=01
G0 TO 1620
1510 IXS $=\mathrm{XSA}$
IF (IXS) $1520,1530,1530$
1520 QCAVE=XQCAVE-((XSAB (XQCAVE-QCAVE))/(XSA-SA))
60 TO 1550
$1530 \mathrm{~A}=$ (XQCAVE-QCAVE) ${ }^{*}$ (CSA-SA)
$B=(\operatorname{CSA}-5 A)-(X \operatorname{CSA}-X S A)$
OCAUE=A/B+RCAVE
IF (RCAVE) 1540,1540,1550
1540 aCAVE $=1.0$
1550 XACAME=TENP
$X S A=5 A$
$X C \operatorname{CA}=\operatorname{CSA}$
60 TO 1590
1560 IF (ACAVE)1570,1570,1580
1570 QCAUE $=1.0$
GO 501590
1580 GCAVE=1.1 1 RLCAVE
1590 IF (0CAVE-a1)1210,1600s1600
1600 GUESS=GUESS 1.
IF (EUE $55-5,0) 1210,1210,1610$
1610 OCAVE $=01$
ICASE=8
$1620 S A=0.0$
$C S A=0.0$
$S T G=0.0$
50701010
1630 PRINT 1640
1640 FORMAT (104 STOP STOP)
1660 STOP
END

b) Input Specification

| Card No. | Variable | Format | Description |
| :---: | :---: | :---: | :---: |
| 1-3 | Q | 40 A2 | Three heading cards |
| 4 | IPERSR | 10 I8 | Percents of surcharge head in |
| | | | the induced surcharge envelope |
| | | | curve |
| 5 | IPERDQ | 10 I8 | Percents of discharge corres- |
| | | | ponding to IPERSR in the induced |
| | | | surcharge envelop curve |
| 6 | NUMQ | I8 | Number of gate discharges |
| | METRIC | I8 | Discharge and storage units |
| | | | 0 -For F P S system l-For M K S |
| | | | system |
| 7 | NUMEL | I8 | Number of elevation to be read |
| 8 | ELEV | F 8.0 | Elevation |
| | CT | F 8.0 | Capacity corresponding to ELEV |
| 9 | Q | 10 F 8.0 | Discharge per gate corresponding |
| | | | to ELEV for a total of NUMQ |
| 10 | ZINFL | 10 F 8.0 | Inflow to cusec/cumec as per |
| | | | METRIC |
| | | | A total of NUMIN to be read |
| 11 | ELTOP | F 8.0 | Maximum elevation for which Q |
| | | | is available |
| | ELTFC | F 8.0 | Elevation of top of flood |
| | | | control pool |
| | STFC | F 8.0 | Storage at ELTFC |
| | ELST | F 8.0 | Starting elevation for the routing |

I-10/17

| | PER | F 8.0 | Period of flood routing in hours |
| :---: | :---: | :---: | :---: |
| | TIME | F 8.0 | Starting time in hours |
| | CHACAP | F 8.0 | Minimum discharge when pool, elevation |
| | | | is receeding |
| 12 | ELTSUR | F 8.0 | Elevation of top of induced surcharge |
| | | | (M W L) |
| | ELSURO | F 8.0 | Elevation of bottom of induced surcharge |
| | | | (top of conservation sotrage (FRL) |
| | QSRO | F 8.0 | Discharge at ELSURO |
| | TS | F 8.0 | Recession constant in hours |
| 13 | NGATES | F 8.0 | Number of gates |
| | SPWID | F 8.0 | Spillway apron width |
| | FMAX | F 8.0 | Maximum safe channel carrying capacity |
| | ELSPI | F 8.0 | Spillway crest elevation |

c) Output Description

All important reservoir parameters are printed out.
Details of inflow, outflow, reservoir levels and storage are printed at the end of every time period as shown in the output example problem. Under the head ICASE different type of routings are coded. The codings and their details are as given below :

Case
1.
2. Release criteria Release based on top of induced surcharge pool since spillway capacity to satisfy induced surcharge envelope curve is slightly greather than the former. Release based on induced surcharge envelope curve.
3) Release based on discharge resulting from maintaining maximum gate opening until top of conservation pool is reached since flood receeds.
4) Release based on average of previous periods release and current inflow since pool elevation is below top of conservation pool (F R L) and is falling.
5) Release based on minimum down stream requirement since inflow is less than CHCAP and pool level is below (FRL) top of conservation pool.
6) Release based on bringing pool elevation down to top of induced surcharge pool (MWL) exactly at the end of the period.
7) Release based on free flow subjected to a maximum of FMAX discharge since gate regulation release is greater than free flow.
8) Release based on not exceeding the average inflow for the last one hour.
d) Example application

The example problem given here shows flood regulation through a multipurpose reservoir that operates for conservation and flood control. The top of conservation storage (FRL) that is also the bottom of induced surcharge is at an elevation of $189.19 \mathrm{mt}(620.70 \mathrm{ft})$. The top of induced surcharge (MWL) is an elevation of 191.41 (628.00 ft). The objective is to moderate a incoming flood hydrograph with a peak of 0.142 laccumea (5 lac cusecs) to 0.0991 cumecs (3.5 lac cusecs) to the down stream from an starting elevation of 189.13 mt (620.66 ft).

The final induced surcharge envelope curve between pool levels $189.19 \mathrm{mt}(620.70 \mathrm{ft})$ and $191.41 \mathrm{mt}(628.00 \mathrm{ft})$ that routs the incoming flood to the down stream subjected to a maximum of 0.0991 lac cumecs (3.5 lac cusecs) and at the same time not allowing the pool level above MWL (628.00 ft) is shown in Figure 1. The curve would permit lower release rate in the lower surcharge ranges. Once it reached the maximum safe release the curve is asymptotic to the elevation axis. It means after this corresponding surcharge elevation no more increase in releases are permitted to any further rise of routings at various levels and trends of inflow are printed in the output shown. The routing is performed on an hourly basis with a recession constant of 13 hours.

NATIOHAL. THSTITUTE OF HYBROLDGY 啨 ROCOKKE
EXAMPLE RESERYOIR FLOOD STUDY
12 GATES OF 49'*35' CREST LEVEL AT 587
0
FULL RESERNOIR LEVEL IM FEET $=620,70$ MAXIMM MATER LEVEL IM FEET 628.00

| CREST LEVEL IN FEET | $=587.00$ | STARTIMG LEVEL IM FEET $=620.66$ |
| :---: | :---: | :---: |
| RGUTIMG IMTERUSL IN HOURS | $=1.00$ | RECESSIDM COMSTOMT IM H0us $=13.0$ |

0

0

| 0 | 4. | 0. | 0. | 0. | 0. | 0. | 702392, | 620,66 | 0 | 702392,44 | 620.66 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 13077. | 0. | 0. | 0. | 0. | 0. | 703473. | 620.66 | 8 | 702392.44 | 620.69 |
| 2 | 17068. | 13077. | 7377. | 705059, | 1585. | 1587. | 704274. | 620,73 | 2 | 703944.31 | 620.72 |
| 3 | 21054. | 22272. | 10793. | 705698, | 1424. | 1426. | 705122. | 620.78 | 2 | 705222.63 | 620.76 |
| 4 | 27200. | 25974. | 14433. | 706380, | 1258. | 1259. | 706177. | 620,80 | 2 | 706075.81 | 620.80 |
| 5 | 33346. | 35140. | 19769. | 707381. | 1203. | 1206. | 707299. | 620.85 | 2 | 707447.50 | 620.85 |
| 6 | 3965s. | 40881. | 25312. | 708425. | 1125. | 1126. | 708482, | 620.90 | 2 | 708583.44 | 620.89 |
| 7 | 45966. | 47160. | 31211. | 709523. | 1041. | 1043. | 709702. | 620.95 | 2 | 709800.38 | 620.94 |
| 8 | 51981, | 53280. | 37239. | 710653. | 951. | 953. | 710920. | 621.00 | 2 | 711027.44 | 620.99 |
| 9 | 57997. | 58783. | 43188. | 711768. | 848. | 848. | 712144. | 621.04 | 2 | 712208.94 | 621.04 |
| 10 | 64143. | 64709. | 49218. | 712897. | 753. | 753. | 713377, | 621.09 | 2 | 713424.25 | 621.09 |
| 11 | 70354. | 70940. | 55370. | 714051. | 673. | 676. | 714616. | 621.14 | 2 | 714664.25 | 621.14 |
| 12 | 76337. | 77166. | 60867. | 715336. | 720. | 720. | 715894, | 621.19 | 2 | 715962.88 | 621.19 |
| 13 | 82320. | 82829. | 65782. | 716719. | 824. | 823. | 717261. | 621.25 | 2 | 717303,13 | 621.25 |
| 14 | 87943. | 88772. | 70900. | 718156. | 895. | 893. | 718670. | 621.31 | 2 | 718738,06 | 621.30 |
| 15 | 93566. | 93950. | 75992. | 719587. | 917. | 915. | 720122. | 621.36 | 2 | 720153.69 | 621.36 |
| 16 | 98535. | 99549. | 81182. | 721045. | 923. | 922. | 721556. | 621,42 | 2 | 721639,81 | 621.42 |
| 17 | 103505. | 103768. | 86127. | 722435. | 879. | 877. | 722992. | 621.48 | 2 | 723014.00 | 621.48 |
| 18 | 107951. | 108726. | 91086. | 723829, | 836. | 835. | 724386. | 621.54 | 2 | 724450.06 | 621.53 |
| 19 | 112397. | 112589. | 95797. | 725154. | 767. | 764. | 725758, | 621.59 | 2 | 725773.69 | 621.59 |
| 20 | 116124. | 117026. | 100467. | 726466. | 708. | 706. | 727052. | 621.64 | 2 | 727126.38 | 621.64 |
| 21 | 119851. | 119975, | 104759 | 727671. | 619. | 618. | 728299. | 621.69 | 2 | 728309.31 | 621.69 |
| 22 | 124134, | 123698, | 108950. | 728850. | 551. | 550. | 729554. | 621.74 | 2 | 729517.94 | 621.74 |
| 23 | 128416. | 129570. | 113320. | 730078. | 524. | 521. | 730802. | 621.79 | 2 | 730814,38 | 621.79 |
| 24 | 133484. | 132846. | 118141. | 731256. | 454, | 45A, | 732070. | 621.84 | 2 | 732016,88 | 621.84 |
| 25 | 138551. | 138752. | 124332. | 732417. | 347. | 345. | 733245. | 621.89 | 2 | 733261.31 | 621.89 |
| 26 | 142409. | 143810, | 130227. | 733520. | 276. | 274. | 734252. | 621.93 | 2 | 734367.31 | 621.93 |
| 27 | 146267. | 146374. | 135195. | 734452. | 201. | 200. | 735167. | 621.97 | 2 | 735175.44 | 621.97 |
| 28 | 154538. | 150230. | 139836. | 735322. | 155, | 154. | 736382. | 822,00 | 2 | 736025.50 | 622.02 |
| 29 | 162809, | 163277. | 146755. | 736596. | 215. | 214. | 737708. | 622.07 | 2 | 737747.00 | 622.07 |
| 30 | 169282. | 171523. | 154266. | 737954. | 246. | 245. | 738949. | 622.13 | 2 | 739134.56 | 622.12 |
| 31 | 175755. | 176012. | 160997. | 739171, | 222. | 221. | 740169. | 622.17 | 2 | 740190.25 | 622.17 |
| 32 | 189061. | 182476. | 167646. | 740374. | 205. | 204, | 741939. | 622.22 | 2 | 741394,63 | 622.25 |

| 33 34 | $\begin{aligned} & 202367, \\ & 216719 \end{aligned}$ | 203374 | 179469, | $742205,$ | 266. | 266. | 743831. | 622.33 | 2 | 743914.56 | 622.33 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 231071. | | 194379. 209392. | 744002, | 171. | 172. | 745678, | 622.40 | 2 | 745668.50 | 622.40 |
| 35 | 231071, | | 209392. | 745813. | 135. | 135. | 747469. | 622.48 | 2 | 747553.31 | 622,48 |
| 36 | 252910. | 246373. | 224084, | 747584, | 115. | 115. | 749852. | 622.55 | 2 | 749311.31 | 622,58 |
| 37 | 274748. | 276813. | 246696. | 749934. | 82. | 83. | 752170. | 622.68 | 2 | 752340.50 | 622.67 |
| 38 | 324278, | 298472. | 270797. | 752201. | 31. | 31. | 756590. | 622.77 | 2 | 754456.94 | 822,86 |
| 39 | 373807. | 382737. | 318137. | 756653. | 63. | 63. | 761191. | 623.07 | 2 | 761928.50 | 623.04 |
| 40 | 419413. | 430901, | 350000. | 761213. | 23. | 23. | 766927, | 623.28 | 7 | 767876.50 | 623.04 623.25 |
| 41 | 465019, | 470583. | 350000. | 0. | 0. | 0. | 776433. | 623.60 | 7 | 776892,63 | 623.25 |
| 42 | 481104. | 515584, | 350000. | 0. | 0. | 0. | 787268. | 624,08 | 7 | 790117,38 | 623.59 |
| 43 | 497188. | 497745. | 350000. | 0. | 0. | 0. | 799432. | 624.43 | 7 | 799478,13 | 623,97 |
| 44 | 498594. | 513810. | 350000. | 0. | 0. | 0. | 811713. | 624,92 | 7 | 812970,06 | 624.42 624.88 |
| 45 | 500000. | 500004. | 350000. | 0. | 0. | 0. | 824109. | 625.36 | 7 | 824109,56 | 625.36 |
| 46 | 491500. | 501410. | 350000. | 0. | 0. | 0. | 835804. | 625,86 | 7 | 836622.50 | 625.83 |
| 47 | 483000. | 483145. | 350000. | 0. | 0. | 0. | 846795. | 626.23 | 7 | 846807.19 | 626.23 |
| 48 | 468942. | 474647. | 350000. | 0. | 0. | 0. | 856625, | 626,57 | 7 | 857096,63 | 626.55 |
| 49 | 454884. | 455293. | 350000. | 0. | 0. | 0. | 865293. | 626,84 | 7 | 865327.06 | 626.84 |
| 50 | 435171. | 441247. | 350000. | 0. | 0. | 0. | 872332, | 627.09 | 7 | 872834.38 | 627.08 |
| 51 | 415457. | 416312. | 350000. | 0. | 0. | 0. | 877742. | 627.26 | 7 | 877812.56 | 627.26 |
| 52 | 391493. | 396636, | 350000. | 0. | 0. | 0. | 881171. | 627,39 | 7 | 881596.13 | 627,37 |
| 53 | 36753n, | 368911. | 350000. | 0. | 0. | 0. | 882620. | 627,42 | 7 | 882734.00 | 627.42 |
| 54 | 343076. | 345034. | 349910. | 0. | 0. | 0. | 882055, | 627,41 | 3 | 882216,88 | 627,40 |
| 55 | 318622. | 320249. | 349463. | 0. | 0. | 0. | 879596. | 627,32 | 3 | 379640.75 | 627.32 |
| 56 | 293808 | 295911. | 348680. | 0. | 0. | 0. | 874971. | 627,17 | 3 | 875145,25 | 627,17 |
| 57 | 268994. | 270927. | 347544. | 0. | 0. | 0. | 868480. | 626.95 | 3 | 868639.44 | 626.95 |
| 58 | 246600. | 246276. | 346071. | 0. | 0. | 0. | 860259. | 626,67 | 3 | 860232,25 | 626.68 |
| 59 | 224206. | 226070. | 344354. | 0. | 0. | 0. | 850329, | 626.35 | 3 | 850483.50 | 626.34 |
| 60 | 203380. | 203846. | 342257. | 0. | 0. | 0. | 838852, | 625.96 | 3 | 838890,50 | 625,95 |
| 61 | 182555. | 184488. | 339500. | 0. | 0. | 0. | 825881. | 625.44 | 3 | 826041.13 | 625,44 |
| 62 | 164084. | 163862. | 336439. | 0. | 0. | 0. | 811637. | 624,87 | 3 | 811618,81 | 624.88 |
| 63 | 145613. | 147482. | 333342. | 0. | 0. | 0. | 796122, | 624.31 | 3 | 796276,81 | 624,30 |
| 64 | 134072, | 129221. | 329993. | 0. | 0. | 0. | 779931. | 623.70 | 3 | 779529,69 | 623.71 |
| 65 | 122532. | 123446. | 326741. | 0. | 0. | 0. | 763054. | 623,11 | 3 | 763129.31 | 623.11 |
| 66 | 108997. | 111985, | 322743. | 0. | 0. | 0. | 745389, | 622.40 | 3 | 745635,88 | 622,39 |
| 67 | 95462. | 96957. | 209850. | 0, | 0. | 0. | 735935. | 622,00 | 4 | 736058.94 | 622,00 |
| 68 | 84151. | 83608. | 146729, | 0. | 0. | 0. | 730764. | 621.79 | 4 | 730718,75 | 621.79 |
| 69 | 72839. | 74180. | 110454. | 0. | 0. | 0. | 727655. | 621.67 | 4 | 727765.75 | 621.66 |
| 70 | 65843. | 63048, | 86751. | 0. | 0. | 0. | 725927, | 621.59 | 4 | 725696.00 | 621.59 |
| 71 | 58847. | 59519. | 73135. | 0. | 0. | 0. | 724746. | 621.55 | 4 | 724801.69 | 621.55 |
| 72 | 51981. | 52594. | 62865. | 0. | 0. | 0. | 723847. | 621.51 | 4 | 723897,31 | 621.51 |
| 73 | 45116. | 45916. | 54390. | 0. | 0. | 0. | 723080. | 621,48 | 4 | 723146.25 | 621.48 |
| 74 | 37959. | 39158. | 46774. | 0. | 0. | 0. | 722352. | 621.46 | 4 | 722450.69 | 621.45 |
| 75 | 30803. | 31937. | 39356. | 0. | 0. | 0. | 721645. | 621,43 | 4 | 721738.56 | 621,42 |
| 76 | 26223. | 24996. | 32176. | 0. | 0. | 0. | 721153. | 621.40 | 4 | 721051.44 | 621,40 |
| 77 | 21642. | 22324. | 27250. | 0. | 0. | 0. | 720689. | 621.39 | 4 | 720745.69 | 621.38 |
| 78 | 19746. | 17861. | 22556. | 0. | 0. | 0. | 720457. | 621.37 | 4 | 720301,38 | 621,37 |
| 79 | 17850. | 18016. | 20286. | 0. | 0. | 0. | 720256. | 621.37 | 4 | 720269,56 | 621,37 |
| 80 | 16444. | 16136. | 18211. | 0. | 0. | 0. | 720110. | 621,36 | 4 | 720084.31 | 621,36 |
| 81 | 15039. | 15149. | 16680. | 0. | 0. | 0. | 719974. | 621.36 | 4 | 719983.19 | 621.36 |
| 82 | 14450, | 13754, | 15217. | 0. | 0. | 0. | 719911. | 621,35 | 4 | 719853.25 | 621.35 |

| 83 | 13862, | 13884, | 14551, | 0, | 0. | 0, | 719854, | 621.35 | 4 | 719855,69 | 621.35 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 84 | 13469, | 13298, | 13924, | 0, | 0, | 0, | 719816, | 621.35 | 4 | 719802.13 | 621.35 |
| 85 | 13077, | 13087, | 13506, | 0. | 0, | 0. | 719781. | 621.35 | 4 | 719781.69 | 621.35 |

